Skip to content
2000
image of Anti-cancer Properties of Epigallocatechin-3-gallate (EGCG) and its Signaling Pathways

Abstract

Green tea is a traditional drink found in Asian countries, made up of four derivatives. One of the derivatives is epigallocatechin-3-gallate (EGCG). EGCG provides therapeutic benefits for cancer, heart disease, diabetes, and obesity. However, its poor absorption and instability limit its effectiveness, which can be improved using nanoparticle encapsulation. This work is a comprehensive review of the studies on green tea polyphenols, the impact of pro-oxidants and EGCG in cancer prevention, and their delivery using nanotechnology. Other plant sources of ellagitannin and its physicochemical properties, the therapeutic and preventive role of EGCG in breast cancer, and other cancers that can be treated using nano gold (NpAu) carriers are also discussed.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673348926250331150429
2025-04-17
2025-09-08
Loading full text...

Full text loading...

References

  1. Talib W.H. Daoud S. Mahmod A.I. Hamed R.A. Awajan D. Abuarab S.F. Odeh L.H. Khater S. Al Kury L.T. Plants as a source of anticancer agents: From bench to bedside. Molecules 2022 27 15 4818 10.3390/molecules27154818 35956766
    [Google Scholar]
  2. Furniturewalla A. Barve K. Approaches to overcome bioavailability inconsistencies of epigallocatechin gallate, a powerful anti-oxidant in green tea. Food Chem. Adv. 2022 1 100037 10.1016/j.focha.2022.100037
    [Google Scholar]
  3. Singh N.A. Mandal A.K.A. Khan Z.A. Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG). Nutr. J. 2015 15 1 60 10.1186/s12937‑016‑0179‑4 27268025
    [Google Scholar]
  4. Guo S. Bezard E. Zhao B. Protective effect of green tea polyphenols on the SH-SY5Y cells against 6-OHDA induced apoptosis through ROS–NO pathway. Free Radic. Biol. Med. 2005 39 5 682 695 10.1016/j.freeradbiomed.2005.04.022 16085186
    [Google Scholar]
  5. Singh B.N. Shankar S. Srivastava R.K. Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications. Biochem. Pharmacol. 2011 82 12 1807 1821 10.1016/j.bcp.2011.07.093 21827739
    [Google Scholar]
  6. Gonçalves Bortolini D. Windson Isidoro Haminiuk C. Cristina Pedro A. de Andrade Arruda Fernandes I. Maria Maciel G. Processing, chemical signature and food industry applications of Camellia sinensis teas: An overview. Food Chem. X 2021 12 100160 10.1016/j.fochx.2021.100160 34825170
    [Google Scholar]
  7. Jin J.Q. Jiang C.K. Yao M.Z. Chen L. Baiyacha, a wild tea plant naturally occurring high contents of theacrine and 3″-methyl-epigallocatechin gallate from Fujian, China. Sci. Rep. 2020 10 1 9715 10.1038/s41598‑020‑66808‑x 32546720
    [Google Scholar]
  8. Ferrante C. Chiavaroli A. Angelini P. Venanzoni R. Angeles Flores G. Brunetti L. Petrucci M. Politi M. Menghini L. Leone S. Recinella L. Zengin G. Ak G. Di Mascio M. Bacchin F. Orlando G. Phenolic content and antimicrobial and anti-inflammatory effects of Solidago virga-aurea, Phyllanthus niruri, Epilobium angustifolium, Peumus boldus, and Ononis spinosa extracts. Antibiotics 2020 9 11 783 10.3390/antibiotics9110783 33172081
    [Google Scholar]
  9. Snijman P.W. Joubert E. Ferreira D. Li X.C. Ding Y. Green I.R. Gelderblom W.C.A. Antioxidant activity of the dihydrochalcones Aspalathin and Nothofagin and their corresponding flavones in relation to other Rooibos ( Aspalathus linearis ) Flavonoids, Epigallocatechin Gallate, and Trolox. J. Agric. Food Chem. 2009 57 15 6678 6684 10.1021/jf901417k 19722573
    [Google Scholar]
  10. Chaabi M. Beghidja N. Benayache S. Lobstein A. Activity-guided isolation of antioxidant principles from Limoniastrum feei (Girard) Batt. Z. Naturforsch. C J. Biosci. 2008 63 11-12 801 807 10.1515/znc‑2008‑11‑1204 19227826
    [Google Scholar]
  11. Mbaveng A.T Zhao Q. Kuete V. 20 - Harmful and protective effects of phenolic compounds from african medicinal plants In:Toxicological Survey of African Medicinal Plants Kuete V Elsevier London 2014 577 609 10.1016/B978‑0‑12‑800018‑2.00020‑0
    [Google Scholar]
  12. Min K. Kwon T.K. Anticancer effects and molecular mechanisms of epigallocatechin-3-gallate. Integr. Med. Res. 2014 3 1 16 24 10.1016/j.imr.2013.12.001 28664074
    [Google Scholar]
  13. Wang C.C. Ho C.T. Lee S.C. Way T.D. Isolation of eugenyl β-primeveroside from Camellia sasanqua and its anticancer activity in PC3 prostate cancer cells. Yao Wu Shi Pin Fen Xi 2016 24 1 105 111 28911392
    [Google Scholar]
  14. Katiyar S.K. Agarwal R. Wang Z.Y. Bhatia A.K. Mukhtar H. (—)-Epigallocatechin-3-gallate in camellia sinensis leaves from Himalayan region of Sikkim: Inhibitory effects against biochemical events and tumor initiation in sencar mouse skin. Nutr. Cancer 1992 18 1 73 83 10.1080/01635589209514207 1408948
    [Google Scholar]
  15. Yan D. Yang Y. Wang C. Qi Y. Liu C. Zhou B. Ren X. Effects of epigallocatechin-3-gallate (EGCG) on skin greasiness and related gene expression in ‘Jonagold’ apple fruit during ambient storage. Postharvest Biol. Technol. 2018 143 28 34 10.1016/j.postharvbio.2018.04.006
    [Google Scholar]
  16. Wu L. Sanguansri L. Augustin M.A. Protection of epigallocatechin gallate against degradation during in vitro digestion using apple pomace as a carrier. J. Agric. Food Chem. 2014 62 50 12265 12270 10.1021/jf504659n 25419979
    [Google Scholar]
  17. Yuan B. Lu M. Eskridge K.M. Isom L.D. Hanna M.A. Extraction, identification, and quantification of antioxidant phenolics from hazelnut (Corylus avellana L.) shells. Food Chem. 2018 244 7 15 10.1016/j.foodchem.2017.09.116 29120806
    [Google Scholar]
  18. Hudthagosol C. Haddad E.H. McCarthy K. Wang P. Oda K. Sabaté J. Pecans acutely increase plasma postprandial antioxidant capacity and catechins and decrease LDL oxidation in humans. J. Nutr. 2011 141 1 56 62 10.3945/jn.110.121269 21106921
    [Google Scholar]
  19. Aissani N. Coroneo V. Fattouch S. Caboni P. Inhibitory effect of carob (Ceratonia siliqua) leaves methanolic extract on Listeria monocytogenes. J. Agric. Food Chem. 2012 60 40 9954 9958 10.1021/jf3029623 22978382
    [Google Scholar]
  20. Okuda T. Ito H Tannins of constant structure in medicinal and food plants—hydrolyzable Tannins and polyphenols related to tannins Molecules 2011 16 3 2191 2217 10.3390/molecules16032191
    [Google Scholar]
  21. Haskell-Ramsay C.F. Schmitt J. Actis-Goretta L. The impact of epicatechin on human cognition: The role of cerebral blood flow. Nutrients 2018 10 8 986 10.3390/nu10080986 30060538
    [Google Scholar]
  22. Karen Johana Ortega V Food Ellagitannins: Structure, Metabolomic Fate, and Biological Properties IntechOpen Rijeka 2019
    [Google Scholar]
  23. Muchow M. Maincent P. Müller R.H. Lipid nanoparticles with a solid matrix (SLN, NLC, LDC) for oral drug delivery. Drug Dev. Ind. Pharm. 2008 34 12 1394 1405 10.1080/03639040802130061 18665980
    [Google Scholar]
  24. Scioli Montoto S. Muraca G. Ruiz M.E. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects. Front. Mol. Biosci. 2020 7 587997 10.3389/fmolb.2020.587997 33195435
    [Google Scholar]
  25. Ferrari E. Bettuzzi S. Naponelli V. The potential of epigallocatechin gallate (EGCG) in targeting autophagy for cancer treatment: A narrative review. Int. J. Mol. Sci. 2022 23 11 6075 10.3390/ijms23116075 35682754
    [Google Scholar]
  26. Liao Y. Zhou X. Zeng L. How does tea ( Camellia sinensis ) produce specialized metabolites which determine its unique quality and function: A review. Crit. Rev. Food Sci. Nutr. 2022 62 14 3751 3767 10.1080/10408398.2020.1868970 33401945
    [Google Scholar]
  27. Jeganathan B Genetic variation of flavonols quercetin, myricetin, and kaempferol in the Sri Lankan tea ( Camellia sinensis L.) and their health-promoting aspects. Int. J. Food Sci. 2016 2016 6057434 10.1155/2016/6057434
    [Google Scholar]
  28. Hasegawa T. Constituents of the green tea seeds of Camellia sinensis. Nat. Prod. Commun. 2011 6 3 1934578X1100600314 10.1177/1934578X1100600314
    [Google Scholar]
  29. Sánchez M. González-Burgos E. Iglesias I. Lozano R. Gómez-Serranillos M.P. The pharmacological activity of Camellia sinensis (L.) Kuntze on metabolic and endocrine disorders: A systematic review. Biomolecules 2020 10 4 603 10.3390/biom10040603 32294991
    [Google Scholar]
  30. Yang Z. Zhu M. Zhang Y. Wen B. An H. Ou X. Xiong Y. Lin H. Liu Z. Huang J. Coadministration of epigallocatechin-3-gallate (EGCG) and caffeine in low dose ameliorates obesity and nonalcoholic fatty liver disease in obese rats. Phytother. Res. 2019 33 4 1019 1026 10.1002/ptr.6295 30746789
    [Google Scholar]
  31. Meng X.H. Zhu H.T. Yan H. Wang D. Yang C.R. Zhang Y.J. C-8 N -ethyl-2-pyrrolidinone-substituted flavan-3-ols from the leaves of Camellia sinensis var. pubilimba. J. Agric. Food Chem. 2018 66 27 7150 7155 10.1021/acs.jafc.8b02066 29889511
    [Google Scholar]
  32. Zhang Q.A. Fu X.Z. García Martín J.F. Effect of ultrasound on the interaction between (−)-epicatechin gallate and bovine serum albumin in a model wine. Ultrason. Sonochem. 2017 37 405 413 10.1016/j.ultsonch.2017.01.031 28427650
    [Google Scholar]
  33. Zhang L. Ho C.T. Zhou J. Santos J.S. Armstrong L. Granato D. Chemistry and biological activities of processed Camellia sinensis teas: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2019 18 5 1474 1495 10.1111/1541‑4337.12479 33336903
    [Google Scholar]
  34. Teixeira A.M. Sousa C. A review on the biological activity of Camellia species. Molecules 2021 26 8 2178 10.3390/molecules26082178 33918918
    [Google Scholar]
  35. Kottawa-Arachchi J. Biochemical characteristics of tea (Camellia L. spp.) germplasm accessions in sri lanka: correlation between black tea quality parameters and organoleptic evaluation. Int. J. Tea Sci. 2014 10 03 13
    [Google Scholar]
  36. Bandyopadhyay D. Chatterjee T.K. Dasgupta A. Lourduraja J. Dastidar S.G. In vitro and in vivo antimicrobial action of tea: the commonest beverage of Asia. Biol. Pharm. Bull. 2005 28 11 2125 2127 10.1248/bpb.28.2125 16272702
    [Google Scholar]
  37. Salinero C. Bioactive compounds and biological properties of oils from three camelia species. 2014 International Camellia Congress. Pontevedra–Spain, 2014.
    [Google Scholar]
  38. Taylor P.W. Hamilton-Miller J.M.T. Stapleton P.D. Antimicrobial properties of green tea catechins. Food Sci. Technol. Bull. 2005 2 7 71 81 10.1616/1476‑2137.14184 19844590
    [Google Scholar]
  39. Schepetkin I.A. Ramstead A.G. Kirpotina L.N. Voyich J.M. Jutila M.A. Quinn M.T. Therapeutic potential of polyphenols from Epilobium angustifolium (Fireweed). Phytother. Res. 2016 30 8 1287 1297 10.1002/ptr.5648 27215200
    [Google Scholar]
  40. Elisha I.L. Viljoen A. Trends in rooibos tea (Aspalathus linearis) research (1994–2018): A scientometric assessment. S. Afr. J. Bot. 2021 137 159 170 10.1016/j.sajb.2020.10.004
    [Google Scholar]
  41. Samodien S. Kock M. Joubert E. Swanevelder S. Gelderblom W.C.A. Differential cytotoxicity of rooibos and green tea extracts against primary rat hepatocytes and human liver and colon cancer cells–causal role of major flavonoids. Nutr. Cancer 2021 73 10 2050 2064 10.1080/01635581.2020.1820054 32930006
    [Google Scholar]
  42. Snijman P.W. Swanevelder S. Joubert E. Green I.R. Gelderblom W.C.A. The antimutagenic activity of the major flavonoids of rooibos (Aspalathus linearis): Some dose–response effects on mutagen activation–flavonoid interactions. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2007 631 2 111 123 10.1016/j.mrgentox.2007.03.009 17537670
    [Google Scholar]
  43. Hadjadj S. Comparison of phenolic content and antioxidant activity of methanolic and ethanolic extracts of Limoniastrum guyonianum. Int. J. Biosci. 2016 9 6 35 44 10.12692/ijb/9.6.35‑44
    [Google Scholar]
  44. El-Hawary S.A. Sokkar N.M. Ali Z.Y. Yehia M.M. A profile of bioactive compounds of Rumex vesicarius L. J. Food Sci. 2011 76 8 C1195 C1202 10.1111/j.1750‑3841.2011.02370.x 22417584
    [Google Scholar]
  45. Momtaz S. Mapunya B.M. Houghton P.J. Edgerly C. Hussein A. Naidoo S. Lall N. Tyrosinase inhibition by extracts and constituents of Sideroxylon inerme L. stem bark, used in South Africa for skin lightening. J. Ethnopharmacol. 2008 119 3 507 512 10.1016/j.jep.2008.06.006 18573327
    [Google Scholar]
  46. Yin J. Ahn H.S. Ha S.Y. Hwang I.H. Yoon K.D. Chin Y.W. Lee M.W. Anti-skin ageing effects of phenolic compounds from Carpinus tschonoskii. Nat. Prod. Res. 2019 33 22 3317 3320 10.1080/14786419.2018.1497026 30033761
    [Google Scholar]
  47. Yin J. Hwang I.H. Lee M.W. Anti-acne vulgaris effect including skin barrier improvement and 5α-reductase inhibition by tellimagrandin I from Carpinus tschonoskii. BMC Complement. Altern. Med. 2019 19 1 323 10.1186/s12906‑019‑2734‑y 31752827
    [Google Scholar]
  48. Yamada P. Ono T. Shigemori H. Han J. Isoda H. Inhibitory effect of tannins from galls of Carpinus tschonoskii on the degranulation of RBL-2H3 Cells. Cytotechnology 2012 64 3 349 356 10.1007/s10616‑012‑9457‑y 22669603
    [Google Scholar]
  49. Engelhardt C. Petereit F. Lechtenberg M. Liefländer-Wulf U. Hensel A. Qualitative and quantitative phytochemical characterization of Myrothamnus flabellifolia Welw. Fitoterapia 2016 114 69 80 10.1016/j.fitote.2016.08.013 27575326
    [Google Scholar]
  50. Anke J. Petereit F. Engelhardt C. Hensel A. Procyanidins from Myrothamnus flabellifolia. Nat. Prod. Res. 2008 22 14 1237 1248 10.1080/14786410701726343 18932087
    [Google Scholar]
  51. Gescher K. Kühn J. Lorentzen E. Hafezi W. Derksen A. Deters A. Hensel A. Proanthocyanidin-enriched extract from Myrothamnus flabellifolia Welw. exerts antiviral activity against herpes simplex virus type 1 by inhibition of viral adsorption and penetration. J. Ethnopharmacol. 2011 134 2 468 474 10.1016/j.jep.2010.12.038 21211557
    [Google Scholar]
  52. Löhr G. Beikler T. Podbielski A. Standar K. Redanz S. Hensel A. Polyphenols from Myrothamnus flabellifolia Welw. inhibit in vitro adhesion of Porphyromonas gingivalis and exert anti-inflammatory cytoprotective effects in KB cells. J. Clin. Periodontol. 2011 38 5 457 469 10.1111/j.1600‑051X.2010.01654.x 21158896
    [Google Scholar]
  53. Navarro-Hoyos M. Arnáez-Serrano E. Quesada-Mora S. Azofeifa-Cordero G. Wilhelm-Romero K. Quirós-Fallas M.I. Alvarado-Corella D. Vargas-Huertas F. Sánchez-Kopper A. HRMS characterization, antioxidant and cytotoxic activities of polyphenols in Malus domestica cultivars from Costa Rica. Molecules 2021 26 23 7367 10.3390/molecules26237367 34885949
    [Google Scholar]
  54. Patocka J. Bhardwaj K. Klimova B. Nepovimova E. Wu Q. Landi M. Kuca K. Valis M. Wu W. Malus domestica: A review on nutritional features, chemical composition, traditional and medicinal value. Plants 2020 9 11 1408 10.3390/plants9111408 33105724
    [Google Scholar]
  55. Navarro M. Moreira I. Arnaez E. Quesada S. Azofeifa G. Vargas F. Alvarado D. Chen P. Polyphenolic characterization and antioxidant activity of Malus domestica and Prunus domestica cultivars from Costa Rica. Foods 2018 7 2 15 10.3390/foods7020015 29385709
    [Google Scholar]
  56. Yu J. Li W. You B. Yang S. Xian W. Deng Y. Huang W. Yang R. Phenolic profiles, bioaccessibility and antioxidant activity of plum (Prunus Salicina Lindl). Food Res. Int. 2021 143 110300 10.1016/j.foodres.2021.110300 33992320
    [Google Scholar]
  57. Bottone A. Cerulli A. DʼUrso G. Masullo M. Montoro P. Napolitano A. Piacente S. Plant specialized metabolites in hazelnut (Corylus avellana) kernel and byproducts: An update on chemistry, biological activity, and analytical aspects. Planta Med. 2019 85 11/12 840 855 10.1055/a‑0947‑5725 31250412
    [Google Scholar]
  58. Prokopenko Y. Jakštas V. Žvikas V. Georgiyants V. Ivanauskas L. Hilic MS/MS determination of amino acids in herbs of Fumaria schleicheri L., Ocimum basilicum L., and leaves of Corylus avellana L. Nat. Prod. Res. 2019 33 13 1961 1963 10.1080/14786419.2018.1477145 29772944
    [Google Scholar]
  59. Amaral J.S. Ferreres F. Andrade P.B. Valentão P. Pinheiro C. Santos A. Seabra R. Phenolic profile of hazelnut ( Corylus Avellana L.) leaves cultivars grown in Portugal. Nat. Prod. Res. 2005 19 2 157 163 10.1080/14786410410001704778 15715260
    [Google Scholar]
  60. Basharat Z. Afzaal M. Saeed F. Islam F. Hussain M. Ikram A. Pervaiz M.U. Awuchi C.G. Nutritional and functional profile of carob bean ( Ceratonia siliqua ): A comprehensive review. Int. J. Food Prop. 2023 26 1 389 413 10.1080/10942912.2022.2164590
    [Google Scholar]
  61. Al-Ameri M.T.G. Nasser A.K. In vitro antioxidant properties of gum extract from the carob (Ceratonia silique L.) plant. Basrah J. Agric. Sci. 2021 34 1 84 93 10.37077/25200860.2021.34.1.08
    [Google Scholar]
  62. Papagiannopoulos M. Wollseifen H.R. Mellenthin A. Haber B. Galensa R. Identification and quantification of polyphenols in carob fruits (Ceratonia siliqua L.) and derived products by HPLC-UV-ESI/MSn. J. Agric. Food Chem. 2004 52 12 3784 3791 10.1021/jf030660y 15186098
    [Google Scholar]
  63. Azab A. Carob antioxidants in human health: From traditional uses to modern pharmacology. J. Biomed. Res. Environ. Sci. 2022 3 8 953 973 10.37871/jbres1538
    [Google Scholar]
  64. Díaz-Mula H.M. Tomás-Barberán F.A. García-Villalba R. Pomegranate fruit and juice (cv. Mollar), rich in ellagitannins and anthocyanins, also provide a significant content of a wide range of proanthocyanidins. J. Agric. Food Chem. 2019 67 33 9160 9167 10.1021/acs.jafc.8b07155 30768267
    [Google Scholar]
  65. Russo M. Fanali C. Tripodo G. Dugo P. Muleo R. Dugo L. De Gara L. Mondello L. Analysis of phenolic compounds in different parts of pomegranate (Punica granatum) fruit by HPLC-PDA-ESI/MS and evaluation of their antioxidant activity: Application to different Italian varieties. Anal. Bioanal. Chem. 2018 410 15 3507 3520 10.1007/s00216‑018‑0854‑8 29350256
    [Google Scholar]
  66. Al-Zoreky N.S. Antimicrobial activity of pomegranate (Punica granatum L.) fruit peels. Int. J. Food Microbiol. 2009 134 3 244 248 10.1016/j.ijfoodmicro.2009.07.002 19632734
    [Google Scholar]
  67. Satomi H. Umemura K. Ueno A. Hatano T. Okuda T. Noro T. Carbonic anhydrase inhibitors from the pericarps of Punica granatum L. Biol. Pharm. Bull. 1993 16 8 787 790 10.1248/bpb.16.787 8220326
    [Google Scholar]
  68. Sharma K. An insight into anticancer bioactives from Punica granatum (Pomegranate). Anti-Cancer Agents Med. Chem. 2022 22 4 694 702
    [Google Scholar]
  69. Bartosikova L. Necas J. Epigallocatechin gallate: A review. Vet. Med. 2018 63 10 443 467 10.17221/31/2018‑VETMED
    [Google Scholar]
  70. Aktas O. Waiczies S. Zipp F. Neurodegeneration in autoimmune demyelination: Recent mechanistic insights reveal novel therapeutic targets. J. Neuroimmunol. 2007 184 1-2 17 26 10.1016/j.jneuroim.2006.11.026 17222462
    [Google Scholar]
  71. Seeram N.P. Henning S.M. Niu Y. Lee R. Scheuller H.S. Heber D. Catechin and caffeine content of green tea dietary supplements and correlation with antioxidant capacity. J. Agric. Food Chem. 2006 54 5 1599 1603 10.1021/jf052857r 16506807
    [Google Scholar]
  72. Shi Z. Zhu J. Guo Y. Niu M. Zhang L. Tu C. Huang Y. Li P. Zhao X. Zhang Z. Bai Z. Zhang G. Lu Y. Xiao X. Wang J. Epigallocatechin gallate during dietary restriction—potential mechanisms of enhanced liver injury. Front. Pharmacol. 2021 11 609378 10.3389/fphar.2020.609378 33584288
    [Google Scholar]
  73. Sang S. Lambert J.D. Ho C.T. Yang C.S. The chemistry and biotransformation of tea constituents. Pharmacol. Res. 2011 64 2 87 99 10.1016/j.phrs.2011.02.007 21371557
    [Google Scholar]
  74. Kim H.S. Quon M.J. Kim J. New insights into the mechanisms of polyphenols beyond antioxidant properties; Lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol. 2014 2 187 195 10.1016/j.redox.2013.12.022 24494192
    [Google Scholar]
  75. Aboulwafa M.M. Youssef F.S. Gad H.A. Altyar A.E. Al-Azizi M.M. Ashour M.L. A comprehensive insight on the health benefits and phytoconstituents of Camellia sinensis and recent approaches for its quality control. Antioxidants 2019 8 10 455 10.3390/antiox8100455 31590466
    [Google Scholar]
  76. Yang X. Tomás-Barberán F.A. Tea is a significant dietary source of ellagitannins and ellagic acid. J. Agric. Food Chem. 2019 67 19 5394 5404 10.1021/acs.jafc.8b05010 30339026
    [Google Scholar]
  77. Sanlier N. Atik İ. Atik A. A mini review of effects of white tea consumption on diseases. Trends Food Sci. Technol. 2018 82 82 88 10.1016/j.tifs.2018.10.004
    [Google Scholar]
  78. Chacko S.M. Thambi P.T. Kuttan R. Nishigaki I. Beneficial effects of green tea: A literature review. Chin. Med. 2010 5 1 13 10.1186/1749‑8546‑5‑13 20370896
    [Google Scholar]
  79. Xing L. Zhang H. Qi R. Tsao R. Mine Y. Recent advances in the understanding of the health benefits and molecular mechanisms associated with green tea polyphenols. J. Agric. Food Chem. 2019 67 4 1029 1043 10.1021/acs.jafc.8b06146 30653316
    [Google Scholar]
  80. Gulati A. Rajkumar S. Karthigeyan S. Sud R.K. Vijayan D. Thomas J. Rajkumar R. Das S.C. Tamuly P. Hazarika M. Ahuja P.S. Catechin and catechin fractions as biochemical markers to study the diversity of Indian tea (Camellia sinensis (L.) O. Kuntze) germplasm. Chem. Biodivers. 2009 6 7 1042 1052 10.1002/cbdv.200800122 19623550
    [Google Scholar]
  81. Chen D. Sun Z. Gao J. Peng J. Wang Z. Zhao Y. Lin Z. Dai W. Metabolomics combined with proteomics provides a novel interpretation of the compound differences among Chinese tea cultivars (Camellia sinensis var. sinensis) with different manufacturing suitabilities. Food Chem. 2022 377 131976 10.1016/j.foodchem.2021.131976 34979399
    [Google Scholar]
  82. Jin J.Q. Dai W-D. Zhang C-Y. Lin Z. Chen L. Genetic, morphological, and chemical discrepancies between Camellia sinensis (L.) O. Kuntze and its close relatives. J. Food Compos. Anal. 2022 108 104417 10.1016/j.jfca.2022.104417
    [Google Scholar]
  83. Gao X. Lin X. Ho C.T. Zhang Y. Li B. Chen Z. Chemical composition and anti-inflammatory activity of water extract from black cocoa tea (Camellia ptilophylla). Food Res. Int. 2022 161 111831 10.1016/j.foodres.2022.111831 36192963
    [Google Scholar]
  84. Teng J. Yan C. Zeng W. Zhang Y. Zeng Z. Huang Y. Purification and characterization of theobromine synthase in a Theobromine-Enriched wild tea plant (Camellia gymnogyna Chang) from Dayao Mountain, China. Food Chem. 2020 311 125875 10.1016/j.foodchem.2019.125875 31753680
    [Google Scholar]
  85. Sheng Y.Y. Xiang J. Wang Z.S. Jin J. Wang Y.Q. Li Q.S. Li D. Fang Z.T. Lu J.L. Ye J.H. Liang Y.R. Zheng X.Q. Theacrine from Camellia Kucha and its health beneficial effects. Front. Nutr. 2020 7 596823 10.3389/fnut.2020.596823 33392238
    [Google Scholar]
  86. Wu W. Lu M. Peng J. Lv H. Shi J. Zhang S. Liu Z. Duan J. Chen D. Dai W. Lin Z. Nontargeted and targeted metabolomics analysis provides novel insight into nonvolatile metabolites in Jianghua Kucha tea germplasm (Camellia sinensis var. Assamica cv. Jianghua). Food Chem. X 2022 13 100270 10.1016/j.fochx.2022.100270 35499018
    [Google Scholar]
  87. Li J. Phytochemical comparison of different tea (Camellia sinensis) cultivars and its association with sensory quality of finished tea. Food Sci. Technol. 2020 117 108595
    [Google Scholar]
  88. Granica S. Piwowarski J.P. Czerwińska M.E. Kiss A.K. Phytochemistry, pharmacology and traditional uses of different Epilobium species (Onagraceae): A review. J. Ethnopharmacol. 2014 156 316 346 10.1016/j.jep.2014.08.036 25196824
    [Google Scholar]
  89. Kowalik K. Polak-Berecka M. Prendecka-Wróbel M. Pigoń-Zając D. Niedźwiedź I. Szwajgier D. Baranowska-Wójcik E. Waśko A. Biological activity of an Epilobium angustifolium L.(Fireweed) infusion after in vitro digestion. Molecules 2022 27 3 1006 10.3390/molecules27031006 35164271
    [Google Scholar]
  90. Abid R. Kanwal D. Qaiser M. Seed morphological studies on some monocot families (excluding Gramineae) and their phylogenetic implications. Pak. J. Bot. 2014 46 4 1309 1324
    [Google Scholar]
  91. Bazylko A. Kiss A. Kowalski J. Densitometric determination of flavonoids in methanolic and aqueous extracts of Epilobii angustifolii herba by use of HPTLC. J. Planar Chromatogr. Mod. TLC 2007 20 1 53 56 10.1556/JPC.20.2007.1.8
    [Google Scholar]
  92. Sasov S. Macrocyclic tannins of Chamerion Angustifolium. Probl Biolog. Med Pharmaceut Chem 2010 10 24 27
    [Google Scholar]
  93. Baert N. Karonen M. Salminen J.P. Isolation, characterisation and quantification of the main oligomeric macrocyclic ellagitannins in Epilobium angustifolium by ultra-high performance chromatography with diode array detection and electrospray tandem mass spectrometry. J. Chromatogr. A 2015 1419 26 36 10.1016/j.chroma.2015.09.050 26455285
    [Google Scholar]
  94. Kiss A. Kowalski J. Melzig M.F. Compounds from Epilobium angustifolium inhibit the specific metallopeptidases ACE, NEP and APN. Planta Med. 2004 70 10 919 923 10.1055/s‑2004‑832617 15490319
    [Google Scholar]
  95. Nowak A. Zielonka-Brzezicka J. Perużyńska M. Klimowicz A. Epilobium angustifolium L. as a potential herbal component of topical products for skin care and treatment—a review. Molecules 2022 27 11 3536 10.3390/molecules27113536 35684473
    [Google Scholar]
  96. Karakaya S. Süntar I. Yakinci O.F. Sytar O. Ceribasi S. Dursunoglu B. Ozbek H. Guvenalp Z. In vivo bioactivity assessment on Epilobium species: A particular focus on Epilobium angustifolium and its components on enzymes connected with the healing process. J. Ethnopharmacol. 2020 262 113207 10.1016/j.jep.2020.113207 32730870
    [Google Scholar]
  97. Stolarczyk M. Piwowarski J.P. Granica S. Stefańska J. Naruszewicz M. Kiss A.K. Extracts from Epilobium sp. herbs, their components and gut microbiota metabolites of Epilobium ellagitannins, urolithins, inhibit hormone-dependent prostate cancer cells-(LNCaP) proliferation and PSA secretion. Phytother. Res. 2013 27 12 1842 1848 10.1002/ptr.4941 23436427
    [Google Scholar]
  98. McKay D.L. Blumberg J.B. A review of the bioactivity of south African herbal teas: Rooibos ( Aspalathus linearis ) and honeybush ( Cyclopia intermedia ). Phytother. Res. 2007 21 1 1 16 10.1002/ptr.1992 16927447
    [Google Scholar]
  99. Marnewick J.L. Antioxidant properties of Rooibos (Aspalathus linearis)–in vitro and in vivo evidence. Springer 2014 10.1007/978‑3‑642‑30018‑9_164
    [Google Scholar]
  100. Reynecke J. Coetzee W. Bester J. Rooibos tea. A preliminary report on the composition. Farming in South Africa 1949 24 397 398
    [Google Scholar]
  101. Ajuwon O.R. Protective effects of rooibos (Aspalathus linearis) and/or red palm oil (Elaeis guineensis) supplementation on tert-butyl hydroperoxide-induced oxidative hepatotoxicity in wistar rats. Evid. Based Complement. Alternat. Med. 2013 2013 984273 10.1155/2013/984273
    [Google Scholar]
  102. Khan H. Ullah H. Castilho P.C.M.F. Gomila A.S. D’Onofrio G. Filosa R. Wang F. Nabavi S.M. Daglia M. Silva A.S. Rengasamy K.R.R. Ou J. Zou X. Xiao J. Cao H. Targeting NF-κB signaling pathway in cancer by dietary polyphenols. Crit. Rev. Food Sci. Nutr. 2020 60 16 2790 2800 10.1080/10408398.2019.1661827 31512490
    [Google Scholar]
  103. Khan N. Afaq F. Saleem M. Ahmad N. Mukhtar H. Targeting multiple signaling pathways by green tea polyphenol (-)-epigallocatechin-3-gallate. Cancer Res. 2006 66 5 2500 2505 10.1158/0008‑5472.CAN‑05‑3636 16510563
    [Google Scholar]
  104. Afaq F. Adhami V.M. Ahmad N. Mukhtar H. Inhibition of ultraviolet B-mediated activation of nuclear factor κB in normal human epidermal keratinocytes by green tea Constituent (-)-epigallocatechin-3-gallate. Oncogene 2003 22 7 1035 1044 10.1038/sj.onc.1206206 12592390
    [Google Scholar]
  105. Gupta S. Hastak K. Afaq F. Ahmad N. Mukhtar H. Essential role of caspases in epigallocatechin-3-gallate-mediated inhibition of nuclear factor kappaB and induction of apoptosis. Oncogene 2004 23 14 2507 2522 10.1038/sj.onc.1207353 14676829
    [Google Scholar]
  106. Cerezo-Guisado M.I. Zur R. Lorenzo M.J. Risco A. Martín-Serrano M.A. Alvarez-Barrientos A. Cuenda A. Centeno F. Implication of Akt, ERK1/2 and alternative p38MAPK signalling pathways in human colon cancer cell apoptosis induced by green tea EGCG. Food Chem. Toxicol. 2015 84 125 132 10.1016/j.fct.2015.08.017 26303273
    [Google Scholar]
  107. Huang C.C. Wu W.B. Fang J.Y. Chiang H.S. Chen S.K. Chen B.H. Chen Y.T. Hung C.F. (-)-Epicatechin-3-gallate, a green tea polyphenol is a potent agent against UVB-induced damage in HaCaT keratinocytes. Molecules 2007 12 8 1845 1858 10.3390/12081845 17960092
    [Google Scholar]
  108. Dong Z. Ma W. Huang C. Yang C.S. Inhibition of tumor promoter-induced activator protein 1 activation and cell transformation by tea polyphenols, (-)-epigallocatechin gallate, and theaflavins. Cancer Res. 1997 57 19 4414 4419 9331105
    [Google Scholar]
  109. Adhami V.M. Siddiqui I.A. Ahmad N. Gupta S. Mukhtar H. Oral consumption of green tea polyphenols inhibits insulin-like growth factor-I-induced signaling in an autochthonous mouse model of prostate cancer. Cancer Res. 2004 64 23 8715 8722 10.1158/0008‑5472.CAN‑04‑2840 15574782
    [Google Scholar]
  110. Shimizu M. Deguchi A. Lim J.T.E. Moriwaki H. Kopelovich L. Weinstein I.B. (-)-Epigallocatechin gallate and polyphenon E inhibit growth and activation of the epidermal growth factor receptor and human epidermal growth factor receptor-2 signaling pathways in human colon cancer cells. Clin. Cancer Res. 2005 11 7 2735 2746 10.1158/1078‑0432.CCR‑04‑2014 15814656
    [Google Scholar]
  111. Tachibana H. Koga K. Fujimura Y. Yamada K. A receptor for green tea polyphenol EGCG. Nat. Struct. Mol. Biol. 2004 11 4 380 381 10.1038/nsmb743 15024383
    [Google Scholar]
  112. Givant-Horwitz V. Davidson B. Reich R. Laminin-induced signaling in tumor cells: the role of the M(r) 67,000 laminin receptor. Cancer Res. 2004 64 10 3572 3579 10.1158/0008‑5472.CAN‑03‑3424 15150114
    [Google Scholar]
  113. Hsu Y.C. Liou Y.M. The anti-cancer effects of (−)-Epigalocathine-3-gallate on the signaling pathways associated with membrane receptors in MCF-7 cells. J. Cell. Physiol. 2011 226 10 2721 2730 10.1002/jcp.22623 21792929
    [Google Scholar]
  114. Hussain T. Gupta S. Adhami V.M. Mukhtar H. Green tea constituent epigallocatechin-3-gallate selectively inhibits COX-2 without affecting COX-1 expression in human prostate carcinoma cells. Int. J. Cancer 2005 113 4 660 669 10.1002/ijc.20629 15455372
    [Google Scholar]
  115. Ahmed S. Rahman A. Hasnain A. Lalonde M. Goldberg V.M. Haqqi T.M. Green tea polyphenol epigallocatechin-3-gallate inhibits the IL-1β-induced activity and expression of cyclooxygenase-2 and nitric oxide synthase-2 in human chondrocytes. Free Radic. Biol. Med. 2002 33 8 1097 1105 10.1016/S0891‑5849(02)01004‑3 12374621
    [Google Scholar]
  116. Sang S. Lee M.J. Hou Z. Ho C.T. Yang C.S. Stability of tea polyphenol (-)-epigallocatechin-3-gallate and formation of dimers and epimers under common experimental conditions. J. Agric. Food Chem. 2005 53 24 9478 9484 10.1021/jf0519055 16302765
    [Google Scholar]
  117. Hong J. Lu H. Meng X. Ryu J.H. Hara Y. Yang C.S. Stability, cellular uptake, biotransformation, and efflux of tea polyphenol (-)-epigallocatechin-3-gallate in HT-29 human colon adenocarcinoma cells. Cancer Res. 2002 62 24 7241 7246 12499265
    [Google Scholar]
  118. Oikawa S. Furukawa A. Asada H. Hirakawa K. Kawanishi S. Catechins induce oxidative damage to cellular and isolated DNA through the generation of reactive oxygen species. Free Radic. Res. 2003 37 8 881 890 10.1080/1071576031000150751 14567448
    [Google Scholar]
  119. Yang G.Y. Liao J. Li C. Chung J. Yurkow E.J. Ho C.T. Yang C.S. Effect of black and green tea polyphenols on c-jun phosphorylation and H2O2 production in transformed and non-transformed human bronchial cell lines: possible mechanisms of cell growth inhibition and apoptosis induction. Carcinogenesis 2000 21 11 2035 2039 10.1093/carcin/21.11.2035 11062165
    [Google Scholar]
  120. Vittal R. Selvanayagam Z.E. Sun Y. Hong J. Liu F. Chin K.V. Yang C.S. Gene expression changes induced by green tea polyphenol (−)-epigallocatechin-3-gallate in human bronchial epithelial 21BES cells analyzed by DNA microarray. Mol. Cancer Ther. 2004 3 9 1091 1099 10.1158/1535‑7163.1091.3.9 15367703
    [Google Scholar]
  121. Nakagawa H. Hasumi K. Woo J.T. Nagai K. Wachi M. Generation of hydrogen peroxide primarily contributes to the induction of Fe(II)-dependent apoptosis in Jurkat cells by (-)-epigallocatechin gallate. Carcinogenesis 2004 25 9 1567 1574 10.1093/carcin/bgh168 15090467
    [Google Scholar]
  122. Elbling L. Weiss R.M. Teufelhofer O. Uhl M. Knasmueller S. Schulte-Hermann R. Berger W. Micksche M. Green tea extract and (−)-epigallocatechin-3-gallate, the major tea catechin, exert oxidant but lack antioxidant activities. FASEB J. 2005 19 7 1 26 10.1096/fj.04‑2915fje 15738004
    [Google Scholar]
  123. Hou Z. Green tea polyphenol, (-)-epigallocatechin-3-gallate, induces oxidative stress and DNA damage in cancer cell lines, xenograft tumors, and mouse liver. Cancer Res. 2006 66 8_Supplement 1150 1151
    [Google Scholar]
  124. Lecumberri E. Dupertuis Y.M. Miralbell R. Pichard C. Green tea polyphenol epigallocatechin-3-gallate (EGCG) as adjuvant in cancer therapy. Clin. Nutr. 2013 32 6 894 903 10.1016/j.clnu.2013.03.008 23582951
    [Google Scholar]
  125. Yuan J.M. Sun C. Butler L.M. Tea and cancer prevention: Epidemiological studies. Pharmacol. Res. 2011 64 2 123 135 10.1016/j.phrs.2011.03.002 21419224
    [Google Scholar]
  126. Leanderson P. Faresjö Å.O. Tagesson C. Green tea polyphenols inhibit oxidant-induced DNA strand breakage in cultured lung cells. Free Radic. Biol. Med. 1997 23 2 235 242 10.1016/S0891‑5849(96)00590‑4 9199885
    [Google Scholar]
  127. Yang C.S. Wang Z.Y. Tea and cancer. J. Natl. Cancer Inst. 1993 85 13 1038 1049 10.1093/jnci/85.13.1038 8515490
    [Google Scholar]
  128. Yang C. Lambert J. Ju J. Lu G. Sang S. Tea and cancer prevention: Molecular mechanisms and human relevance. Toxicol. Appl. Pharmacol. 2007 224 3 265 273 10.1016/j.taap.2006.11.024 17234229
    [Google Scholar]
  129. Filippini T. Green tea (Camellia sinensis) for the prevention of cancer. Cochrane Database Syst. Rev. 2020 Mar 2 3 3 CD005004 10.1002/14651858.CD005004.pub3
    [Google Scholar]
  130. Peng G. Wargovich M.J. Dixon D.A. Anti-proliferative effects of green tea polyphenol EGCG on Ha-Ras-induced transformation of intestinal epithelial cells. Cancer Lett. 2006 238 2 260 270 10.1016/j.canlet.2005.07.018 16157446
    [Google Scholar]
  131. Du G.J. Zhang Z. Wen X.D. Yu C. Calway T. Yuan C.S. Wang C.Z. Epigallocatechin Gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea. Nutrients 2012 4 11 1679 1691 10.3390/nu4111679 23201840
    [Google Scholar]
  132. Suzuki Y. Tsubono Y. Nakaya N. Suzuki Y. Koizumi Y. Tsuji I. Green tea and the risk of breast cancer: Pooled analysis of two prospective studies in Japan. Br. J. Cancer 2004 90 7 1361 1363 10.1038/sj.bjc.6601652 15054454
    [Google Scholar]
  133. Shin C.M. Lee D.H. Seo A.Y. Lee H.J. Kim S.B. Son W.C. Kim Y.K. Lee S.J. Park S.H. Kim N. Park Y.S. Yoon H. Green tea extracts for the prevention of metachronous colorectal polyps among patients who underwent endoscopic removal of colorectal adenomas: A randomized clinical trial. Clin. Nutr. 2018 37 2 452 458 10.1016/j.clnu.2017.01.014 28209333
    [Google Scholar]
  134. Kumar N.B. Pow-Sang J. Egan K.M. Spiess P.E. Dickinson S. Salup R. Helal M. McLarty J. Williams C.R. Schreiber F. Parnes H.L. Sebti S. Kazi A. Kang L. Quinn G. Smith T. Yue B. Diaz K. Chornokur G. Crocker T. Schell M.J. Randomized, placebo-controlled trial of green tea catechins for prostate cancer prevention. Cancer Prev. Res. 2015 8 10 879 887 10.1158/1940‑6207.CAPR‑14‑0324 25873370
    [Google Scholar]
  135. Schramm L. Going green: The role of the green tea component EGCG in chemoprevention. J. Carcinog. Mutagen. 2013 4 2 1000142 10.4172/2157‑2518.1000142 24077764
    [Google Scholar]
  136. Waks A.G. Winer E.P. Breast cancer treatment: A review. JAMA 2019 321 3 288 300 10.1001/jama.2018.19323 30667505
    [Google Scholar]
  137. Gianfredi V. Nucci D. Abalsamo A. Acito M. Villarini M. Moretti M. Realdon S. Green tea consumption and risk of breast cancer and recurrence - A systematic review and meta-analysis of observational studies. Nutrients 2018 10 12 1886 10.3390/nu10121886 30513889
    [Google Scholar]
  138. Najaf Najafi M. Salehi M. Ghazanfarpour M. Hoseini Z.S. Khadem-Rezaiyan M. The association between green tea consumption and breast cancer risk: A systematic review and meta-analysis. Phytother. Res. 2018 32 10 1855 1864 10.1002/ptr.6124 29876987
    [Google Scholar]
  139. Sun C.L. Yuan J.M. Koh W.P. Yu M.C. Green tea, black tea and breast cancer risk: A meta-analysis of epidemiological studies. Carcinogenesis 2006 27 7 1310 1315 10.1093/carcin/bgi276 16311246
    [Google Scholar]
  140. Ogunleye A.A. Xue F. Michels K.B. Green tea consumption and breast cancer risk or recurrence: A meta-analysis. Breast Cancer Res. Treat. 2010 119 2 477 484 10.1007/s10549‑009‑0415‑0 19437116
    [Google Scholar]
  141. Inoue M. Robien K. Wang R. Van Den Berg D.J. Koh W.P. Yu M.C. Green tea intake, MTHFR/TYMS genotype and breast cancer risk: The Singapore Chinese Health Study. Carcinogenesis 2008 29 10 1967 1972 10.1093/carcin/bgn177 18669903
    [Google Scholar]
  142. Dai Q. Shu X.O. Li H. Yang G. Shrubsole M.J. Cai H. Ji B. Wen W. Franke A. Gao Y.T. Zheng W. Is green tea drinking associated with a later onset of breast cancer? Ann. Epidemiol. 2010 20 1 74 81 10.1016/j.annepidem.2009.09.005 20006278
    [Google Scholar]
  143. Iwasaki M. Inoue M. Sasazuki S. Sawada N. Yamaji T. Shimazu T. Willett W.C. Tsugane S. Japan Public Health Center-Based Prospective Study Group Green tea drinking and subsequent risk of breast cancer in a population to based cohort of Japanese women. Breast Cancer Res. 2010 12 5 R88 10.1186/bcr2756 22889409
    [Google Scholar]
  144. Wu A.H. Arakawa K. Stanczyk F.Z. Van Den Berg D. Koh W.P. Yu M.C. Tea and circulating estrogen levels in postmenopausal Chinese women in Singapore. Carcinogenesis 2005 26 5 976 980 10.1093/carcin/bgi028 15661801
    [Google Scholar]
  145. Nagata C. Kabuto M. Shimizu H. Association of coffee, green tea, and caffeine intakes with serum concentrations of estradiol and sex hormone-binding globulin in premenopausal Japanese women. Nutr. Cancer 1998 30 1 21 24 10.1080/01635589809514635
    [Google Scholar]
  146. Inoue M. Tajima K. Mizutani M. Iwata H. Iwase T. Miura S. Hirose K. Hamajima N. Tominaga S. Regular consumption of green tea and the risk of breast cancer recurrence: Follow-up study from the hospital-based epidemiologic research program at aichi cancer center (HERPACC), Japan. Cancer Lett. 2001 167 2 175 182 10.1016/S0304‑3835(01)00486‑4 11369139
    [Google Scholar]
  147. Nakachi K. Suemasu K. Suga K. Takeo T. Imai K. Higashi Y. Influence of drinking green tea on breast cancer malignancy among Japanese patients. Jpn. J. Cancer Res. 1998 89 3 254 261 10.1111/j.1349‑7006.1998.tb00556.x 9600118
    [Google Scholar]
  148. Seely D. Mills E.J. Wu P. Verma S. Guyatt G.H. The effects of green tea consumption on incidence of breast cancer and recurrence of breast cancer: A systematic review and meta-analysis. Integr. Cancer Ther. 2005 4 2 144 155 10.1177/1534735405276420 15911927
    [Google Scholar]
  149. Zhao H. Zhu W. Jia L. Sun X. Chen G. Zhao X. Li X. Meng X. Kong L. Xing L. Yu J. Phase I study of topical epigallocatechin-3-gallate (EGCG) in patients with breast cancer receiving adjuvant radiotherapy. Br. J. Radiol. 2016 89 1058 20150665 10.1259/bjr.20150665 26607642
    [Google Scholar]
  150. Rabstein S. Brüning T. Harth V. Fischer H.P. Haas S. Weiss T. Spickenheuer A. Pierl C. Justenhoven C. Illig T. Vollmert C. Baisch C. Ko Y.D. Hamann U. Brauch H. Pesch B. GENICA Network N-acetyltransferase 2, exposure to aromatic and heterocyclic amines, and receptor-defined breast cancer. Eur. J. Cancer Prev. 2010 19 2 100 109 10.1097/CEJ.0b013e328333fbb7 19996973
    [Google Scholar]
  151. Baker J.A. Beehler G.P. Sawant A.C. Jayaprakash V. McCann S.E. Moysich K.B. Consumption of coffee, but not black tea, is associated with decreased risk of premenopausal breast cancer. J. Nutr. 2006 136 1 166 171 10.1093/jn/136.1.166 16365077
    [Google Scholar]
  152. Ishitani K. Lin J. Manson J.E. Buring J.E. Zhang S.M. Caffeine consumption and the risk of breast cancer in a large prospective cohort of women. Arch. Intern. Med. 2008 168 18 2022 2031 10.1001/archinte.168.18.2022 18852405
    [Google Scholar]
  153. Bhoo Pathy N. Peeters P. van Gils C. Beulens J.W.J. van der Graaf Y. Bueno-de-Mesquita B. Bulgiba A. Uiterwaal C.S.P.M. Coffee and tea intake and risk of breast cancer. Breast Cancer Res. Treat. 2010 121 2 461 467 10.1007/s10549‑009‑0583‑y 19847643
    [Google Scholar]
  154. Ganmaa D. Willett W.C. Li T.Y. Feskanich D. van Dam R.M. Lopez-Garcia E. Hunter D.J. Holmes M.D. Coffee, tea, caffeine and risk of breast cancer: A 22-year follow-up. Int. J. Cancer 2008 122 9 2071 2076 10.1002/ijc.23336 18183588
    [Google Scholar]
  155. Larsson S.C. Bergkvist L. Wolk A. Coffee and black tea consumption and risk of breast cancer by estrogen and progesterone receptor status in a Swedish cohort. Cancer Causes Control 2009 20 10 2039 2044 10.1007/s10552‑009‑9396‑x 19597749
    [Google Scholar]
  156. Boggs D.A. Palmer J.R. Stampfer M.J. Spiegelman D. Adams-Campbell L.L. Rosenberg L. Tea and coffee intake in relation to risk of breast cancer in the Black Women’s Health Study. Cancer Causes Control 2010 21 11 1941 1948 10.1007/s10552‑010‑9622‑6 20680436
    [Google Scholar]
  157. Iwasaki M. Inoue M. Sasazuki S. Miura T. Sawada N. Yamaji T. Shimazu T. Willett W.C. Tsugane S. Plasma tea polyphenol levels and subsequent risk of breast cancer among Japanese women: A nested case–control study. Breast Cancer Res. Treat. 2010 124 3 827 834 10.1007/s10549‑010‑0916‑x 20440552
    [Google Scholar]
  158. Luo J. Gao Y.T. Chow W.H. Shu X.O. Li H. Yang G. Cai Q. Rothman N. Cai H. Shrubsole M.J. Franke A.A. Zheng W. Dai Q. Urinary polyphenols and breast cancer risk: Results from the Shanghai Women’s Health Study. Breast Cancer Res. Treat. 2010 120 3 693 702 10.1007/s10549‑009‑0487‑x 19653095
    [Google Scholar]
  159. Yang C.S. Chung J.Y. Yang G.Y. Li C. Meng X. Lee M.J. Mechanisms of inhibition of carcinogenesis by tea. Biofactors 2000 13 1-4 73 79 10.1002/biof.5520130113 11237203
    [Google Scholar]
  160. Dawling S. Roodi N. Mernaugh R.L. Wang X. Parl F.F. Catechol-O-methyltransferase (COMT)-mediated metabolism of catechol estrogens: Comparison of wild-type and variant COMT isoforms. Cancer Res. 2001 61 18 6716 6722 11559542
    [Google Scholar]
  161. Inoue-Choi M. Yuan J.M. Yang C.S. Van Den Berg D.J. Lee M.J. Gao Y.T. Yu M.C. Genetic association between the COMT genotype and urinary levels of tea polyphenols and their metabolites among daily green tea drinkers. Int. J. Mol. Epidemiol. Genet. 2010 1 2 114 123 21191472
    [Google Scholar]
  162. Wu A.H. Tseng C.C. Van Den Berg D. Yu M.C. Tea intake, COMT genotype, and breast cancer in Asian-American women. Cancer Res. 2003 63 21 7526 7529 14612555
    [Google Scholar]
  163. Shrubsole M.J. Lu W. Chen Z. Shu X.O. Zheng Y. Dai Q. Cai Q. Gu K. Ruan Z.X. Gao Y.T. Zheng W. Drinking green tea modestly reduces breast cancer risk. J. Nutr. 2009 139 2 310 316 10.3945/jn.108.098699 19074205
    [Google Scholar]
  164. Wu A.H. Yu M.C. Tseng C.C. Hankin J. Pike M.C. Green tea and risk of breast cancer in Asian Americans. Int. J. Cancer 2003 106 4 574 579 10.1002/ijc.11259 12845655
    [Google Scholar]
  165. Boyd N.F. Rommens J.M. Vogt K. Lee V. Hopper J.L. Yaffe M.J. Paterson A.D. Mammographic breast density as an intermediate phenotype for breast cancer. Lancet Oncol. 2005 6 10 798 808 10.1016/S1470‑2045(05)70390‑9 16198986
    [Google Scholar]
  166. Borchers A.T. Keen C.L. Gershwin M.E. Mushrooms, tumors, and immunity: An update. Exp. Biol. Med. 2004 229 5 393 406 10.1177/153537020422900507 15096651
    [Google Scholar]
  167. Chen S. Oh S.R. Phung S. Hur G. Ye J.J. Kwok S.L. Shrode G.E. Belury M. Adams L.S. Williams D. Anti-aromatase activity of phytochemicals in white button mushrooms (Agaricus bisporus). Cancer Res. 2006 66 24 12026 12034 10.1158/0008‑5472.CAN‑06‑2206 17178902
    [Google Scholar]
  168. Yu L. Fernig D.G. Smith J.A. Milton J.D. Rhodes J.M. Reversible inhibition of proliferation of epithelial cell lines by Agaricus bisporus (edible mushroom) lectin. Cancer Res. 1993 53 19 4627 4632 8402638
    [Google Scholar]
  169. Grube B.J. Eng E.T. Kao Y.C. Kwon A. Chen S. White button mushroom phytochemicals inhibit aromatase activity and breast cancer cell proliferation. J. Nutr. 2001 131 12 3288 3293 10.1093/jn/131.12.3288 11739882
    [Google Scholar]
  170. Thompson C.A. Habermann T.M. Wang A.H. Vierkant R.A. Folsom A.R. Ross J.A. Cerhan J.R. Antioxidant intake from fruits, vegetables and other sources and risk of non-Hodgkin’s lymphoma: The Iowa Women’s Health Study. Int. J. Cancer 2010 126 4 992 1003 10.1002/ijc.24830 19685491
    [Google Scholar]
  171. Zhang M. Zhao X. Zhang X. Holman C.D.A.J. Possible protective effect of green tea intake on risk of adult leukaemia. Br. J. Cancer 2008 98 1 168 170 10.1038/sj.bjc.6604140 18087282
    [Google Scholar]
  172. Malmir H. Shayanfar M. Mohammad-Shirazi M. Tabibi H. Sharifi G. Esmaillzadeh A. Tea and coffee consumption in relation to glioma: A case-control study. Eur. J. Nutr. 2019 58 1 103 111 10.1007/s00394‑017‑1575‑z 29124385
    [Google Scholar]
  173. Holick C.N. Smith S.G. Giovannucci E. Michaud D.S. Coffee, tea, caffeine intake, and risk of adult glioma in three prospective cohort studies. Cancer Epidemiol. Biomarkers Prev. 2010 19 1 39 47 10.1158/1055‑9965.EPI‑09‑0732 20056621
    [Google Scholar]
  174. Bag A. Bag N. Tea polyphenols and prevention of epigenetic aberrations in cancer. J. Nat. Sci. Biol. Med. 2018 9 1 2 5 10.4103/jnsbm.JNSBM_46_17 29456384
    [Google Scholar]
  175. Sheng J. Shi W. Guo H. Long W. Wang Y. Qi J. Liu J. Xu Y. The inhibitory effect of (−)-epigallocatechin-3-gallate on breast cancer progression via reducing SCUBE2 methylation and DNMT activity. Molecules 2019 24 16 2899 10.3390/molecules24162899 31404982
    [Google Scholar]
  176. Qi J. Lu Y. Wu W. Absorption, disposition and pharmacokinetics of solid lipid nanoparticles. Curr. Drug Metab. 2012 13 4 418 428 10.2174/138920012800166526 22443536
    [Google Scholar]
  177. Radhakrishnan R. Kulhari H. Pooja D. Gudem S. Bhargava S. Shukla R. Sistla R. Encapsulation of biophenolic phytochemical EGCG within lipid nanoparticles enhances its stability and cytotoxicity against cancer. Chem. Phys. Lipids 2016 198 51 60 10.1016/j.chemphyslip.2016.05.006 27234272
    [Google Scholar]
  178. Müller R.H. Mäder K. Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery - A review of the state of the art. Eur. J. Pharm. Biopharm. 2000 50 1 161 177 10.1016/S0939‑6411(00)00087‑4 10840199
    [Google Scholar]
  179. Manjunath K. Reddy J.S. Venkateswarlu V. Solid lipid nanoparticles as drug delivery systems. Methods Find. Exp. Clin. Pharmacol. 2005 27 2 127 144 10.1358/mf.2005.27.2.876286 15834465
    [Google Scholar]
  180. Üner M. Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): Their benefits as colloidal drug carrier systems. Die Pharmazie 2006 61 5 375 386
    [Google Scholar]
  181. Naseri N. Valizadeh H. Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Adv. Pharm. Bull. 2015 5 3 305 313 10.15171/apb.2015.043 26504751
    [Google Scholar]
  182. Zhang J. Nie S. Wang S. Nanoencapsulation enhances epigallocatechin-3-gallate stability and its antiatherogenic bioactivities in macrophages. J. Agric. Food Chem. 2013 61 38 9200 9209 10.1021/jf4023004 24020822
    [Google Scholar]
  183. Jayagopal A. Linton M.F. Fazio S. Haselton F.R. Insights into atherosclerosis using nanotechnology. Curr. Atheroscler. Rep. 2010 12 3 209 215 10.1007/s11883‑010‑0106‑7 20425261
    [Google Scholar]
  184. Lobatto M.E. Fuster V. Fayad Z.A. Mulder W.J.M. Perspectives and opportunities for nanomedicine in the management of atherosclerosis. Nat. Rev. Drug Discov. 2011 10 11 835 852 10.1038/nrd3578 22015921
    [Google Scholar]
  185. Yang X. Jin L. Yao L. Shen F.H. Shimer A. Li X. Antioxidative nanofullerol prevents intervertebral disk degeneration. Int. J. Nanomedicine 2014 9 2419 2430 10.2147/IJN.S60853 24876775
    [Google Scholar]
  186. Suarez S. Almutairi A. Christman K.L. Micro- and nanoparticles for treating cardiovascular disease. Biomater. Sci. 2015 3 4 564 580 10.1039/C4BM00441H 26146548
    [Google Scholar]
  187. Dvir T. Bauer M. Schroeder A. Tsui J.H. Anderson D.G. Langer R. Liao R. Kohane D.S. Nanoparticles targeting the infarcted heart. Nano Lett. 2011 11 10 4411 4414 10.1021/nl2025882 21899318
    [Google Scholar]
  188. Wohlfart S. Gelperina S. Kreuter J. Transport of drugs across the blood–brain barrier by nanoparticles. J. Control. Release 2012 161 2 264 273 10.1016/j.jconrel.2011.08.017 21872624
    [Google Scholar]
  189. Saraiva C. Praça C. Ferreira R. Santos T. Ferreira L. Bernardino L. Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases. J. Control. Release 2016 235 34 47 10.1016/j.jconrel.2016.05.044 27208862
    [Google Scholar]
  190. Wilhelm S. Tavares A.J. Dai Q. Ohta S. Audet J. Dvorak H.F. Chan W.C.W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016 1 5 16014 10.1038/natrevmats.2016.14
    [Google Scholar]
  191. Shi J. Kantoff P.W. Wooster R. Farokhzad O.C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 2017 17 1 20 37 10.1038/nrc.2016.108 27834398
    [Google Scholar]
  192. Zhang J. Nie S. Martinez-Zaguilan R. Sennoune S.R. Wang S. Formulation, characteristics and antiatherogenic bioactivities of CD36-targeted epigallocatechin gallate (EGCG)-loaded nanoparticles. J. Nutr. Biochem. 2016 30 14 23 10.1016/j.jnutbio.2015.11.001 27012617
    [Google Scholar]
  193. Elizondo E. Moreno E. Cabrera I. Córdoba A. Sala S. Veciana J. Ventosa N. Liposomes and other vesicular systems: Structural characteristics, methods of preparation, and use in nanomedicine. Prog. Mol. Biol. Transl. Sci. 2011 104 1 52 10.1016/B978‑0‑12‑416020‑0.00001‑2 22093216
    [Google Scholar]
  194. Smith A. Giunta B. Bickford P.C. Fountain M. Tan J. Shytle R.D. Nanolipidic particles improve the bioavailability and α-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer’s disease. Int. J. Pharm. 2010 389 1-2 207 212 10.1016/j.ijpharm.2010.01.012 20083179
    [Google Scholar]
  195. Chen J. Wei N. Lopez-Garcia M. Ambrose D. Lee J. Annelin C. Peterson T. Development and evaluation of resveratrol, Vitamin E, and epigallocatechin gallate loaded lipid nanoparticles for skin care applications. Eur. J. Pharm. Biopharm. 2017 117 286 291 10.1016/j.ejpb.2017.04.008 28411056
    [Google Scholar]
  196. Fangueiro J.F. Calpena A.C. Clares B. Andreani T. Egea M.A. Veiga F.J. Garcia M.L. Silva A.M. Souto E.B. Biopharmaceutical evaluation of epigallocatechin gallate-loaded cationic lipid nanoparticles (EGCG-LNs): In vivo, in vitro and ex vivo studies. Int. J. Pharm. 2016 502 1-2 161 169 10.1016/j.ijpharm.2016.02.039 26921515
    [Google Scholar]
  197. Hsieh D.S. Wang H. Tan S.W. Huang Y.H. Tsai C.Y. Yeh M.K. Wu C.J. The treatment of bladder cancer in a mouse model by epigallocatechin-3-gallate-gold nanoparticles. Biomaterials 2011 32 30 7633 7640 10.1016/j.biomaterials.2011.06.073 21782236
    [Google Scholar]
  198. Shukla R. Chanda N. Zambre A. Upendran A. Katti K. Kulkarni R.R. Nune S.K. Casteel S.W. Smith C.J. Vimal J. Boote E. Robertson J.D. Kan P. Engelbrecht H. Watkinson L.D. Carmack T.L. Lever J.R. Cutler C.S. Caldwell C. Kannan R. Katti K.V. Laminin receptor specific therapeutic gold nanoparticles ( 198 AuNP-EGCg) show efficacy in treating prostate cancer. Proc. Natl. Acad. Sci. USA 2012 109 31 12426 12431 10.1073/pnas.1121174109 22802668
    [Google Scholar]
  199. Dreaden E.C. El-Sayed M.A. Detecting and destroying cancer cells in more than one way with noble metals and different confinement properties on the nanoscale. Acc. Chem. Res. 2012 45 11 1854 1865 10.1021/ar2003122 22546051
    [Google Scholar]
  200. KS US, Govindaraju, K.; Prabhu, D.; Arulvasu, C.; Karthick, V.; Changmai, N. Anti-proliferative effect of biogenic gold nanoparticles against breast cancer cell lines (MDA-MB-231 & MCF-7). Appl. Surf. Sci. 2016 371 415 424 10.1016/j.apsusc.2016.03.004
    [Google Scholar]
  201. Farooqi A.A. Pinheiro M. Granja A. Farabegoli F. Reis S. Attar R. Sabitaliyevich U.Y. Xu B. Ahmad A. EGCG mediated targeting of deregulated signaling pathways and non-coding RNAs in different cancers: Focus on JAK/STAT, Wnt/β-Catenin, TGF/SMAD, NOTCH, SHH/GLI, and TRAIL mediated signaling pathways. Cancers 2020 12 4 951 10.3390/cancers12040951 32290543
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673348926250331150429
Loading
/content/journals/cmc/10.2174/0109298673348926250331150429
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test