Skip to content
2000
Volume 32, Issue 35
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Green tea is a traditional drink found in Asian countries, made up of four derivatives. One of the derivatives is epigallocatechin-3-gallate (EGCG). EGCG provides therapeutic benefits for cancer, heart disease, diabetes, and obesity. However, its poor absorption and instability limit its effectiveness, which can be improved using nanoparticle encapsulation. This work is a comprehensive review of the studies on green tea polyphenols, the impact of pro-oxidants and EGCG in cancer prevention, and their delivery using nanotechnology. Other plant sources of ellagitannin and its physicochemical properties, the therapeutic and preventive role of EGCG in breast cancer, and other cancers that can be treated using nano gold (NpAu) carriers are also discussed.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673348926250331150429
2025-04-17
2025-11-01
Loading full text...

Full text loading...

References

  1. TalibW.H. DaoudS. MahmodA.I. HamedR.A. AwajanD. AbuarabS.F. OdehL.H. KhaterS. Al KuryL.T. Plants as a source of anticancer agents: From bench to bedside.Molecules20222715481810.3390/molecules2715481835956766
    [Google Scholar]
  2. FurniturewallaA. BarveK. Approaches to overcome bioavailability inconsistencies of epigallocatechin gallate, a powerful anti-oxidant in green tea.Food Chem. Adv.2022110003710.1016/j.focha.2022.100037
    [Google Scholar]
  3. SinghN.A. MandalA.K.A. KhanZ.A. Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG).Nutr. J.20151516010.1186/s12937‑016‑0179‑427268025
    [Google Scholar]
  4. GuoS. BezardE. ZhaoB. Protective effect of green tea polyphenols on the SH-SY5Y cells against 6-OHDA induced apoptosis through ROS–NO pathway.Free Radic. Biol. Med.200539568269510.1016/j.freeradbiomed.2005.04.02216085186
    [Google Scholar]
  5. SinghB.N. ShankarS. SrivastavaR.K. Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications.Biochem. Pharmacol.201182121807182110.1016/j.bcp.2011.07.09321827739
    [Google Scholar]
  6. Gonçalves BortoliniD. Windson Isidoro HaminiukC. Cristina PedroA. de Andrade Arruda FernandesI. Maria MacielG. Processing, chemical signature and food industry applications of Camellia sinensis teas: An overview.Food Chem. X20211210016010.1016/j.fochx.2021.10016034825170
    [Google Scholar]
  7. JinJ.Q. JiangC.K. YaoM.Z. ChenL. Baiyacha, a wild tea plant naturally occurring high contents of theacrine and 3″-methyl-epigallocatechin gallate from Fujian, China.Sci. Rep.2020101971510.1038/s41598‑020‑66808‑x32546720
    [Google Scholar]
  8. FerranteC. ChiavaroliA. AngeliniP. VenanzoniR. Angeles FloresG. BrunettiL. PetrucciM. PolitiM. MenghiniL. LeoneS. RecinellaL. ZenginG. AkG. Di MascioM. BacchinF. OrlandoG. Phenolic content and antimicrobial and anti-inflammatory effects of Solidago virga-aurea, Phyllanthus niruri, Epilobium angustifolium, Peumus boldus, and Ononis spinosa extracts.Antibiotics202091178310.3390/antibiotics911078333172081
    [Google Scholar]
  9. SnijmanP.W. JoubertE. FerreiraD. LiX.C. DingY. GreenI.R. GelderblomW.C.A. Antioxidant activity of the dihydrochalcones aspalathin and nothofagin and their corresponding flavones in relation to other Rooibos ( aspalathus linearis ) flavonoids, epigallocatechin gallate, and trolox.J. Agric. Food Chem.200957156678668410.1021/jf901417k19722573
    [Google Scholar]
  10. ChaabiM. BeghidjaN. BenayacheS. LobsteinA. Activity-guided isolation of antioxidant principles from Limoniastrum feei (Girard) Batt.Z. Naturforsch. C J. Biosci.20086311-1280180710.1515/znc‑2008‑11‑120419227826
    [Google Scholar]
  11. MbavengA.T. ZhaoQ. KueteV. 20 - Harmful and protective effects of phenolic compounds from african medicinal plants.Toxicological Survey of African Medicinal Plants. KueteV. Elsevier201457760910.1016/B978‑0‑12‑800018‑2.00020‑0
    [Google Scholar]
  12. MinK. KwonT.K. Anticancer effects and molecular mechanisms of epigallocatechin-3-gallate.Integr. Med. Res.201431162410.1016/j.imr.2013.12.00128664074
    [Google Scholar]
  13. WangC.C. HoC.T. LeeS.C. WayT.D. Isolation of eugenyl β-primeveroside from Camellia sasanqua and its anticancer activity in PC3 prostate cancer cells.Yao Wu Shi Pin Fen Xi201624110511128911392
    [Google Scholar]
  14. KatiyarS.K. AgarwalR. WangZ.Y. BhatiaA.K. MukhtarH. (—)-Epigallocatechin-3-gallate in camellia sinensis leaves from Himalayan region of Sikkim: Inhibitory effects against biochemical events and tumor initiation in sencar mouse skin.Nutr. Cancer1992181738310.1080/016355892095142071408948
    [Google Scholar]
  15. YanD. YangY. WangC. QiY. LiuC. ZhouB. RenX. Effects of epigallocatechin-3-gallate (EGCG) on skin greasiness and related gene expression in ‘Jonagold’ apple fruit during ambient storage.Postharvest Biol. Technol.2018143283410.1016/j.postharvbio.2018.04.006
    [Google Scholar]
  16. WuL. SanguansriL. AugustinM.A. Protection of epigallocatechin gallate against degradation during in vitro digestion using apple pomace as a carrier.J. Agric. Food Chem.20146250122651227010.1021/jf504659n25419979
    [Google Scholar]
  17. YuanB. LuM. EskridgeK.M. IsomL.D. HannaM.A. Extraction, identification, and quantification of antioxidant phenolics from hazelnut (Corylus avellana L.) shells.Food Chem.201824471510.1016/j.foodchem.2017.09.11629120806
    [Google Scholar]
  18. HudthagosolC. HaddadE.H. McCarthyK. WangP. OdaK. SabatéJ. Pecans acutely increase plasma postprandial antioxidant capacity and catechins and decrease LDL oxidation in humans.J. Nutr.20111411566210.3945/jn.110.12126921106921
    [Google Scholar]
  19. AissaniN. CoroneoV. FattouchS. CaboniP. Inhibitory effect of carob (Ceratonia siliqua) leaves methanolic extract on Listeria monocytogenes.J. Agric. Food Chem.201260409954995810.1021/jf302962322978382
    [Google Scholar]
  20. OkudaT. ItoH. Tannins of constant structure in medicinal and food plants—hydrolyzable tannins and polyphenols related to Tannins.Molecules20111632191221710.3390/molecules16032191
    [Google Scholar]
  21. Haskell-RamsayC.F. SchmittJ. Actis-GorettaL. The impact of epicatechin on human cognition: The role of cerebral blood flow.Nutrients201810898610.3390/nu1008098630060538
    [Google Scholar]
  22. Karen Johana OrtegaV. Food Ellagitannins: Structure, Metabolomic Fate, and Biological PropertiesIntechOpenRijeka2019
    [Google Scholar]
  23. MuchowM. MaincentP. MüllerR.H. Lipid nanoparticles with a solid matrix (SLN, NLC, LDC) for oral drug delivery.Drug Dev. Ind. Pharm.200834121394140510.1080/0363904080213006118665980
    [Google Scholar]
  24. Scioli MontotoS. MuracaG. RuizM.E. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects.Front. Mol. Biosci.2020758799710.3389/fmolb.2020.58799733195435
    [Google Scholar]
  25. FerrariE. BettuzziS. NaponelliV. The potential of epigallocatechin gallate (EGCG) in targeting autophagy for cancer treatment: A narrative review.Int. J. Mol. Sci.20222311607510.3390/ijms2311607535682754
    [Google Scholar]
  26. LiaoY. ZhouX. ZengL. How does tea ( Camellia sinensis ) produce specialized metabolites which determine its unique quality and function: A review.Crit. Rev. Food Sci. Nutr.202262143751376710.1080/10408398.2020.186897033401945
    [Google Scholar]
  27. JeganathanB. Genetic variation of flavonols quercetin, myricetin, and kaempferol in the Sri Lankan tea (Camellia sinensisL.) and their health-promoting aspects.Int. J. Food Sci.20162016605743410.1155/2016/6057434
    [Google Scholar]
  28. HasegawaT. Constituents of the green tea seeds of Camellia sinensis.Nat. Prod. Commun.2011631934578X110060031410.1177/1934578X1100600314
    [Google Scholar]
  29. SánchezM. González-BurgosE. IglesiasI. LozanoR. Gómez-SerranillosM.P. The pharmacological activity of Camellia sinensis (L.) Kuntze on metabolic and endocrine disorders: A systematic review.Biomolecules202010460310.3390/biom1004060332294991
    [Google Scholar]
  30. YangZ. ZhuM. ZhangY. WenB. AnH. OuX. XiongY. LinH. LiuZ. HuangJ. Coadministration of epigallocatechin-3-gallate (EGCG) and caffeine in low dose ameliorates obesity and nonalcoholic fatty liver disease in obese rats.Phytother. Res.20193341019102610.1002/ptr.629530746789
    [Google Scholar]
  31. MengX.H. ZhuH.T. YanH. WangD. YangC.R. ZhangY.J. C-8 N -ethyl-2-pyrrolidinone-substituted flavan-3-ols from the leaves of Camellia sinensis var. pubilimba.J. Agric. Food Chem.201866277150715510.1021/acs.jafc.8b0206629889511
    [Google Scholar]
  32. ZhangQ.A. FuX.Z. García MartínJ.F. Effect of ultrasound on the interaction between (−)-epicatechin gallate and bovine serum albumin in a model wine.Ultrason. Sonochem.20173740541310.1016/j.ultsonch.2017.01.03128427650
    [Google Scholar]
  33. ZhangL. HoC.T. ZhouJ. SantosJ.S. ArmstrongL. GranatoD. Chemistry and biological activities of processed Camellia sinensis teas: A comprehensive review.Compr. Rev. Food Sci. Food Saf.20191851474149510.1111/1541‑4337.1247933336903
    [Google Scholar]
  34. TeixeiraA.M. SousaC. A review on the biological activity of Camellia species.Molecules2021268217810.3390/molecules2608217833918918
    [Google Scholar]
  35. Kottawa-ArachchiJ. Biochemical characteristics of tea (Camellia L. spp.) germplasm accessions in sri lanka: correlation between black tea quality parameters and organoleptic evaluation.Int. J. Tea Sci.2014100313
    [Google Scholar]
  36. BandyopadhyayD. ChatterjeeT.K. DasguptaA. LourdurajaJ. DastidarS.G. In vitro and in vivo antimicrobial action of tea: the commonest beverage of Asia.Biol. Pharm. Bull.200528112125212710.1248/bpb.28.212516272702
    [Google Scholar]
  37. SalineroC. Bioactive compounds and biological properties of oils from three camelia species.2014 International Camellia Congress.Pontevedra–Spain, 2014.
    [Google Scholar]
  38. TaylorP.W. Hamilton-MillerJ.M.T. StapletonP.D. Antimicrobial properties of green tea catechins.Food Sci. Technol. Bull.200527718110.1616/1476‑2137.1418419844590
    [Google Scholar]
  39. SchepetkinI.A. RamsteadA.G. KirpotinaL.N. VoyichJ.M. JutilaM.A. QuinnM.T. Therapeutic potential of polyphenols from Epilobium angustifolium (Fireweed).Phytother. Res.20163081287129710.1002/ptr.564827215200
    [Google Scholar]
  40. ElishaI.L. ViljoenA. Trends in rooibos tea (Aspalathus linearis) research (1994–2018): A scientometric assessment.S. Afr. J. Bot.202113715917010.1016/j.sajb.2020.10.004
    [Google Scholar]
  41. SamodienS. KockM. JoubertE. SwanevelderS. GelderblomW.C.A. Differential cytotoxicity of rooibos and green tea extracts against primary rat hepatocytes and human liver and colon cancer cells–causal role of major flavonoids.Nutr. Cancer202173102050206410.1080/01635581.2020.182005432930006
    [Google Scholar]
  42. SnijmanP.W. SwanevelderS. JoubertE. GreenI.R. GelderblomW.C.A. The antimutagenic activity of the major flavonoids of rooibos (Aspalathus linearis): Some dose–response effects on mutagen activation–flavonoid interactions.Mutat. Res. Genet. Toxicol. Environ. Mutagen.2007631211112310.1016/j.mrgentox.2007.03.00917537670
    [Google Scholar]
  43. HadjadjS. Comparison of phenolic content and antioxidant activity of methanolic and ethanolic extracts of Limoniastrum guyonianum.Int. J. Biosci.201696354410.12692/ijb/9.6.35‑44
    [Google Scholar]
  44. El-HawaryS.A. SokkarN.M. AliZ.Y. YehiaM.M. A profile of bioactive compounds of Rumex vesicarius L.J. Food Sci.2011768C1195C120210.1111/j.1750‑3841.2011.02370.x22417584
    [Google Scholar]
  45. MomtazS. MapunyaB.M. HoughtonP.J. EdgerlyC. HusseinA. NaidooS. LallN. Tyrosinase inhibition by extracts and constituents of Sideroxylon inerme L. stem bark, used in South Africa for skin lightening.J. Ethnopharmacol.2008119350751210.1016/j.jep.2008.06.00618573327
    [Google Scholar]
  46. YinJ. AhnH.S. HaS.Y. HwangI.H. YoonK.D. ChinY.W. LeeM.W. Anti-skin ageing effects of phenolic compounds from Carpinus tschonoskii.Nat. Prod. Res.201933223317332010.1080/14786419.2018.149702630033761
    [Google Scholar]
  47. YinJ. HwangI.H. LeeM.W. Anti-acne vulgaris effect including skin barrier improvement and 5α-reductase inhibition by tellimagrandin I from Carpinus tschonoskii.BMC Complement. Altern. Med.201919132310.1186/s12906‑019‑2734‑y31752827
    [Google Scholar]
  48. YamadaP. OnoT. ShigemoriH. HanJ. IsodaH. Inhibitory effect of tannins from galls of Carpinus tschonoskii on the degranulation of RBL-2H3 cells.Cytotechnology201264334935610.1007/s10616‑012‑9457‑y22669603
    [Google Scholar]
  49. EngelhardtC. PetereitF. LechtenbergM. Liefländer-WulfU. HenselA. Qualitative and quantitative phytochemical characterization of Myrothamnus flabellifolia Welw.Fitoterapia2016114698010.1016/j.fitote.2016.08.01327575326
    [Google Scholar]
  50. AnkeJ. PetereitF. EngelhardtC. HenselA. Procyanidins from Myrothamnus flabellifolia.Nat. Prod. Res.200822141237124810.1080/1478641070172634318932087
    [Google Scholar]
  51. GescherK. KühnJ. LorentzenE. HafeziW. DerksenA. DetersA. HenselA. Proanthocyanidin-enriched extract from Myrothamnus flabellifolia Welw. exerts antiviral activity against herpes simplex virus type 1 by inhibition of viral adsorption and penetration.J. Ethnopharmacol.2011134246847410.1016/j.jep.2010.12.03821211557
    [Google Scholar]
  52. LöhrG. BeiklerT. PodbielskiA. StandarK. RedanzS. HenselA. Polyphenols from Myrothamnus flabellifolia Welw. inhibit in vitro adhesion of Porphyromonas gingivalis and exert anti-inflammatory cytoprotective effects in KB cells.J. Clin. Periodontol.201138545746910.1111/j.1600‑051X.2010.01654.x21158896
    [Google Scholar]
  53. Navarro-HoyosM. Arnáez-SerranoE. Quesada-MoraS. Azofeifa-CorderoG. Wilhelm-RomeroK. Quirós-FallasM.I. Alvarado-CorellaD. Vargas-HuertasF. Sánchez-KopperA. HRMS characterization, antioxidant and cytotoxic activities of polyphenols in Malus domestica cultivars from Costa Rica.Molecules20212623736710.3390/molecules2623736734885949
    [Google Scholar]
  54. PatockaJ. BhardwajK. KlimovaB. NepovimovaE. WuQ. LandiM. KucaK. ValisM. WuW. Malus domestica: A review on nutritional features, chemical composition, traditional and medicinal value.Plants2020911140810.3390/plants911140833105724
    [Google Scholar]
  55. NavarroM. MoreiraI. ArnaezE. QuesadaS. AzofeifaG. VargasF. AlvaradoD. ChenP. Polyphenolic characterization and antioxidant activity of Malus domestica and Prunus domestica cultivars from Costa Rica.Foods2018721510.3390/foods702001529385709
    [Google Scholar]
  56. YuJ. LiW. YouB. YangS. XianW. DengY. HuangW. YangR. Phenolic profiles, bioaccessibility and antioxidant activity of plum (Prunus Salicina Lindl).Food Res. Int.202114311030010.1016/j.foodres.2021.11030033992320
    [Google Scholar]
  57. BottoneA. CerulliA. DʼUrsoG. MasulloM. MontoroP. NapolitanoA. PiacenteS. Plant specialized metabolites in hazelnut (Corylus avellana) kernel and byproducts: An update on chemistry, biological activity, and analytical aspects.Planta Med.20198511/1284085510.1055/a‑0947‑572531250412
    [Google Scholar]
  58. ProkopenkoY. JakštasV. ŽvikasV. GeorgiyantsV. IvanauskasL. Hilic MS/MS determination of amino acids in herbs of Fumaria schleicheri L., Ocimum basilicum L., and leaves of Corylus avellana L.Nat. Prod. Res.201933131961196310.1080/14786419.2018.147714529772944
    [Google Scholar]
  59. AmaralJ.S. FerreresF. AndradeP.B. ValentãoP. PinheiroC. SantosA. SeabraR. Phenolic profile of hazelnut ( Corylus Avellana L.) leaves cultivars grown in Portugal.Nat. Prod. Res.200519215716310.1080/1478641041000170477815715260
    [Google Scholar]
  60. BasharatZ. AfzaalM. SaeedF. IslamF. HussainM. IkramA. PervaizM.U. AwuchiC.G. Nutritional and functional profile of carob bean (Ceratonia siliqua): A comprehensive review.Int. J. Food Prop.202326138941310.1080/10942912.2022.2164590
    [Google Scholar]
  61. Al-AmeriM.T.G. NasserA.K. In vitro antioxidant properties of gum extract from the carob (Ceratonia silique L.) plant.Basrah J. Agric. Sci.2021341849310.37077/25200860.2021.34.1.08
    [Google Scholar]
  62. PapagiannopoulosM. WollseifenH.R. MellenthinA. HaberB. GalensaR. Identification and quantification of polyphenols in carob fruits (Ceratonia siliqua L.) and derived products by HPLC-UV-ESI/MSn.J. Agric. Food Chem.200452123784379110.1021/jf030660y15186098
    [Google Scholar]
  63. AzabA. Carob antioxidants in human health: From traditional uses to modern pharmacology.J. Biomed. Res. Environ. Sci.20223895397310.37871/jbres1538
    [Google Scholar]
  64. Díaz-MulaH.M. Tomás-BarberánF.A. García-VillalbaR. Pomegranate fruit and juice (cv. Mollar), rich in ellagitannins and anthocyanins, also provide a significant content of a wide range of proanthocyanidins.J. Agric. Food Chem.201967339160916710.1021/acs.jafc.8b0715530768267
    [Google Scholar]
  65. RussoM. FanaliC. TripodoG. DugoP. MuleoR. DugoL. De GaraL. MondelloL. Analysis of phenolic compounds in different parts of pomegranate (Punica granatum) fruit by HPLC-PDA-ESI/MS and evaluation of their antioxidant activity: Application to different Italian varieties.Anal. Bioanal. Chem.2018410153507352010.1007/s00216‑018‑0854‑829350256
    [Google Scholar]
  66. Al-ZorekyN.S. Antimicrobial activity of pomegranate (Punica granatum L.) fruit peels.Int. J. Food Microbiol.2009134324424810.1016/j.ijfoodmicro.2009.07.00219632734
    [Google Scholar]
  67. SatomiH. UmemuraK. UenoA. HatanoT. OkudaT. NoroT. Carbonic anhydrase inhibitors from the pericarps of Punica granatum L.Biol. Pharm. Bull.199316878779010.1248/bpb.16.7878220326
    [Google Scholar]
  68. SharmaK. An insight into anticancer bioactives from Punica granatum (Pomegranate).Anti-Cancer Agents Med. Chem.2022224694702
    [Google Scholar]
  69. BartosikovaL. NecasJ. Epigallocatechin gallate: A review.Vet. Med.2018631044346710.17221/31/2018‑VETMED
    [Google Scholar]
  70. AktasO. WaicziesS. ZippF. Neurodegeneration in autoimmune demyelination: Recent mechanistic insights reveal novel therapeutic targets.J. Neuroimmunol.20071841-2172610.1016/j.jneuroim.2006.11.02617222462
    [Google Scholar]
  71. SeeramN.P. HenningS.M. NiuY. LeeR. ScheullerH.S. HeberD. Catechin and caffeine content of green tea dietary supplements and correlation with antioxidant capacity.J. Agric. Food Chem.20065451599160310.1021/jf052857r16506807
    [Google Scholar]
  72. ShiZ. ZhuJ. GuoY. NiuM. ZhangL. TuC. HuangY. LiP. ZhaoX. ZhangZ. BaiZ. ZhangG. LuY. XiaoX. WangJ. Epigallocatechin gallate during dietary restriction—potential mechanisms of enhanced liver injury.Front. Pharmacol.20211160937810.3389/fphar.2020.60937833584288
    [Google Scholar]
  73. SangS. LambertJ.D. HoC.T. YangC.S. The chemistry and biotransformation of tea constituents.Pharmacol. Res.2011642879910.1016/j.phrs.2011.02.00721371557
    [Google Scholar]
  74. KimH.S. QuonM.J. KimJ. New insights into the mechanisms of polyphenols beyond antioxidant properties; Lessons from the green tea polyphenol, epigallocatechin 3-gallate.Redox Biol.2014218719510.1016/j.redox.2013.12.02224494192
    [Google Scholar]
  75. AboulwafaM.M. YoussefF.S. GadH.A. AltyarA.E. Al-AziziM.M. AshourM.L. A comprehensive insight on the health benefits and phytoconstituents of Camellia sinensis and recent approaches for its quality control.Antioxidants201981045510.3390/antiox810045531590466
    [Google Scholar]
  76. YangX. Tomás-BarberánF.A. Tea is a significant dietary source of ellagitannins and ellagic acid.J. Agric. Food Chem.201967195394540410.1021/acs.jafc.8b0501030339026
    [Google Scholar]
  77. SanlierN. Atikİ. AtikA. A mini review of effects of white tea consumption on diseases.Trends Food Sci. Technol.201882828810.1016/j.tifs.2018.10.004
    [Google Scholar]
  78. ChackoS.M. ThambiP.T. KuttanR. NishigakiI. Beneficial effects of green tea: A literature review.Chin. Med.2010511310.1186/1749‑8546‑5‑1320370896
    [Google Scholar]
  79. XingL. ZhangH. QiR. TsaoR. MineY. Recent advances in the understanding of the health benefits and molecular mechanisms associated with green tea polyphenols.J. Agric. Food Chem.20196741029104310.1021/acs.jafc.8b0614630653316
    [Google Scholar]
  80. GulatiA. RajkumarS. KarthigeyanS. SudR.K. VijayanD. ThomasJ. RajkumarR. DasS.C. TamulyP. HazarikaM. AhujaP.S. Catechin and catechin fractions as biochemical markers to study the diversity of Indian tea ( Camellia sinensis (L.) O. Kuntze) germplasm.Chem. Biodivers.2009671042105210.1002/cbdv.20080012219623550
    [Google Scholar]
  81. ChenD. SunZ. GaoJ. PengJ. WangZ. ZhaoY. LinZ. DaiW. Metabolomics combined with proteomics provides a novel interpretation of the compound differences among Chinese tea cultivars ( Camellia sinensis var. sinensis) with different manufacturing suitabilities.Food Chem.202237713197610.1016/j.foodchem.2021.13197634979399
    [Google Scholar]
  82. JinJ.Q. DaiW-D. ZhangC-Y. LinZ. ChenL. Genetic, morphological, and chemical discrepancies between Camellia sinensis (L.) O. Kuntze and its close relatives.J. Food Compos. Anal.202210810441710.1016/j.jfca.2022.104417
    [Google Scholar]
  83. GaoX. LinX. HoC.T. ZhangY. LiB. ChenZ. Chemical composition and anti-inflammatory activity of water extract from black cocoa tea (Camellia ptilophylla).Food Res. Int.202216111183110.1016/j.foodres.2022.11183136192963
    [Google Scholar]
  84. TengJ. YanC. ZengW. ZhangY. ZengZ. HuangY. Purification and characterization of theobromine synthase in a Theobromine-Enriched wild tea plant (Camellia gymnogyna Chang) from Dayao Mountain, China.Food Chem.202031112587510.1016/j.foodchem.2019.12587531753680
    [Google Scholar]
  85. ShengY.Y. XiangJ. WangZ.S. JinJ. WangY.Q. LiQ.S. LiD. FangZ.T. LuJ.L. YeJ.H. LiangY.R. ZhengX.Q. Theacrine from Camellia Kucha and its health beneficial effects.Front. Nutr.2020759682310.3389/fnut.2020.59682333392238
    [Google Scholar]
  86. WuW. LuM. PengJ. LvH. ShiJ. ZhangS. LiuZ. DuanJ. ChenD. DaiW. LinZ. Nontargeted and targeted metabolomics analysis provides novel insight into nonvolatile metabolites in Jianghua Kucha tea germplasm ( Camellia sinensis var. Assamica cv. Jianghua).Food Chem. X20221310027010.1016/j.fochx.2022.10027035499018
    [Google Scholar]
  87. LiJ. Phytochemical comparison of different tea ( Camellia sinensis ) cultivars and its association with sensory quality of finished tea.Food Sci. Technol.2020117108595
    [Google Scholar]
  88. GranicaS. PiwowarskiJ.P. CzerwińskaM.E. KissA.K. Phytochemistry, pharmacology and traditional uses of different Epilobium species (Onagraceae): A review.J. Ethnopharmacol.201415631634610.1016/j.jep.2014.08.03625196824
    [Google Scholar]
  89. KowalikK. Polak-BereckaM. Prendecka-WróbelM. Pigoń-ZającD. NiedźwiedźI. SzwajgierD. Baranowska-WójcikE. WaśkoA. Biological activity of an Epilobium angustifolium L.(Fireweed) infusion after in vitro digestion.Molecules2022273100610.3390/molecules2703100635164271
    [Google Scholar]
  90. AbidR. KanwalD. QaiserM. Seed morphological studies on some monocot families (excluding Gramineae) and their phylogenetic implications.Pak. J. Bot.201446413091324
    [Google Scholar]
  91. BazylkoA. KissA. KowalskiJ. Densitometric determination of flavonoids in methanolic and aqueous extracts of Epilobii angustifolii herba by use of HPTLC.J. Planar Chromatogr. Mod. TLC2007201535610.1556/JPC.20.2007.1.8
    [Google Scholar]
  92. SasovS. Macrocyclic tannins of Chamerion angustifolium.Probl. Biolog. Med. Pharmaceut. Chem.2010102427
    [Google Scholar]
  93. BaertN. KaronenM. SalminenJ.P. Isolation, characterisation and quantification of the main oligomeric macrocyclic ellagitannins in Epilobium angustifolium by ultra-high performance chromatography with diode array detection and electrospray tandem mass spectrometry.J. Chromatogr. A20151419263610.1016/j.chroma.2015.09.05026455285
    [Google Scholar]
  94. KissA. KowalskiJ. MelzigM.F. Compounds from Epilobium angustifolium inhibit the specific metallopeptidases ACE, NEP and APN.Planta Med.2004701091992310.1055/s‑2004‑83261715490319
    [Google Scholar]
  95. NowakA. Zielonka-BrzezickaJ. PerużyńskaM. KlimowiczA. Epilobium angustifolium L. as a potential herbal component of topical products for skin care and treatment—a review.Molecules20222711353610.3390/molecules2711353635684473
    [Google Scholar]
  96. KarakayaS. SüntarI. YakinciO.F. SytarO. CeribasiS. DursunogluB. OzbekH. GuvenalpZ. In vivo bioactivity assessment on Epilobium species: A particular focus on Epilobium angustifolium and its components on enzymes connected with the healing process.J. Ethnopharmacol.202026211320710.1016/j.jep.2020.11320732730870
    [Google Scholar]
  97. StolarczykM. PiwowarskiJ.P. GranicaS. StefańskaJ. NaruszewiczM. KissA.K. Extracts from Epilobium sp. herbs, their components and gut microbiota metabolites of Epilobium ellagitannins, urolithins, inhibit hormone-dependent prostate cancer cells-(LNCaP) proliferation and PSA secretion.Phytother. Res.201327121842184810.1002/ptr.494123436427
    [Google Scholar]
  98. McKayD.L. BlumbergJ.B. A review of the bioactivity of south African herbal teas: Rooibos (Aspalathus linearis) and honeybush (Cyclopia intermedia).Phytother. Res.200721111610.1002/ptr.199216927447
    [Google Scholar]
  99. MarnewickJ.L. Antioxidant properties of Rooibos (Aspalathus linearis)–in vitro and in vivo evidence.Springer201410.1007/978‑3‑642‑30018‑9_164
    [Google Scholar]
  100. ReyneckeJ. CoetzeeW. BesterJ. Rooibos tea. A preliminary report on the composition.Farming in South Africa194924397398
    [Google Scholar]
  101. AjuwonO.R. Protective effects of rooibos (Aspalathus linearis) and/or red palm oil (Elaeis guineensis) supplementation on tert-butyl hydroperoxide-induced oxidative hepatotoxicity in wistar rats.Evid. Based Complement. Alternat. Med.2013201398427310.1155/2013/984273
    [Google Scholar]
  102. KhanH. UllahH. CastilhoP.C.M.F. GomilaA.S. D’OnofrioG. FilosaR. WangF. NabaviS.M. DagliaM. SilvaA.S. RengasamyK.R.R. OuJ. ZouX. XiaoJ. CaoH. Targeting NF-κB signaling pathway in cancer by dietary polyphenols.Crit. Rev. Food Sci. Nutr.202060162790280010.1080/10408398.2019.166182731512490
    [Google Scholar]
  103. KhanN. AfaqF. SaleemM. AhmadN. MukhtarH. Targeting multiple signaling pathways by green tea polyphenol (-)-epigallocatechin-3-gallate.Cancer Res.20066652500250510.1158/0008‑5472.CAN‑05‑363616510563
    [Google Scholar]
  104. AfaqF. AdhamiV.M. AhmadN. MukhtarH. Inhibition of ultraviolet B-mediated activation of nuclear factor κB in normal human epidermal keratinocytes by green tea Constituent (-)-epigallocatechin-3-gallate.Oncogene20032271035104410.1038/sj.onc.120620612592390
    [Google Scholar]
  105. GuptaS. HastakK. AfaqF. AhmadN. MukhtarH. Essential role of caspases in epigallocatechin-3-gallate-mediated inhibition of nuclear factor kappaB and induction of apoptosis.Oncogene200423142507252210.1038/sj.onc.120735314676829
    [Google Scholar]
  106. Cerezo-GuisadoM.I. ZurR. LorenzoM.J. RiscoA. Martín-SerranoM.A. Alvarez-BarrientosA. CuendaA. CentenoF. Implication of Akt, ERK1/2 and alternative p38MAPK signalling pathways in human colon cancer cell apoptosis induced by green tea EGCG.Food Chem. Toxicol.20158412513210.1016/j.fct.2015.08.01726303273
    [Google Scholar]
  107. HuangC.C. WuW.B. FangJ.Y. ChiangH.S. ChenS.K. ChenB.H. ChenY.T. HungC.F. (-)-Epicatechin-3-gallate, a green tea polyphenol is a potent agent against UVB-induced damage in HaCaT keratinocytes.Molecules20071281845185810.3390/1208184517960092
    [Google Scholar]
  108. DongZ. MaW. HuangC. YangC.S. Inhibition of tumor promoter-induced activator protein 1 activation and cell transformation by tea polyphenols, (-)-epigallocatechin gallate, and theaflavins.Cancer Res.19975719441444199331105
    [Google Scholar]
  109. AdhamiV.M. SiddiquiI.A. AhmadN. GuptaS. MukhtarH. Oral consumption of green tea polyphenols inhibits insulin-like growth factor-I-induced signaling in an autochthonous mouse model of prostate cancer.Cancer Res.200464238715872210.1158/0008‑5472.CAN‑04‑284015574782
    [Google Scholar]
  110. ShimizuM. DeguchiA. LimJ.T.E. MoriwakiH. KopelovichL. WeinsteinI.B. (-)-Epigallocatechin gallate and polyphenon E inhibit growth and activation of the epidermal growth factor receptor and human epidermal growth factor receptor-2 signaling pathways in human colon cancer cells.Clin. Cancer Res.20051172735274610.1158/1078‑0432.CCR‑04‑201415814656
    [Google Scholar]
  111. TachibanaH. KogaK. FujimuraY. YamadaK. A receptor for green tea polyphenol EGCG.Nat. Struct. Mol. Biol.200411438038110.1038/nsmb74315024383
    [Google Scholar]
  112. Givant-HorwitzV. DavidsonB. ReichR. Laminin-induced signaling in tumor cells: the role of the M(r) 67,000 laminin receptor.Cancer Res.200464103572357910.1158/0008‑5472.CAN‑03‑342415150114
    [Google Scholar]
  113. HsuY.C. LiouY.M. The anti-cancer effects of (−)-Epigalocathine-3-gallate on the signaling pathways associated with membrane receptors in MCF-7 cells.J. Cell. Physiol.2011226102721273010.1002/jcp.2262321792929
    [Google Scholar]
  114. HussainT. GuptaS. AdhamiV.M. MukhtarH. Green tea constituent epigallocatechin-3-gallate selectively inhibits COX-2 without affecting COX-1 expression in human prostate carcinoma cells.Int. J. Cancer2005113466066910.1002/ijc.2062915455372
    [Google Scholar]
  115. AhmedS. RahmanA. HasnainA. LalondeM. GoldbergV.M. HaqqiT.M. Green tea polyphenol epigallocatechin-3-gallate inhibits the IL-1β-induced activity and expression of cyclooxygenase-2 and nitric oxide synthase-2 in human chondrocytes.Free Radic. Biol. Med.20023381097110510.1016/S0891‑5849(02)01004‑312374621
    [Google Scholar]
  116. SangS. LeeM.J. HouZ. HoC.T. YangC.S. Stability of tea polyphenol (-)-epigallocatechin-3-gallate and formation of dimers and epimers under common experimental conditions.J. Agric. Food Chem.200553249478948410.1021/jf051905516302765
    [Google Scholar]
  117. HongJ. LuH. MengX. RyuJ.H. HaraY. YangC.S. Stability, cellular uptake, biotransformation, and efflux of tea polyphenol (-)-epigallocatechin-3-gallate in HT-29 human colon adenocarcinoma cells.Cancer Res.200262247241724612499265
    [Google Scholar]
  118. OikawaS. FurukawaA. AsadaH. HirakawaK. KawanishiS. Catechins induce oxidative damage to cellular and isolated DNA through the generation of reactive oxygen species.Free Radic. Res.200337888189010.1080/107157603100015075114567448
    [Google Scholar]
  119. YangG.Y. LiaoJ. LiC. ChungJ. YurkowE.J. HoC.T. YangC.S. Effect of black and green tea polyphenols on c-jun phosphorylation and H2O2 production in transformed and non-transformed human bronchial cell lines: possible mechanisms of cell growth inhibition and apoptosis induction.Carcinogenesis200021112035203910.1093/carcin/21.11.203511062165
    [Google Scholar]
  120. VittalR. SelvanayagamZ.E. SunY. HongJ. LiuF. ChinK.V. YangC.S. Gene expression changes induced by green tea polyphenol (−)-epigallocatechin-3-gallate in human bronchial epithelial 21BES cells analyzed by DNA microarray.Mol. Cancer Ther.2004391091109910.1158/1535‑7163.1091.3.915367703
    [Google Scholar]
  121. NakagawaH. HasumiK. WooJ.T. NagaiK. WachiM. Generation of hydrogen peroxide primarily contributes to the induction of Fe(II)-dependent apoptosis in Jurkat cells by (-)-epigallocatechin gallate.Carcinogenesis20042591567157410.1093/carcin/bgh16815090467
    [Google Scholar]
  122. ElblingL. WeissR.M. TeufelhoferO. UhlM. KnasmuellerS. Schulte-HermannR. BergerW. MickscheM. Green tea extract and (−)-epigallocatechin-3-gallate, the major tea catechin, exert oxidant but lack antioxidant activities.FASEB J.200519712610.1096/fj.04‑2915fje15738004
    [Google Scholar]
  123. HouZ. Green tea polyphenol, (-)-epigallocatechin-3-gallate, induces oxidative stress and DNA damage in cancer cell lines, xenograft tumors, and mouse liver.Cancer Res.2006668_Supplement11501151
    [Google Scholar]
  124. LecumberriE. DupertuisY.M. MiralbellR. PichardC. Green tea polyphenol epigallocatechin-3-gallate (EGCG) as adjuvant in cancer therapy.Clin. Nutr.201332689490310.1016/j.clnu.2013.03.00823582951
    [Google Scholar]
  125. YuanJ.M. SunC. ButlerL.M. Tea and cancer prevention: Epidemiological studies.Pharmacol. Res.201164212313510.1016/j.phrs.2011.03.00221419224
    [Google Scholar]
  126. LeandersonP. FaresjöÅ.O. TagessonC. Green tea polyphenols inhibit oxidant-induced DNA strand breakage in cultured lung cells.Free Radic. Biol. Med.199723223524210.1016/S0891‑5849(96)00590‑49199885
    [Google Scholar]
  127. YangC.S. WangZ.Y. Tea and cancer.J. Natl. Cancer Inst.199385131038104910.1093/jnci/85.13.10388515490
    [Google Scholar]
  128. YangC. LambertJ. JuJ. LuG. SangS. Tea and cancer prevention: Molecular mechanisms and human relevance.Toxicol. Appl. Pharmacol.2007224326527310.1016/j.taap.2006.11.02417234229
    [Google Scholar]
  129. FilippiniT. Green tea (Camellia sinensis) for the prevention of cancer.Cochrane Database Syst. Rev.202033CD00500410.1002/14651858.CD005004.pub3
    [Google Scholar]
  130. PengG. WargovichM.J. DixonD.A. Anti-proliferative effects of green tea polyphenol EGCG on Ha-Ras-induced transformation of intestinal epithelial cells.Cancer Lett.2006238226027010.1016/j.canlet.2005.07.01816157446
    [Google Scholar]
  131. DuG.J. ZhangZ. WenX.D. YuC. CalwayT. YuanC.S. WangC.Z. Epigallocatechin Gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea.Nutrients20124111679169110.3390/nu411167923201840
    [Google Scholar]
  132. SuzukiY. TsubonoY. NakayaN. SuzukiY. KoizumiY. TsujiI. Green tea and the risk of breast cancer: Pooled analysis of two prospective studies in Japan.Br. J. Cancer20049071361136310.1038/sj.bjc.660165215054454
    [Google Scholar]
  133. ShinC.M. LeeD.H. SeoA.Y. LeeH.J. KimS.B. SonW.C. KimY.K. LeeS.J. ParkS.H. KimN. ParkY.S. YoonH. Green tea extracts for the prevention of metachronous colorectal polyps among patients who underwent endoscopic removal of colorectal adenomas: A randomized clinical trial.Clin. Nutr.201837245245810.1016/j.clnu.2017.01.01428209333
    [Google Scholar]
  134. KumarN.B. Pow-SangJ. EganK.M. SpiessP.E. DickinsonS. SalupR. HelalM. McLartyJ. WilliamsC.R. SchreiberF. ParnesH.L. SebtiS. KaziA. KangL. QuinnG. SmithT. YueB. DiazK. ChornokurG. CrockerT. SchellM.J. Randomized, placebo-controlled trial of green tea catechins for prostate cancer prevention.Cancer Prev. Res.201581087988710.1158/1940‑6207.CAPR‑14‑032425873370
    [Google Scholar]
  135. SchrammL. Going green: The role of the green tea component EGCG in chemoprevention.J. Carcinog. Mutagen.201342100014210.4172/2157‑2518.100014224077764
    [Google Scholar]
  136. WaksA.G. WinerE.P. Breast cancer treatment: A review.JAMA2019321328830010.1001/jama.2018.1932330667505
    [Google Scholar]
  137. GianfrediV. NucciD. AbalsamoA. AcitoM. VillariniM. MorettiM. RealdonS. Green tea consumption and risk of breast cancer and recurrence - A systematic review and meta-analysis of observational studies.Nutrients20181012188610.3390/nu1012188630513889
    [Google Scholar]
  138. Najaf NajafiM. SalehiM. GhazanfarpourM. HoseiniZ.S. Khadem-RezaiyanM. The association between green tea consumption and breast cancer risk: A systematic review and meta-analysis.Phytother. Res.201832101855186410.1002/ptr.612429876987
    [Google Scholar]
  139. SunC.L. YuanJ.M. KohW.P. YuM.C. Green tea, black tea and breast cancer risk: A meta-analysis of epidemiological studies.Carcinogenesis20062771310131510.1093/carcin/bgi27616311246
    [Google Scholar]
  140. OgunleyeA.A. XueF. MichelsK.B. Green tea consumption and breast cancer risk or recurrence: A meta-analysis.Breast Cancer Res. Treat.2010119247748410.1007/s10549‑009‑0415‑019437116
    [Google Scholar]
  141. InoueM. RobienK. WangR. Van Den BergD.J. KohW.P. YuM.C. Green tea intake, MTHFR/TYMS genotype and breast cancer risk: The Singapore Chinese Health Study.Carcinogenesis200829101967197210.1093/carcin/bgn17718669903
    [Google Scholar]
  142. DaiQ. ShuX.O. LiH. YangG. ShrubsoleM.J. CaiH. JiB. WenW. FrankeA. GaoY.T. ZhengW. Is green tea drinking associated with a later onset of breast cancer?Ann. Epidemiol.2010201748110.1016/j.annepidem.2009.09.00520006278
    [Google Scholar]
  143. IwasakiM. InoueM. SasazukiS. SawadaN. YamajiT. ShimazuT. WillettW.C. TsuganeS. Japan Public Health Center-Based Prospective Study Group Green tea drinking and subsequent risk of breast cancer in a population to based cohort of Japanese women.Breast Cancer Res.2010125R8810.1186/bcr275622889409
    [Google Scholar]
  144. WuA.H. ArakawaK. StanczykF.Z. Van Den BergD. KohW.P. YuM.C. Tea and circulating estrogen levels in postmenopausal Chinese women in Singapore.Carcinogenesis200526597698010.1093/carcin/bgi02815661801
    [Google Scholar]
  145. NagataC. KabutoM. ShimizuH. Association of coffee, green tea, and caffeine intakes with serum concentrations of estradiol and sex hormone-binding globulin in premenopausal Japanese women.Nutr. Cancer1998301212410.1080/01635589809514635
    [Google Scholar]
  146. InoueM. TajimaK. MizutaniM. IwataH. IwaseT. MiuraS. HiroseK. HamajimaN. TominagaS. Regular consumption of green tea and the risk of breast cancer recurrence: Follow-up study from the hospital-based epidemiologic research program at aichi cancer center (HERPACC), Japan.Cancer Lett.2001167217518210.1016/S0304‑3835(01)00486‑411369139
    [Google Scholar]
  147. NakachiK. SuemasuK. SugaK. TakeoT. ImaiK. HigashiY. Influence of drinking green tea on breast cancer malignancy among Japanese patients.Jpn. J. Cancer Res.199889325426110.1111/j.1349‑7006.1998.tb00556.x9600118
    [Google Scholar]
  148. SeelyD. MillsE.J. WuP. VermaS. GuyattG.H. The effects of green tea consumption on incidence of breast cancer and recurrence of breast cancer: A systematic review and meta-analysis.Integr. Cancer Ther.20054214415510.1177/153473540527642015911927
    [Google Scholar]
  149. ZhaoH. ZhuW. JiaL. SunX. ChenG. ZhaoX. LiX. MengX. KongL. XingL. YuJ. Phase I study of topical epigallocatechin-3-gallate (EGCG) in patients with breast cancer receiving adjuvant radiotherapy.Br. J. Radiol.20168910582015066510.1259/bjr.2015066526607642
    [Google Scholar]
  150. RabsteinS. BrüningT. HarthV. FischerH.P. HaasS. WeissT. SpickenheuerA. PierlC. JustenhovenC. IlligT. VollmertC. BaischC. KoY.D. HamannU. BrauchH. PeschB. GENICA Network N-acetyltransferase 2, exposure to aromatic and heterocyclic amines, and receptor-defined breast cancer.Eur. J. Cancer Prev.201019210010910.1097/CEJ.0b013e328333fbb719996973
    [Google Scholar]
  151. BakerJ.A. BeehlerG.P. SawantA.C. JayaprakashV. McCannS.E. MoysichK.B. Consumption of coffee, but not black tea, is associated with decreased risk of premenopausal breast cancer.J. Nutr.2006136116617110.1093/jn/136.1.16616365077
    [Google Scholar]
  152. IshitaniK. LinJ. MansonJ.E. BuringJ.E. ZhangS.M. Caffeine consumption and the risk of breast cancer in a large prospective cohort of women.Arch. Intern. Med.2008168182022203110.1001/archinte.168.18.202218852405
    [Google Scholar]
  153. Bhoo PathyN. PeetersP. van GilsC. BeulensJ.W.J. van der GraafY. Bueno-de-MesquitaB. BulgibaA. UiterwaalC.S.P.M. Coffee and tea intake and risk of breast cancer.Breast Cancer Res. Treat.2010121246146710.1007/s10549‑009‑0583‑y19847643
    [Google Scholar]
  154. GanmaaD. WillettW.C. LiT.Y. FeskanichD. van DamR.M. Lopez-GarciaE. HunterD.J. HolmesM.D. Coffee, tea, caffeine and risk of breast cancer: A 22-year follow-up.Int. J. Cancer200812292071207610.1002/ijc.2333618183588
    [Google Scholar]
  155. LarssonS.C. BergkvistL. WolkA. Coffee and black tea consumption and risk of breast cancer by estrogen and progesterone receptor status in a Swedish cohort.Cancer Causes Control200920102039204410.1007/s10552‑009‑9396‑x19597749
    [Google Scholar]
  156. BoggsD.A. PalmerJ.R. StampferM.J. SpiegelmanD. Adams-CampbellL.L. RosenbergL. Tea and coffee intake in relation to risk of breast cancer in the Black Women’s Health Study.Cancer Causes Control201021111941194810.1007/s10552‑010‑9622‑620680436
    [Google Scholar]
  157. IwasakiM. InoueM. SasazukiS. MiuraT. SawadaN. YamajiT. ShimazuT. WillettW.C. TsuganeS. Plasma tea polyphenol levels and subsequent risk of breast cancer among Japanese women: A nested case–control study.Breast Cancer Res. Treat.2010124382783410.1007/s10549‑010‑0916‑x20440552
    [Google Scholar]
  158. LuoJ. GaoY.T. ChowW.H. ShuX.O. LiH. YangG. CaiQ. RothmanN. CaiH. ShrubsoleM.J. FrankeA.A. ZhengW. DaiQ. Urinary polyphenols and breast cancer risk: Results from the Shanghai Women’s Health Study.Breast Cancer Res. Treat.2010120369370210.1007/s10549‑009‑0487‑x19653095
    [Google Scholar]
  159. YangC.S. ChungJ.Y. YangG.Y. LiC. MengX. LeeM.J. Mechanisms of inhibition of carcinogenesis by tea.Biofactors2000131-4737910.1002/biof.552013011311237203
    [Google Scholar]
  160. DawlingS. RoodiN. MernaughR.L. WangX. ParlF.F. Catechol-O-methyltransferase (COMT)-mediated metabolism of catechol estrogens: Comparison of wild-type and variant COMT isoforms.Cancer Res.200161186716672211559542
    [Google Scholar]
  161. Inoue-ChoiM. YuanJ.M. YangC.S. Van Den BergD.J. LeeM.J. GaoY.T. YuM.C. Genetic association between the COMT genotype and urinary levels of tea polyphenols and their metabolites among daily green tea drinkers.Int. J. Mol. Epidemiol. Genet.20101211412321191472
    [Google Scholar]
  162. WuA.H. TsengC.C. Van Den BergD. YuM.C. Tea intake, COMT genotype, and breast cancer in Asian-American women.Cancer Res.200363217526752914612555
    [Google Scholar]
  163. ShrubsoleM.J. LuW. ChenZ. ShuX.O. ZhengY. DaiQ. CaiQ. GuK. RuanZ.X. GaoY.T. ZhengW. Drinking green tea modestly reduces breast cancer risk.J. Nutr.2009139231031610.3945/jn.108.09869919074205
    [Google Scholar]
  164. WuA.H. YuM.C. TsengC.C. HankinJ. PikeM.C. Green tea and risk of breast cancer in Asian Americans.Int. J. Cancer2003106457457910.1002/ijc.1125912845655
    [Google Scholar]
  165. BoydN.F. RommensJ.M. VogtK. LeeV. HopperJ.L. YaffeM.J. PatersonA.D. Mammographic breast density as an intermediate phenotype for breast cancer.Lancet Oncol.200561079880810.1016/S1470‑2045(05)70390‑916198986
    [Google Scholar]
  166. BorchersA.T. KeenC.L. GershwinM.E. Mushrooms, tumors, and immunity: An update.Exp. Biol. Med.2004229539340610.1177/15353702042290050715096651
    [Google Scholar]
  167. ChenS. OhS.R. PhungS. HurG. YeJ.J. KwokS.L. ShrodeG.E. BeluryM. AdamsL.S. WilliamsD. Anti-aromatase activity of phytochemicals in white button mushrooms (Agaricus bisporus).Cancer Res.20066624120261203410.1158/0008‑5472.CAN‑06‑220617178902
    [Google Scholar]
  168. YuL. FernigD.G. SmithJ.A. MiltonJ.D. RhodesJ.M. Reversible inhibition of proliferation of epithelial cell lines by Agaricus bisporus (edible mushroom) lectin.Cancer Res.19935319462746328402638
    [Google Scholar]
  169. GrubeB.J. EngE.T. KaoY.C. KwonA. ChenS. White button mushroom phytochemicals inhibit aromatase activity and breast cancer cell proliferation.J. Nutr.2001131123288329310.1093/jn/131.12.328811739882
    [Google Scholar]
  170. ThompsonC.A. HabermannT.M. WangA.H. VierkantR.A. FolsomA.R. RossJ.A. CerhanJ.R. Antioxidant intake from fruits, vegetables and other sources and risk of non-Hodgkin’s lymphoma: The Iowa Women’s Health Study.Int. J. Cancer20101264992100310.1002/ijc.2483019685491
    [Google Scholar]
  171. ZhangM. ZhaoX. ZhangX. HolmanC.D.A.J. Possible protective effect of green tea intake on risk of adult leukaemia.Br. J. Cancer200898116817010.1038/sj.bjc.660414018087282
    [Google Scholar]
  172. MalmirH. ShayanfarM. Mohammad-ShiraziM. TabibiH. SharifiG. EsmaillzadehA. Tea and coffee consumption in relation to glioma: A case-control study.Eur. J. Nutr.201958110311110.1007/s00394‑017‑1575‑z29124385
    [Google Scholar]
  173. HolickC.N. SmithS.G. GiovannucciE. MichaudD.S. Coffee, tea, caffeine intake, and risk of adult glioma in three prospective cohort studies.Cancer Epidemiol. Biomarkers Prev.2010191394710.1158/1055‑9965.EPI‑09‑073220056621
    [Google Scholar]
  174. BagA. BagN. Tea polyphenols and prevention of epigenetic aberrations in cancer.J. Nat. Sci. Biol. Med.2018912510.4103/jnsbm.JNSBM_46_1729456384
    [Google Scholar]
  175. ShengJ. ShiW. GuoH. LongW. WangY. QiJ. LiuJ. XuY. The inhibitory effect of (−)-epigallocatechin-3-gallate on breast cancer progression via reducing SCUBE2 methylation and DNMT activity.Molecules20192416289910.3390/molecules2416289931404982
    [Google Scholar]
  176. QiJ. LuY. WuW. Absorption, disposition and pharmacokinetics of solid lipid nanoparticles.Curr. Drug Metab.201213441842810.2174/13892001280016652622443536
    [Google Scholar]
  177. RadhakrishnanR. KulhariH. PoojaD. GudemS. BhargavaS. ShuklaR. SistlaR. Encapsulation of biophenolic phytochemical EGCG within lipid nanoparticles enhances its stability and cytotoxicity against cancer.Chem. Phys. Lipids2016198516010.1016/j.chemphyslip.2016.05.00627234272
    [Google Scholar]
  178. MüllerR.H. MäderK. GohlaS. Solid lipid nanoparticles (SLN) for controlled drug delivery - A review of the state of the art.Eur. J. Pharm. Biopharm.200050116117710.1016/S0939‑6411(00)00087‑410840199
    [Google Scholar]
  179. ManjunathK. ReddyJ.S. VenkateswarluV. Solid lipid nanoparticles as drug delivery systems.Methods Find. Exp. Clin. Pharmacol.200527212714410.1358/mf.2005.27.2.87628615834465
    [Google Scholar]
  180. ÜnerM. Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): Their benefits as colloidal drug carrier systems.Die Pharmazie2006615375386
    [Google Scholar]
  181. NaseriN. ValizadehH. Zakeri-MilaniP. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application.Adv. Pharm. Bull.20155330531310.15171/apb.2015.04326504751
    [Google Scholar]
  182. ZhangJ. NieS. WangS. Nanoencapsulation enhances epigallocatechin-3-gallate stability and its antiatherogenic bioactivities in macrophages.J. Agric. Food Chem.201361389200920910.1021/jf402300424020822
    [Google Scholar]
  183. JayagopalA. LintonM.F. FazioS. HaseltonF.R. Insights into atherosclerosis using nanotechnology.Curr. Atheroscler. Rep.201012320921510.1007/s11883‑010‑0106‑720425261
    [Google Scholar]
  184. LobattoM.E. FusterV. FayadZ.A. MulderW.J.M. Perspectives and opportunities for nanomedicine in the management of atherosclerosis.Nat. Rev. Drug Discov.2011101183585210.1038/nrd357822015921
    [Google Scholar]
  185. YangX. JinL. YaoL. ShenF.H. ShimerA. LiX. Antioxidative nanofullerol prevents intervertebral disk degeneration.Int. J. Nanomedicine201492419243010.2147/IJN.S6085324876775
    [Google Scholar]
  186. SuarezS. AlmutairiA. ChristmanK.L. Micro- and nanoparticles for treating cardiovascular disease.Biomater. Sci.20153456458010.1039/C4BM00441H26146548
    [Google Scholar]
  187. DvirT. BauerM. SchroederA. TsuiJ.H. AndersonD.G. LangerR. LiaoR. KohaneD.S. Nanoparticles targeting the infarcted heart.Nano Lett.201111104411441410.1021/nl202588221899318
    [Google Scholar]
  188. WohlfartS. GelperinaS. KreuterJ. Transport of drugs across the blood–brain barrier by nanoparticles.J. Control. Release2012161226427310.1016/j.jconrel.2011.08.01721872624
    [Google Scholar]
  189. SaraivaC. PraçaC. FerreiraR. SantosT. FerreiraL. BernardinoL. Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases.J. Control. Release2016235344710.1016/j.jconrel.2016.05.04427208862
    [Google Scholar]
  190. WilhelmS. TavaresA.J. DaiQ. OhtaS. AudetJ. DvorakH.F. ChanW.C.W. Analysis of nanoparticle delivery to tumours.Nat. Rev. Mater.2016151601410.1038/natrevmats.2016.14
    [Google Scholar]
  191. ShiJ. KantoffP.W. WoosterR. FarokhzadO.C. Cancer nanomedicine: Progress, challenges and opportunities.Nat. Rev. Cancer2017171203710.1038/nrc.2016.10827834398
    [Google Scholar]
  192. ZhangJ. NieS. Martinez-ZaguilanR. SennouneS.R. WangS. Formulation, characteristics and antiatherogenic bioactivities of CD36-targeted epigallocatechin gallate (EGCG)-loaded nanoparticles.J. Nutr. Biochem.201630142310.1016/j.jnutbio.2015.11.00127012617
    [Google Scholar]
  193. ElizondoE. MorenoE. CabreraI. CórdobaA. SalaS. VecianaJ. VentosaN. Liposomes and other vesicular systems: Structural characteristics, methods of preparation, and use in nanomedicine.Prog. Mol. Biol. Transl. Sci.201110415210.1016/B978‑0‑12‑416020‑0.00001‑222093216
    [Google Scholar]
  194. SmithA. GiuntaB. BickfordP.C. FountainM. TanJ. ShytleR.D. Nanolipidic particles improve the bioavailability and α-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer’s disease.Int. J. Pharm.20103891-220721210.1016/j.ijpharm.2010.01.01220083179
    [Google Scholar]
  195. ChenJ. WeiN. Lopez-GarciaM. AmbroseD. LeeJ. AnnelinC. PetersonT. Development and evaluation of resveratrol, Vitamin E, and epigallocatechin gallate loaded lipid nanoparticles for skin care applications.Eur. J. Pharm. Biopharm.201711728629110.1016/j.ejpb.2017.04.00828411056
    [Google Scholar]
  196. FangueiroJ.F. CalpenaA.C. ClaresB. AndreaniT. EgeaM.A. VeigaF.J. GarciaM.L. SilvaA.M. SoutoE.B. Biopharmaceutical evaluation of epigallocatechin gallate-loaded cationic lipid nanoparticles (EGCG-LNs): In vivo, in vitro and ex vivo studies.Int. J. Pharm.20165021-216116910.1016/j.ijpharm.2016.02.03926921515
    [Google Scholar]
  197. HsiehD.S. WangH. TanS.W. HuangY.H. TsaiC.Y. YehM.K. WuC.J. The treatment of bladder cancer in a mouse model by epigallocatechin-3-gallate-gold nanoparticles.Biomaterials201132307633764010.1016/j.biomaterials.2011.06.07321782236
    [Google Scholar]
  198. ShuklaR. ChandaN. ZambreA. UpendranA. KattiK. KulkarniR.R. NuneS.K. CasteelS.W. SmithC.J. VimalJ. BooteE. RobertsonJ.D. KanP. EngelbrechtH. WatkinsonL.D. CarmackT.L. LeverJ.R. CutlerC.S. CaldwellC. KannanR. KattiK.V. Laminin receptor specific therapeutic gold nanoparticles ( 198 AuNP-EGCg) show efficacy in treating prostate cancer.Proc. Natl. Acad. Sci. USA201210931124261243110.1073/pnas.112117410922802668
    [Google Scholar]
  199. DreadenE.C. El-SayedM.A. Detecting and destroying cancer cells in more than one way with noble metals and different confinement properties on the nanoscale.Acc. Chem. Res.201245111854186510.1021/ar200312222546051
    [Google Scholar]
  200. KS US, Govindaraju, K.; Prabhu, D.; Arulvasu, C.; Karthick, V.; Changmai, N. Anti-proliferative effect of biogenic gold nanoparticles against breast cancer cell lines (MDA-MB-231 & MCF-7).Appl. Surf. Sci.201637141542410.1016/j.apsusc.2016.03.004
    [Google Scholar]
  201. FarooqiA.A. PinheiroM. GranjaA. FarabegoliF. ReisS. AttarR. SabitaliyevichU.Y. XuB. AhmadA. EGCG mediated targeting of deregulated signaling pathways and non-coding RNAs in different cancers: Focus on JAK/STAT, Wnt/β-Catenin, TGF/SMAD, NOTCH, SHH/GLI, and TRAIL mediated signaling pathways.Cancers202012495110.3390/cancers1204095132290543
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673348926250331150429
Loading
/content/journals/cmc/10.2174/0109298673348926250331150429
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test