Skip to content
2000
Volume 32, Issue 42
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

In the current review, we aim to elucidate the advancements concerning the roles and fundamental mechanisms of intermittent fasting (IF) and fasting-mimicking diet (FMD) in cancers. As a dietary intervention, IF and FMD potentially impede tumor growth by modulating multiple signaling pathways, such as AKT, Nrf2, and AMPK pathways. Moreover, IF and FMD have been reported to be associated with the tumor immune response by regulating various immune cells including tumor-associated macrophages (TAMs), monocytic myeloid-derived suppressor cells (MDSCs), T cells, and B cells. Additionally, IF and FMD can enhance the efficacy and tolerability of therapy, concurrently reducing therapy-induced side effects. Furthermore, several clinical trials have underscored the safety, feasibility, and positive impact on the quality of life associated with IF and FMD, thereby augmenting the effectiveness of conventional anti-tumor therapies while ameliorating treatment-related side effects. This review provides a comprehensive synthesis of findings and elucidates the underlying mechanisms of IF and FMD in cancer progression and therapy.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673332052241008060857
2024-10-24
2025-10-29
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. LongG.V. SwetterS.M. MenziesA.M. GershenwaldJ.E. ScolyerR.A. Cutaneous melanoma.Lancet20234021040048550210.1016/S0140‑6736(23)00821‑837499671
    [Google Scholar]
  3. JoshiS.S. BadgwellB.D. Current treatment and recent progress in gastric cancer.CA Cancer J. Clin.202171326427910.3322/caac.2165733592120
    [Google Scholar]
  4. TopalianS.L. FordeP.M. EmensL.A. YarchoanM. SmithK.N. PardollD.M. Neoadjuvant immune checkpoint blockade: A window of opportunity to advance cancer immunotherapy.Cancer Cell20234191551156610.1016/j.ccell.2023.07.01137595586
    [Google Scholar]
  5. WangW. LiM. WangL. ChenL. GohB.C. Curcumin in cancer therapy: Exploring molecular mechanisms and overcoming clinical challenges.Cancer Lett.202357021633210.1016/j.canlet.2023.21633237541540
    [Google Scholar]
  6. ZugazagoitiaJ. GuedesC. PonceS. FerrerI. Molina-PineloS. Paz-AresL. Current challenges in cancer treatment.Clin. Ther.20163871551156610.1016/j.clinthera.2016.03.02627158009
    [Google Scholar]
  7. AlidadiM. BanachM. GuestP.C. BoS. JamialahmadiT. SahebkarA. The effect of caloric restriction and fasting on cancer.Semin. Cancer Biol.202173304410.1016/j.semcancer.2020.09.01032977005
    [Google Scholar]
  8. BrandhorstS. LongoV.D. Fasting and caloric restriction in cancer prevention and treatment.Recent Results Cancer Res.201620724126610.1007/978‑3‑319‑42118‑6_1227557543
    [Google Scholar]
  9. ChaixA. ZarrinparA. MiuP. PandaS. Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges.Cell Metab.2014206991100510.1016/j.cmet.2014.11.00125470547
    [Google Scholar]
  10. HatoriM. VollmersC. ZarrinparA. DiTacchioL. BushongE.A. GillS. LeblancM. ChaixA. JoensM. FitzpatrickJ.A.J. EllismanM.H. PandaS. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet.Cell Metab.201215684886010.1016/j.cmet.2012.04.01922608008
    [Google Scholar]
  11. FontanaL. PartridgeL. Promoting health and longevity through diet: From model organisms to humans.Cell2015161110611810.1016/j.cell.2015.02.02025815989
    [Google Scholar]
  12. VasimI. MajeedC.N. DeBoerM.D. Intermittent fasting and metabolic health.Nutrients202214363110.3390/nu1403063135276989
    [Google Scholar]
  13. BrandhorstS. ChoiI.Y. WeiM. ChengC.W. SedrakyanS. NavarreteG. DubeauL. YapL.P. ParkR. VinciguerraM. Di BiaseS. MirzaeiH. MirisolaM.G. ChildressP. JiL. GroshenS. PennaF. OdettiP. PerinL. ContiP.S. IkenoY. KennedyB.K. CohenP. MorganT.E. DorffT.B. LongoV.D. A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and healthspan.Cell Metab.2015221869910.1016/j.cmet.2015.05.01226094889
    [Google Scholar]
  14. BoccardiV. PigliautileM. GuazzariniA.G. MecocciP. The potential of fasting-mimicking diet as a preventive and curative strategy for Alzheimer’s Disease.Biomolecules2023137113310.3390/biom1307113337509169
    [Google Scholar]
  15. WeberD.D. Aminzadeh-GohariS. TulipanJ. CatalanoL. FeichtingerR.G. KoflerB. Ketogenic diet in the treatment of cancer – Where do we stand?Mol. Metab.20203310212110.1016/j.molmet.2019.06.02631399389
    [Google Scholar]
  16. RömerM. DörflerJ. HuebnerJ. The use of ketogenic diets in cancer patients: A systematic review.Clin. Exp. Med.202121450153610.1007/s10238‑021‑00710‑233813635
    [Google Scholar]
  17. de CaboR. MattsonM.P. Effects of intermittent fasting on health, aging, and disease.N. Engl. J. Med.2019381262541255110.1056/NEJMra190513631881139
    [Google Scholar]
  18. PattersonR.E. SearsD.D. Metabolic effects of intermittent fasting.Annu. Rev. Nutr.201737137139310.1146/annurev‑nutr‑071816‑06463428715993
    [Google Scholar]
  19. WeiM. BrandhorstS. ShelehchiM. MirzaeiH. ChengC.W. BudniakJ. GroshenS. MackW.J. GuenE. Di BiaseS. CohenP. MorganT.E. DorffT. HongK. MichalsenA. LavianoA. LongoV.D. Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease.Sci. Transl. Med.20179377eaai870010.1126/scitranslmed.aai870028202779
    [Google Scholar]
  20. FantiM. LongoV. Nutrition, GH/IGF-I signaling, and cancer.Endocr. Relat. Cancer20243111.39166749
    [Google Scholar]
  21. ShehbazA. AfzaalM. AkramN. SaeedF. KhanW. AhmedF. AhmedA. AsgharA. FaisalZ. Intermittent fasting and probiotics: Synergistic modulation of gut health for therapeutic advantages.Probiotics Antimicrob. Proteins2024201410358-510.1007/s12602‑024‑10358‑539261391
    [Google Scholar]
  22. ZhuX. WangX. WangJ. DuL. ZhangZ.N. ZhouD. HanJ. LuanB. Intermittent fasting-induced Orm2 promotes adipose browning via the GP130/IL23R-p38 cascade.Adv. Sci. (Weinh.)20242024240778910.1002/advs.20240778939248328
    [Google Scholar]
  23. JeongS. ChokkallaA.K. DavisC.K. JeongH. ChelluboinaB. ArruriV. KimB. NarmanA. BathulaS. ArumugamT.V. BendlinB.B. VemugantiR. Circadian-dependent intermittent fasting influences ischemic tolerance and dendritic spine remodeling.Stroke20245582139215010.1161/STROKEAHA.124.04640038920050
    [Google Scholar]
  24. HindsonJ. Intermittent fasting for NASH and HCC in mice.Nat. Rev. Gastroenterol. Hepatol.202421746110.1038/s41575‑024‑00953‑w38877209
    [Google Scholar]
  25. NencioniA. CaffaI. CortellinoS. LongoV.D. Fasting and cancer: Molecular mechanisms and clinical application.Nat. Rev. Cancer2018181170771910.1038/s41568‑018‑0061‑030327499
    [Google Scholar]
  26. SzypowskaA. Regulska-IlowB. Significance of low-carbohydrate diets and fasting in patients with cancer.Rocz. Panstw. Zakl. Hig.201970432533631960664
    [Google Scholar]
  27. BlaževitšO. Di TanoM. LongoV.D. Fasting and fasting mimicking diets in cancer prevention and therapy.Trends Cancer20239321222210.1016/j.trecan.2022.12.00636646607
    [Google Scholar]
  28. PlottiF. TerranovaC. LuveroD. BartoloneM. MessinaG. FeoleL. CianciS. ScalettaG. MarchettiC. Di DonatoV. FagottiA. ScambiaG. Benedetti PaniciP. AngioliR. Diet and Chemotherapy: The effects of fasting and ketogenic diet on cancer treatment.Chemotherapy2020653-4778410.1159/00051083933197913
    [Google Scholar]
  29. SchiliroC. FiresteinB.L. Mechanisms of metabolic reprogramming in cancer cells supporting enhanced growth and proliferation.Cells2021105105610.3390/cells1005105633946927
    [Google Scholar]
  30. EvanG.I. VousdenK.H. Proliferation, cell cycle and apoptosis in cancer.Nature2001411683534234810.1038/3507721311357141
    [Google Scholar]
  31. DhanasekaranR. DeutzmannA. Mahauad-FernandezW.D. HansenA.S. GouwA.M. FelsherD.W. The MYC oncogene — the grand orchestrator of cancer growth and immune evasion.Nat. Rev. Clin. Oncol.2022191233610.1038/s41571‑021‑00549‑234508258
    [Google Scholar]
  32. CaiZ. MotenA. PengD. HsuC.C. PanB.S. ManneR. LiH. LinH.K. The Skp2 Pathway: A critical target for cancer therapy.Semin. Cancer Biol.202067Pt 2163310.1016/j.semcancer.2020.01.01332014608
    [Google Scholar]
  33. WengM. ChenW. ChenX. LuH. SunZ. YuQ. SunP. XuY. ZhuM. JiangN. ZhangJ. ZhangJ. SongY. MaD. ZhangX. MiaoC. Fasting inhibits aerobic glycolysis and proliferation in colorectal cancer via the Fdft1-mediated AKT/mTOR/HIF1α pathway suppression.Nat. Commun.2020111186910.1038/s41467‑020‑15795‑832313017
    [Google Scholar]
  34. ElgendyM. CiròM. HosseiniA. WeiszmannJ. MazzarellaL. FerrariE. CazzoliR. CuriglianoG. DeCensiA. BonanniB. BudillonA. PelicciP.G. JanssensV. OgrisM. BaccariniM. LanfranconeL. WeckwerthW. FoianiM. MinucciS. Combination of hypoglycemia and metformin impairs tumor metabolic plasticity and growth by modulating the PP2A-GSK3β-MCL-1 axis.Cancer Cell2019355798815.e510.1016/j.ccell.2019.03.00731031016
    [Google Scholar]
  35. QiJ. ChenX. WuQ. WangJ. ZhangH. MaoA. ZhuM. MiaoC. Fasting induces hepatocellular carcinoma cell apoptosis by inhibiting SET8 expression.Oxid. Med. Cell. Longev.2020202011910.1155/2020/398508932273943
    [Google Scholar]
  36. ZhangX. ZhongY. LiuL. JiaC. CaiH. YangJ. WuB. LvZ. Fasting regulates mitochondrial function through lncRNA PRKCQ-AS1-mediated IGF2BPs in papillary thyroid carcinoma.Cell Death Dis.2023141282710.1038/s41419‑023‑06348‑038092752
    [Google Scholar]
  37. TangX. LiG. ShiL. SuF. QianM. LiuZ. MengY. SunS. LiJ. LiuB. Combined intermittent fasting and ERK inhibition enhance the anti-tumor effects of chemotherapy via the GSK3β-SIRT7 axis.Nat. Commun.2021121505810.1038/s41467‑021‑25274‑334433808
    [Google Scholar]
  38. UdumulaM.P. SinghH. RashidF. PoissonL. TiwariN. DimitrovaI. HijazM. GogoiR. SwenorM. MunkarahA. GiriS. RattanR. Intermittent fasting induced ketogenesis inhibits mouse epithelial ovarian cancer by promoting antitumor T cell response.iScience2023261010783910.1016/j.isci.2023.10783937822507
    [Google Scholar]
  39. NajafiM. MortezaeeK. MajidpoorJ. Cancer stem cell (CSC) resistance drivers.Life Sci.201923411678110.1016/j.lfs.2019.11678131430455
    [Google Scholar]
  40. BaiX. NiJ. BeretovJ. GrahamP. LiY. Cancer stem cell in breast cancer therapeutic resistance.Cancer Treat. Rev.20186915216310.1016/j.ctrv.2018.07.00430029203
    [Google Scholar]
  41. McCabeE.M. RasmussenT.P. lncRNA involvement in cancer stem cell function and epithelial-mesenchymal transitions.Semin. Cancer Biol.202175384810.1016/j.semcancer.2020.12.01233346133
    [Google Scholar]
  42. SanchoP. BarnedaD. HeeschenC. Hallmarks of cancer stem cell metabolism.Br. J. Cancer2016114121305131210.1038/bjc.2016.15227219018
    [Google Scholar]
  43. DasB. TsuchidaR. MalkinD. KorenG. BaruchelS. YegerH. Hypoxia enhances tumor stemness by increasing the invasive and tumorigenic side population fraction.Stem Cells20082671818183010.1634/stemcells.2007‑072418467664
    [Google Scholar]
  44. SalvadoriG. ZanardiF. IannelliF. LobefaroR. VernieriC. LongoV.D. Fasting-mimicking diet blocks triple-negative breast cancer and cancer stem cell escape.Cell Metab.2021331122472259.e610.1016/j.cmet.2021.10.00834731655
    [Google Scholar]
  45. XiaL. OyangL. LinJ. TanS. HanY. WuN. YiP. TangL. PanQ. RaoS. LiangJ. TangY. SuM. LuoX. YangY. ShiY. WangH. ZhouY. LiaoQ. The cancer metabolic reprogramming and immune response.Mol. Cancer20212012810.1186/s12943‑021‑01316‑833546704
    [Google Scholar]
  46. OzgaA.J. ChowM.T. LusterA.D. Chemokines and the immune response to cancer.Immunity202154585987410.1016/j.immuni.2021.01.01233838745
    [Google Scholar]
  47. de GruilN. PijlH. van der BurgS.H. KroepJ.R. Short-term fasting synergizes with solid cancer therapy by boosting antitumor immunity.Cancers (Basel)2022146139010.3390/cancers1406139035326541
    [Google Scholar]
  48. PanY. YuY. WangX. ZhangT. Tumor-associated macrophages in tumor immunity.Front. Immunol.20201158308410.3389/fimmu.2020.58308433365025
    [Google Scholar]
  49. PathriaP. LouisT.L. VarnerJ.A. Targeting tumor-associated macrophages in cancer.Trends Immunol.201940431032710.1016/j.it.2019.02.00330890304
    [Google Scholar]
  50. WangL. WangY. WangR. GongF. ShiY. LiS. ChenP. YuanY. Fasting mimicking diet inhibits tumor-associated macrophage survival and pro-tumor function in hypoxia: Implications for combination therapy with anti-angiogenic agent.J. Transl. Med.202321175410.1186/s12967‑023‑04577‑737884960
    [Google Scholar]
  51. VernieriC. FucàG. LigorioF. HuberV. VingianiA. IannelliF. RaimondiA. RinchaiD. FrigèG. BelfioreA. LalliL. ChiodoniC. CancilaV. ZanardiF. AjaziA. CortellinoS. VallacchiV. SquarcinaP. CovaA. PesceS. FratiP. MallR. CorsettoP.A. RizzoA.M. FerrarisC. FolliS. GarassinoM.C. CapriG. BianchiG. ColomboM.P. MinucciS. FoianiM. LongoV.D. ApoloneG. TorriV. PruneriG. BedognettiD. RivoltiniL. de BraudF. Fasting-mimicking diet is safe and reshapes metabolism and antitumor immunity in patients with cancer.Cancer Discov.20221219010710.1158/2159‑8290.CD‑21‑003034789537
    [Google Scholar]
  52. FuC. LuY. ZhangY. YuM. MaS. LyuS. Intermittent fasting suppressed splenic CD205+ G-MDSC accumulation in a murine breast cancer model by attenuating cell trafficking and inducing apoptosis.Food Sci. Nutr.20219105517552610.1002/fsn3.251034646521
    [Google Scholar]
  53. ParkJ. HsuehP.C. LiZ. HoP.C. Microenvironment- driven metabolic adaptations guiding CD8+ T cell anti-tumor immunity.Immunity2023561324210.1016/j.immuni.2022.12.00836630916
    [Google Scholar]
  54. OhD.Y. FongL. Cytotoxic CD4+ T cells in cancer: Expanding the immune effector toolbox.Immunity202154122701271110.1016/j.immuni.2021.11.01534910940
    [Google Scholar]
  55. Di BiaseS. LeeC. BrandhorstS. ManesB. BuonoR. ChengC.W. CacciottoloM. Martin-MontalvoA. de CaboR. WeiM. MorganT.E. LongoV.D. Fasting-mimicking diet reduces HO-1 to promote T cell-mediated tumor cytotoxicity.Cancer Cell201630113614610.1016/j.ccell.2016.06.00527411588
    [Google Scholar]
  56. CortellinoS. RaveaneA. ChiodoniC. DelfantiG. PisatiF. SpagnoloV. ViscoE. FragaleG. FerranteF. MagniS. IannelliF. ZanardiF. CasoratiG. BertoliniF. DellabonaP. ColomboM.P. TripodoC. LongoV.D. Fasting renders immunotherapy effective against low-immunogenic breast cancer while reducing side effects.Cell Rep.202240811125610.1016/j.celrep.2022.11125636001966
    [Google Scholar]
  57. BuonoR. TucciJ. CutriR. GuidiN. MangulS. RaucciF. PellegriniM. MittelmanS.D. LongoV.D. Fasting-mimicking diet inhibits autophagy and synergizes with chemotherapy to promote T-Cell-dependent leukemia-free survival.Cancers (Basel)20231524587010.3390/cancers1524587038136414
    [Google Scholar]
  58. WeiY. HuangC.X. XiaoX. ChenD.P. ShanH. HeH. KuangD.M. B cell heterogeneity, plasticity, and functional diversity in cancer microenvironments.Oncogene202140294737474510.1038/s41388‑021‑01918‑y34188249
    [Google Scholar]
  59. TkachenkoA. KupcovaK. HavranekO. B-cell receptor signaling and beyond: The role of Igα (CD79a)/Igβ (CD79b) in normal and malignant B cells.Int. J. Mol. Sci.20232511010.3390/ijms2501001038203179
    [Google Scholar]
  60. ZhongZ. ZhangH. NanK. ZhongJ. WuQ. LuL. YueY. ZhangZ. GuoM. WangZ. XiaJ. XingY. FuY. YuB. ZhouW. SunX. ShenY. ChenW. ZhangJ. ZhangJ. MaD. ChuY. LiuR. MiaoC. Fasting-mimicking diet drives antitumor immunity against colorectal cancer by reducing IgA-producing cells.Cancer Res.202383213529354310.1158/0008‑5472.CAN‑23‑032337602826
    [Google Scholar]
  61. GabelK. CaresK. VaradyK. GadiV. Tussing-HumphreysL. Current evidence and directions for intermittent fasting during cancer chemotherapy.Adv. Nutr.202213266768010.1093/advances/nmab13234788373
    [Google Scholar]
  62. ProvenzanoE. Neoadjuvant chemotherapy for breast cancer: Moving beyond pathological complete response in the molecular age.Acta Med. Acad.20215018810910.5644/ama2006‑124.32834075766
    [Google Scholar]
  63. CainapC. VladC. SeiceanA. BalacescuO. SeiceanR. ConstantinA.M. BalacescuL. CrisanO. MartaM.M. CainapS. Gastric cancer: Adjuvant chemotherapy versus chemoradiation. A clinical point of view.J. BUON20192462209221931983085
    [Google Scholar]
  64. FerroY. MaurottiS. TarsitanoM.G. LodariO. PujiaR. MazzaE. LascalaL. RussoR. PujiaA. MontalciniT. Therapeutic fasting in reducing chemotherapy side effects in cancer patients: A systematic review and meta-analysis.Nutrients20231512266610.3390/nu1512266637375570
    [Google Scholar]
  65. KannampuzhaS. GopalakrishnanA.V. Cancer chemoresistance and its mechanisms: Associated molecular factors and its regulatory role.Med. Oncol.202340926410.1007/s12032‑023‑02138‑y37550533
    [Google Scholar]
  66. BrandhorstS. Fasting and fasting-mimicking diets for chemotherapy augmentation.Geroscience20214331201121610.1007/s11357‑020‑00317‑733410090
    [Google Scholar]
  67. ImranM. RaufA. KhanI.A. ShahbazM. QaisraniT.B. FatmawatiS. Abu-IzneidT. ImranA. RahmanK.U. GondalT.A. Thymoquinone: A novel strategy to combat cancer: A review.Biomed. Pharmacother.201810639040210.1016/j.biopha.2018.06.15929966985
    [Google Scholar]
  68. MalikS. SinghA. NegiP. KapoorV.K. Thymoquinone: A small molecule from nature with high therapeutic potential.Drug Discov. Today202126112716272510.1016/j.drudis.2021.07.01334303824
    [Google Scholar]
  69. HaifS.K. Al KuryL.T. TalibW.H. Combination of thymoquinone and intermittent fasting as a treatment for breast cancer implanted in mice.Plants20231313510.3390/plants1301003538202341
    [Google Scholar]
  70. AbdelgalilA.A. AlkahtaniH.M. Al-JenoobiF.I. Sorafenib.Profiles Drug Subst. Excip. Relat. Methodol.20194423926610.1016/bs.podrm.2018.11.00331029219
    [Google Scholar]
  71. Lo ReO. PanebiancoC. PortoS. CerviC. RappaF. Di BiaseS. CaragliaM. PazienzaV. VinciguerraM. Fasting inhibits hepatic stellate cells activation and potentiates anti-cancer activity of Sorafenib in hepatocellular cancer cells.J. Cell. Physiol.201823321202121210.1002/jcp.2598728471474
    [Google Scholar]
  72. NgoB. Van RiperJ.M. CantleyL.C. YunJ. Targeting cancer vulnerabilities with high-dose vitamin C.Nat. Rev. Cancer201919527128210.1038/s41568‑019‑0135‑730967651
    [Google Scholar]
  73. Zasowska-NowakA. NowakP.J. Ciałkowska-RyszA. High-dose vitamin C in advanced-stage cancer patients.Nutrients202113373510.3390/nu1303073533652579
    [Google Scholar]
  74. Di TanoM. RaucciF. VernieriC. CaffaI. BuonoR. FantiM. BrandhorstS. CuriglianoG. NencioniA. de BraudF. LongoV.D. Synergistic effect of fasting-mimicking diet and vitamin C against KRAS mutated cancers.Nat. Commun.2020111233210.1038/s41467‑020‑16243‑332393788
    [Google Scholar]
  75. LeiG. ZhuangL. GanB. Targeting ferroptosis as a vulnerability in cancer.Nat. Rev. Cancer202222738139610.1038/s41568‑022‑00459‑035338310
    [Google Scholar]
  76. LiuX. PengS. TangG. XuG. XieY. ShenD. ZhuM. HuangY. WangX. YuH. HuangM. LuoY. Fasting-mimicking diet synergizes with ferroptosis against quiescent, chemotherapy-resistant cells.EBioMedicine20239010449610.1016/j.ebiom.2023.10449636863257
    [Google Scholar]
  77. ManniA. Endocrine therapy of breast and prostate cancer.Endocrinol. Metab. Clin. North Am.198918256959210.1016/S0889‑8529(18)30383‑92663486
    [Google Scholar]
  78. BlundonM.A. DasguptaS. Metabolic dysregulation controls endocrine therapy–resistant cancer recurrence and metastasis.Endocrinology201916081811182010.1210/en.2019‑0009731157867
    [Google Scholar]
  79. KhanA.F. KaramiS. PeidlA.S. WaitersK.D. BabajideM.F. Bawa-KhalfeT. Androgen receptor in hormone receptor-positive breast cancer.Int. J. Mol. Sci.202325147610.3390/ijms2501047638203649
    [Google Scholar]
  80. NardinS. RuelleT. GiannubiloI. Del MastroL. Adjuvant treatment in hormone receptor-positive early breast cancer: New approaches of endocrine therapy.Tumori20232023300891623121683038112006
    [Google Scholar]
  81. ZamanianM.Y. GolmohammadiM. AlalakA. KamiabZ. ObaidR. Ramírez-CoronelA.A. HjaziA. AbosaoodaM. MustafaY. HeidariM. VermaA. NazariY. BazmandeganG. STAT3 signaling axis and tamoxifen in breast cancer: A promising target for treatment resistance.Anticancer. Agents Med. Chem.202323161819182810.2174/187152062366623071310111937448364
    [Google Scholar]
  82. BlackburnS.A. ParksR.M. CheungK.L. Fulvestrant for the treatment of advanced breast cancer.Expert Rev. Anticancer Ther.201818761962810.1080/14737140.2018.147303829749272
    [Google Scholar]
  83. CaffaI. SpagnoloV. VernieriC. ValdemarinF. BecheriniP. WeiM. BrandhorstS. ZucalC. DriehuisE. FerrandoL. PiacenteF. TagliaficoA. CilliM. MastracciL. VelloneV.G. PiazzaS. CremoniniA.L. GradaschiR. ManteroC. PassalacquaM. BallestreroA. ZoppoliG. CeaM. ArrighiA. OdettiP. MonacelliF. SalvadoriG. CortellinoS. CleversH. De BraudF. SukkarS.G. ProvenzaniA. LongoV.D. NencioniA. Fasting-mimicking diet and hormone therapy induce breast cancer regression.Nature2020583781762062410.1038/s41586‑020‑2502‑732669709
    [Google Scholar]
  84. ShiY. van der MeelR. ChenX. LammersT. The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy.Theranostics202010177921792410.7150/thno.4957732685029
    [Google Scholar]
  85. MaedaH. NakamuraH. FangJ. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo.Adv. Drug Deliv. Rev.2013651717910.1016/j.addr.2012.10.00223088862
    [Google Scholar]
  86. OuyangB. PoonW. ZhangY.N. LinZ.P. KingstonB.R. TavaresA.J. ZhangY. ChenJ. ValicM.S. SyedA.M. MacMillanP. Couture-SenécalJ. ZhengG. ChanW.C.W. The dose threshold for nanoparticle tumour delivery.Nat. Mater.202019121362137110.1038/s41563‑020‑0755‑z32778816
    [Google Scholar]
  87. HuangW. LiX. SongH. YinY. WangH. Verification of fasting-mimicking diet to assist monotherapy of human cancer-bearing models.Biochem. Pharmacol.202321511569910.1016/j.bcp.2023.11569937482198
    [Google Scholar]
  88. SchirrmacherV. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review).Int. J. Oncol.201854240741910.3892/ijo.2018.466130570109
    [Google Scholar]
  89. SolinasC. PorcuM. De SilvaP. MusiM. AspeslaghS. ScartozziM. Willard-GalloK. MariottiS. SabaL. Cancer immunotherapy-associated hypophysitis.Semin. Oncol.201845318118610.1053/j.seminoncol.2018.09.00230352754
    [Google Scholar]
  90. DoraD. BokhariS.M.Z. AlossK. TakacsP. DesnoixJ.Z. SzklenárikG. HurleyP.D. LohinaiZ. Implication of the gut microbiome and microbial-derived metabolites in immune-related adverse events: Emergence of novel biomarkers for cancer immunotherapy.Int. J. Mol. Sci.2023243276910.3390/ijms2403276936769093
    [Google Scholar]
  91. ZhaoH. YuJ. ZhangR. ChenP. JiangH. YuW. Doxorubicin prodrug-based nanomedicines for the treatment of cancer.Eur. J. Med. Chem.202325811561210.1016/j.ejmech.2023.11561237441851
    [Google Scholar]
  92. MattioliR. IlariA. ColottiB. MoscaL. FaziF. ColottiG. Doxorubicin and other anthracyclines in cancers: Activity, chemoresistance and its overcoming.Mol. Aspects Med.20239310120510.1016/j.mam.2023.10120537515939
    [Google Scholar]
  93. HsiehP.L. ChuP.M. ChengH.C. HuangY.T. ChouW.C. TsaiK.L. ChanS.H. Dapagliflozin mitigates doxorubicin-caused myocardium damage by regulating AKT-mediated oxidative stress, cardiac remodeling, and inflammation.Int. J. Mol. Sci.202223171014610.3390/ijms23171014636077544
    [Google Scholar]
  94. Di BiaseS. ShimH.S. KimK.H. VinciguerraM. RappaF. WeiM. BrandhorstS. CappelloF. MirzaeiH. LeeC. LongoV.D. Fasting regulates EGR1 and protects from glucose- and dexamethasone-dependent sensitization to chemotherapy.PLoS Biol.2017153e200195110.1371/journal.pbio.200195128358805
    [Google Scholar]
  95. ShiravandY. KhodadadiF. KashaniS.M.A. Hosseini- FardS.R. HosseiniS. SadeghiradH. LadwaR. O’ByrneK. KulasingheA. Immune checkpoint inhibitors in cancer therapy.Curr. Oncol.20222953044306010.3390/curroncol2905024735621637
    [Google Scholar]
  96. DecatrisM.P. O’ByrneK.J. Immune checkpoint inhibitors as first-line and salvage therapy for advanced non-small-cell lung cancer.Future Oncol.201612151805182210.2217/fon‑2016‑008627267211
    [Google Scholar]
  97. SunQ. HongZ. ZhangC. WangL. HanZ. MaD. Immune checkpoint therapy for solid tumours: Clinical dilemmas and future trends.Signal Transduct. Target. Ther.20238132010.1038/s41392‑023‑01522‑437635168
    [Google Scholar]
  98. MartinsF. SofiyaL. SykiotisG.P. LamineF. MaillardM. FragaM. ShabafrouzK. RibiC. CairoliA. Guex-CrosierY. KuntzerT. MichielinO. PetersS. CoukosG. SpertiniF. ThompsonJ.A. ObeidM. Adverse effects of immune-checkpoint inhibitors: Epidemiology, management and surveillance.Nat. Rev. Clin. Oncol.201916956358010.1038/s41571‑019‑0218‑031092901
    [Google Scholar]
  99. Ramos-CasalsM. BrahmerJ.R. CallahanM.K. Flores-ChávezA. KeeganN. KhamashtaM.A. LambotteO. MarietteX. PratA. Suárez-AlmazorM.E. Immune-related adverse events of checkpoint inhibitors.Nat. Rev. Dis. Primers2020613810.1038/s41572‑020‑0160‑632382051
    [Google Scholar]
  100. CortellinoS. QuagliarielloV. DelfantiG. BlaževitšO. ChiodoniC. MaureaN. Di MauroA. TatangeloF. PisatiF. ShmahalaA. LazzeriS. SpagnoloV. ViscoE. TripodoC. CasoratiG. DellabonaP. LongoV.D. Fasting mimicking diet in mice delays cancer growth and reduces immunotherapy-associated cardiovascular and systemic side effects.Nat. Commun.2023141552910.1038/s41467‑023‑41066‑337684243
    [Google Scholar]
  101. VaradyK.A. CienfuegosS. EzpeletaM. GabelK. Clinical application of intermittent fasting for weight loss: Progress and future directions.Nat. Rev. Endocrinol.202218530932110.1038/s41574‑022‑00638‑x35194176
    [Google Scholar]
  102. LongoV.D. MattsonM.P. Fasting: Molecular mechanisms and clinical applications.Cell Metab.201419218119210.1016/j.cmet.2013.12.00824440038
    [Google Scholar]
  103. BauersfeldS.P. KesslerC.S. WischnewskyM. JaenschA. SteckhanN. StangeR. KunzB. BrücknerB. SehouliJ. MichalsenA. The effects of short-term fasting on quality of life and tolerance to chemotherapy in patients with breast and ovarian cancer: A randomized cross-over pilot study.BMC Cancer201818147610.1186/s12885‑018‑4353‑229699509
    [Google Scholar]
  104. LigorioF. FucàG. ProvenzanoL. LobefaroR. ZanengaL. VingianiA. BelfioreA. LorenzoniA. AlessiA. PruneriG. de BraudF. VernieriC. Exceptional tumour responses to fasting-mimicking diet combined with standard anticancer therapies: A sub-analysis of the NCT03340935 trial.Eur. J. Cancer202217230031010.1016/j.ejca.2022.05.04635810555
    [Google Scholar]
  105. LigorioF. LobefaroR. FucàG. ProvenzanoL. ZanengaL. NascaV. SposettiC. SalvadoriG. FicchìA. FranzaA. MartinettiA. SottotettiE. FormisanoB. DeprettoC. ScaperrottaG. BelfioreA. VingianiA. FerrarisC. PruneriG. de BraudF. VernieriC. Adding fasting-mimicking diet to first-line carboplatin-based chemotherapy is associated with better overall survival in advanced triple-negative breast cancer patients: A subanalysis of the NCT03340935 trial.Int. J. Cancer2024154111412310.1002/ijc.3470137615485
    [Google Scholar]
  106. de GrootS. LugtenbergR.T. CohenD. WeltersM.J.P. EhsanI. VreeswijkM.P.G. SmitV.T.H.B.M. de GraafH. HeijnsJ.B. PortieljeJ.E.A. van de WouwA.J. ImholzA.L.T. KesselsL.W. VrijaldenhovenS. BaarsA. KranenbargE.M.K. CarpentierM.D. PutterH. van der HoevenJ.J.M. NortierJ.W.R. LongoV.D. PijlH. KroepJ.R. de GraafH. HeijnsJ.B. PortieljeJ.E.A. van de WouwA.J. ImholzA.L.T. KesselsL.W. VrijaldenhovenS. BaarsA. GökerE. PasA.J.M. HonkoopA.H. van Leeuwen-StokA.E. KroepJ.R. Fasting mimicking diet as an adjunct to neoadjuvant chemotherapy for breast cancer in the multicentre randomized phase 2 DIRECT trial.Nat. Commun.2020111308310.1038/s41467‑020‑16138‑332576828
    [Google Scholar]
  107. LugtenbergR.T. de GrootS. KapteinA.A. FischerM.J. KranenbargE.M.K. CarpentierM.D. CohenD. de GraafH. HeijnsJ.B. PortieljeJ.E.A. van de WouwA.J. ImholzA.L.T. KesselsL.W. VrijaldenhovenS. BaarsA. FioccoM. van der HoevenJ.J.M. GelderblomH. LongoV.D. PijlH. KroepJ.R. Quality of life and illness perceptions in patients with breast cancer using a fasting mimicking diet as an adjunct to neoadjuvant chemotherapy in the phase 2 DIRECT (BOOG 2013–14) trial.Breast Cancer Res. Treat.2021185374175810.1007/s10549‑020‑05991‑x33179154
    [Google Scholar]
  108. de GruilN. BöhringerS. de GrootS. PijlH. KroepJ.R. SwenJ.J. IGF1 and insulin receptor single nucleotide variants associated with response in HER2-negative breast cancer patients treated with neoadjuvant chemotherapy with or without a fasting mimicking diet (BOOG 2013-04 DIRECT Trial).Cancers (Basel)20231524587210.3390/cancers1524587238136416
    [Google Scholar]
  109. ZhangC. XuC. GaoX. YaoQ. Platinum-based drugs for cancer therapy and anti-tumor strategies.Theranostics20221252115213210.7150/thno.6942435265202
    [Google Scholar]
  110. SzeflerB. CzeleńP. Will the interactions of some platinum (II)-based drugs with B-vitamins reduce their therapeutic effect in cancer patients? comparison of chemotherapeutic agents such as cisplatin, carboplatin and oxaliplatin—a review.Int. J. Mol. Sci.2023242154810.3390/ijms2402154836675064
    [Google Scholar]
  111. ZhongY. JiaC. ZhangX. LiaoX. YangB. CongY. PuS. GaoC. Targeting drug delivery system for platinum(IV)-Based antitumor complexes.Eur. J. Med. Chem.202019411222910.1016/j.ejmech.2020.11222932222677
    [Google Scholar]
  112. DorffT.B. GroshenS. GarciaA. ShahM. Tsao-WeiD. PhamH. ChengC.W. BrandhorstS. CohenP. WeiM. LongoV. QuinnD.I. Safety and feasibility of fasting in combination with platinum-based chemotherapy.BMC Cancer201616136010.1186/s12885‑016‑2370‑627282289
    [Google Scholar]
  113. VernieriC. SignorelliD. GalliG. GanzinelliM. MoroM. FabbriA. TamboriniE. MarabeseM. CaiolaE. BrogginiM. HollanderL. GallucciR. VandoniG. GavazziC. TriulziT. ColomboM.P. RizzoA.M. CorsettoP.A. PruneriG. de BraudF. SozziG. TorriV. GarassinoM.C. Exploiting FAsting-mimicking Diet and MEtformin to Improve the Efficacy of Platinum-pemetrexed Chemotherapy in Advanced LKB1-inactivated Lung Adenocarcinoma: The FAME Trial.Clin. Lung Cancer2019203e413e41710.1016/j.cllc.2018.12.01130617039
    [Google Scholar]
  114. de GrootS. VreeswijkM.P.G. WeltersM.J.P. GravesteijnG. BoeiJ.J.W.A. JochemsA. HoutsmaD. PutterH. van der HoevenJ.J.M. NortierJ.W.R. PijlH. KroepJ.R. The effects of short-term fasting on tolerance to (neo) adjuvant chemotherapy in HER2-negative breast cancer patients: A randomized pilot study.BMC Cancer201515165210.1186/s12885‑015‑1663‑526438237
    [Google Scholar]
  115. OmarE.M. OmranG.A. MustafaM.F. El-KhodaryN.M. Intermittent fasting during adjuvant chemotherapy may promote differential stress resistance in breast cancer patients.J. Egypt. Natl. Canc. Inst.20223413810.1186/s43046‑022‑00141‑436089614
    [Google Scholar]
  116. ZornS. EhretJ. SchäubleR. RautenbergB. IhorstG. BertzH. UrbainP. RaynorA. Impact of modified short-term fasting and its combination with a fasting supportive diet during chemotherapy on the incidence and severity of chemotherapy-induced toxicities in cancer patients - a controlled cross-over pilot study.BMC Cancer202020157810.1186/s12885‑020‑07041‑732571329
    [Google Scholar]
  117. ValdemarinF. CaffaI. PersiaA. CremoniniA.L. FerrandoL. TagliaficoL. TagliaficoA. GuijarroA. CarboneF. MinistriniS. BertolottoM. BecheriniP. BonfiglioT. GiannottiC. KhalifaA. GhanemM. CeaM. SucameliM. MurialdoR. BarberoV. GradaschiR. BruzzoneF. BorgarelliC. LambertiniM. VernieriC. ZoppoliG. LongoV.D. MontecuccoF. SukkarS.G. NencioniA. Safety and feasibility of fasting-mimicking diet and effects on nutritional status and circulating metabolic and inflammatory factors in cancer patients undergoing active treatment.Cancers (Basel)20211316401310.3390/cancers1316401334439167
    [Google Scholar]
  118. Fay-WattV. O’ConnorS. RoshanD. RomeoA.C. LongoV.D. SullivanF.J. The impact of a fasting mimicking diet on the metabolic health of a prospective cohort of patients with prostate cancer: A pilot implementation study.Prostate Cancer Prostatic Dis.202326231732210.1038/s41391‑022‑00528‑335314788
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673332052241008060857
Loading
/content/journals/cmc/10.2174/0109298673332052241008060857
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test