Skip to content
2000
Volume 32, Issue 25
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Indole is considered the most promising scaffold for anticancer drug design due to its high bioavailability, unique chemical properties, and broad spectrum of pharmacological action.

Objective

Twelve novel thiazole-containing the 5-fluoro-1,3-dihydro-2H-indol-2-one derivatives as sunitinib analogs were designed and synthesized, and their anticancer activity was evaluated against the NCI-60 cancer cell lines.

Methods

The thiazole-contained 5-fluoro-1,3-dihydro-2H-indol-2-one derivatives were synthesized using Knoevenagel condensation of 1,3-thiazole-5-carboxylic acid . Their anticancer activities were evaluated by NCI-60 one-dose screen assay. The molecular docking studies were performed using AutoDock tools and the AutoDock Vina programs. The ADMETlab 2.0 web server predicted the physicochemical properties of compounds.

Results

Among the synthesized new 5-fluoro-2-oxindole derivatives, compound demonstrated high antitumor activity (GI>70%) against eight types of cancer: leukemia, breast cancer, ovarian cancer, lung cancer, melanoma, CNS cancer, renal cancer, and colon cancer. The most activity was observed against breast cancer (T-47D, GI=96.17%), lung cancer (HOP-92, GI=95.95%), ovarian cancer (NCI/ADR-RES, GI=95.13%), and CNS cancer (SNB-75, GI=89.91%). The molecular docking results of compound demonstrated the possibility of inhibiting VEGF2 receptors as his potential anticancer mechanism. The physicochemical properties predicted for compounds and showed positive results.

Conclusion

Compound 3g demonstrated high NCI-60 anticancer activity against nine cancer types and showed cell growth inhibition against leukemia, CNS, and breast cancer at 6 - 31% higher than Sunitinib, and may represent the basis for further modification of the thiazole-containing analogs of the anticancer drug Sunitinib.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673346427241016100726
2024-11-04
2025-09-06
Loading full text...

Full text loading...

/deliver/fulltext/cmc/32/25/CMC-32-25-08.html?itemId=/content/journals/cmc/10.2174/0109298673346427241016100726&mimeType=html&fmt=ahah

References

  1. VitakuE. SmithD.T. NjardarsonJ.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals.J. Med. Chem.20145724102571027410.1021/jm501100b25255204
    [Google Scholar]
  2. DadashpourS. EmamiS. Indole in the target-based design of anticancer agents: A versatile scaffold with diverse mechanisms.Eur. J. Med. Chem.201815092910.1016/j.ejmech.2018.02.06529505935
    [Google Scholar]
  3. ThanikachalamP.V. MauryaR.K. GargV. MongaV. MongaV. An insight into the medicinal perspective of synthetic analogs of indole: A review.Eur. J. Med. Chem.201918056261210.1016/j.ejmech.2019.07.01931344615
    [Google Scholar]
  4. WanY. LiY. YanC. YanM. TangZ. Indole: A privileged scaffold for the design of anti-cancer agents.Eur. J. Med. Chem.201918311169110.1016/j.ejmech.2019.11169131536895
    [Google Scholar]
  5. DhimanA. SharmaR. SinghR.K. Target-based anticancer indole derivatives and insight into structure‒activity relationship: A mechanistic review update (2018–2021).Acta Pharm. Sin. B20221273006302710.1016/j.apsb.2022.03.02135865090
    [Google Scholar]
  6. WadhwaP. KaurB. VenugopalS. VermaA. SahuS.K. KumarD. SharmaA. Recent developments in the synthesis and anticancer activity of indole and its derivatives.Curr. Org. Synth.202320437639410.2174/157017941966622050921572235538803
    [Google Scholar]
  7. KaurK. JaitakV. Recent development in indole derivatives as anticancer agents for breast cancer.Anticancer. Agents Med. Chem.201919896298310.2174/187152061966619031212560230864529
    [Google Scholar]
  8. DeviN. KaurK. BihareeA. JaitakV. Recent development in indole derivatives as anticancer agent: A mechanistic approach.Anticancer. Agents Med. Chem.202121141802182410.2174/187152062199921010419264433397272
    [Google Scholar]
  9. ProssnitzE.R. BartonM. The G protein-coupled oestrogen receptor GPER in health and disease: An update.Nat. Rev. Endocrinol.202319740742410.1038/s41574‑023‑00822‑737193881
    [Google Scholar]
  10. AnckerO.V. KrügerM. WehlandM. InfangerM. GrimmD. Multikinase inhibitor treatment in thyroid cancer.Int. J. Mol. Sci.20192111010.3390/ijms2101001031861373
    [Google Scholar]
  11. SalernoS. BarresiE. BagliniE. PoggettiV. Da SettimoF. TalianiS. Target-based anticancer indole derivatives for the development of anti-glioblastoma agents.Molecules2023286258710.3390/molecules2806258736985576
    [Google Scholar]
  12. FerrariS.M. CentanniM. ViriliC. MiccoliM. FerrariP. RuffilliI. RagusaF. AntonelliA. FallahiP. Sunitinib in the treatment of thyroid cancer.Curr. Med. Chem.201926696397210.2174/092986732466617100616594228990511
    [Google Scholar]
  13. O’DeaA. SondergardC. SweeneyP. ArnattC.K. A series of indole-thiazole derivatives act as GPER agonists and inhibit breast cancer cell growth.ACS Med. Chem. Lett.20189990190610.1021/acsmedchemlett.8b0021230258538
    [Google Scholar]
  14. MeledduR. PetrikaiteV. DistintoS. ArriduA. AngiusR. SerusiL. ŠkarnulytėL. EndriulaitytėU. PaškevičiuTė M. CottigliaF. Investigating the anticancer activity of isatin/dihydropyrazole hybrids.ACS Med. Chem. Lett.201810457157610.1021/acsmedchemlett.8b0059630996798
    [Google Scholar]
  15. YousefianM. GhodsiR. Structure–activity relationship studies of indolin-2-one derivatives as vascular endothelial growth factor receptor inhibitors and anticancer agents.Arch. Pharm. (Weinheim)202035312200002210.1002/ardp.20200002232885522
    [Google Scholar]
  16. SkaraitėI. MaccioniE. PetrikaitėV. Anticancer activity of sunitinib analogues in human pancreatic cancer cell cultures under normoxia and hypoxia.Int. J. Mol. Sci.2023246542210.3390/ijms2406542236982496
    [Google Scholar]
  17. SemenyutaI. GolovchenkoO. BahrieievaO. VydzhakR. ZhirnovV. BrovaretsV. Synthesis, characterization, in vitro anticancer evaluation, ADMET properties, and molecular docking of novel 5-sulfanyl substituted (thiazol-4-yl)-phosphonium salts.ChemMedChem20241918e20240020510.1002/cmdc.20240020538847335
    [Google Scholar]
  18. LosO.V. SinenkoV.O. KobzarO.L. ZhirnovV.V. VovkA.I. BrovaretsV.S. Synthesis and in vitro anticancer potential of new thiazole-containing derivatives of rhodanine.Chem. Heterocycl. Compd.2023596-748449310.1007/s10593‑023‑03220‑z
    [Google Scholar]
  19. BoydM.R. PaullK.D. Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen.Drug Dev. Res.19953429110910.1002/ddr.430340203
    [Google Scholar]
  20. BoydM.R. The NCI in vitro anticancer drug discovery screen.Anticancer Drug Development Guide. Cancer Drug Discovery and Development TeicherB.A. Totowa, New JerseyHumana Press199710.1007/978‑1‑4615‑8152‑9_2
    [Google Scholar]
  21. ChemAxonMarvin.Available from: https://chemaxon.com/marvin(Assessed on: 02 June, 2024)
  22. HanwellM.D. CurtisD.E. LonieD.C. VandermeerschT. ZurekE. HutchisonG.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform.J. Cheminform.2012411710.1186/1758‑2946‑4‑1722889332
    [Google Scholar]
  23. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.2125619399780
    [Google Scholar]
  24. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.2133419499576
    [Google Scholar]
  25. BIOVIA discovery studio visualizer. 2024.Available from: https://discover.3ds.com/discovery-studio-visualizer-download (Assessed on: 05 June, 2024)
  26. XiongG. WuZ. YiJ. FuL. YangZ. HsiehC. YinM. ZengX. WuC. LuA. ChenX. HouT. CaoD. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties.Nucleic Acids Res.202149W1W5W1410.1093/nar/gkab25533893803
    [Google Scholar]
  27. BlackburnC. GigstadK. M. XuH. Substituted hydroxamic acid and uses thereof.US Patent US2011/2130032011
  28. SunL. TranN. TangF. AppH. HirthP. McMahonG. TangC. Synthesis and biological evaluations of 3-substituted indolin-2-ones: A novel class of tyrosine kinase inhibitors that exhibit selectivity toward particular receptor tyrosine kinases.J. Med. Chem.199841142588260310.1021/jm980123i9651163
    [Google Scholar]
  29. GundlaR. AsthanaS. BhattacharyyaS. MaddipatiV. C. MittalL. KaurJ. RawatY. Design, synthesis of novel oxyindole inhibitors of DENV RNA dependent RNA polymerase.WO2021/2607222021
  30. MaddipatiV.C. MittalL. KaurJ. RawatY. KoraboinaC.P. BhattacharyyaS. AsthanaS. GundlaR. Discovery of non-nucleoside oxindole derivatives as potent inhibitors against dengue RNA-dependent RNA polymerase.Bioorg. Chem.202313110627710.1016/j.bioorg.2022.10627736444792
    [Google Scholar]
  31. ZhangC. XuJ. ZhaoX. KangC. Synthesis of novel 3-(benzothiazol-2-ylmethylene)indolin-2-ones.J. Chem. Res.201741953754010.3184/174751917X15040891974776
    [Google Scholar]
  32. HowardH.R. SargesR. SiegelT.W. BeyerT.A. Synthesis and aldose reductase inhibitory activity of substituted 2(1H)-benzimidazolone- and oxindole-1-acetic acids.Eur. J. Med. Chem.199227877978910.1016/0223‑5234(92)90112‑E
    [Google Scholar]
  33. JaradatS.K. AyoubN.M. Al SharieA.H. AldaodJ.M. Targeting receptor tyrosine kinases as a novel strategy for the treatment of triple-negative breast cancer.Technol. Cancer Res. Treat.2024231533033824123478010.1177/1533033824123478038389413
    [Google Scholar]
  34. BagliniE. ChiaveriniL. TolbatovI. TalianiS. Da SettimoF. La MendolaD. BarresiE. MarzoT. Tyrosine kinase inhibitors (TKIs) for ovarian cancer treatment: From organic to inorganic chemotherapeutics towards selectivity-a perspective overview.Biometals202437227528810.1007/s10534‑023‑00547‑037930483
    [Google Scholar]
  35. JiaC. XuQ. ZhaoL. KongF. JiaY. Therapeutic role of EGFR - Tyrosine kinase inhibitors in non-small cell lung cancer with leptomeningeal metastasis.Transl. Oncol.20243910183210.1016/j.tranon.2023.10183238006761
    [Google Scholar]
  36. BermanH.M. WestbrookJ. FengZ. GillilandG. BhatT.N. WeissigH. ShindyalovI.N. BourneP.E. The protein data bank.Nucleic Acids Res.200028123524210.1093/nar/28.1.23510592235
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673346427241016100726
Loading
/content/journals/cmc/10.2174/0109298673346427241016100726
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the publisher’s website.


  • Article Type:
    Research Article
Keyword(s): 5-Fluoro-2-oxindole; anticancer agents; cancer; sunitinib analogues; thiazole; VEGFR2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test