Skip to content
2000
Volume 32, Issue 25
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Glioblastoma is the most common type of brain cancer, with a prognosis that is unfortunately poor. Despite considerable progress in the field, the intricate molecular basis of this cancer remains elusive.

Aim

The aim of this study was to identify genetic indicators of glioblastoma and reveal the processes behind its development.

Objective

The advent and integration of supercomputing technology have led to a significant advancement in gene expression analysis platforms. Microarray analysis has gained recognition for its pivotal role in oncology, crucial for the molecular categorization of tumors, diagnosis, prognosis, stratification of patients, forecasting tumor responses, and pinpointing new targets for drug discovery. Numerous databases dedicated to cancer research, including the Gene Expression Omnibus (GEO) database, have been established. Identifying differentially expressed genes (DEGs) and key genes deepens our understanding of the initiation of glioblastoma, potentially unveiling novel markers for diagnosis and prognosis, as well as targets for the treatment of glioblastoma.

Methods

This research sought to discover genes implicated in the development and progression of glioblastoma by analyzing microarray datasets GSE13276, GSE14805, and GSE109857 from the GEO database. DEGs were identified, and a function enrichment analysis was performed. Additionally, a protein-protein interaction network (PPI) was constructed, followed by module analysis using the tools STRING and Cytoscape.

Results

The analysis yielded 88 DEGs, consisting of 66 upregulated and 22 downregulated genes. These genes' functions and pathways primarily involved microtubule activity, mitotic cytokinesis, cerebral cortex development, localization of proteins to the kinetochore, and the condensation of chromosomes during mitosis. A group of 27 pivotal genes was pinpointed, with biological process analysis indicating significant enrichment in activities, such as division of the nucleus during mitosis, cell division, maintaining cohesion between sister chromatids, segregation of sister chromatids during mitosis, and cytokinesis. The survival analysis indicated that certain genes, including PCNA clamp-associated factor (PCLAF), ribonucleoside-diphosphate reductase subunit M2 (RRM2), nucleolar and spindle-associated protein 1 (NUSAP1), and kinesin family member 23 (KIF23), could be instrumental in the development, invasion, or recurrence of glioblastoma.

Conclusion

The identification of DEGs and key genes in this study advances our comprehension of the molecular pathways that contribute to the oncogenesis and progression of glioblastoma. This research provides valuable insights into potential diagnostic and therapeutic targets for glioblastoma.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673316883240829073901
2024-09-06
2025-09-06
Loading full text...

Full text loading...

/deliver/fulltext/cmc/32/25/CMC-32-25-07.html?itemId=/content/journals/cmc/10.2174/0109298673316883240829073901&mimeType=html&fmt=ahah

References

  1. Van MeirE.G. HadjipanayisC.G. NordenA.D. ShuH.K. WenP.Y. OlsonJ.J. Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma.CA Cancer J. Clin.201060316619310.3322/caac.2006920445000
    [Google Scholar]
  2. Eckel-PassowJ.E. LachanceD.H. MolinaroA.M. WalshK.M. DeckerP.A. SicotteH. PekmezciM. RiceT. KoselM.L. SmirnovI.V. SarkarG. CaronA.A KollmeyerT.M. PraskaC.E. ChadaA.R. HalderC. HansenH.M. McCoyL.S. BracciP.M. MarshallR. ZhengS. ReisG.F. PicoA.R. O'NeillB.P. BucknerJ.C. GianniniC. HuseJ.T. PerryA. TihanT. BergerM.S. ChangS.M. PradosM.D. WiemelsJ. WienckeJ.K. WrenschM.R. JenkinsR.B. Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors.N. Engl. J. Med.2015372262499250810.1056/NEJMoa1407279
    [Google Scholar]
  3. HegiM.E. DiserensA.C. GorliaT. HamouM.F. de TriboletN. WellerM. KrosJ.M. HainfellnerJ.A. MasonW. MarianiL. BrombergJ.E.C. HauP. MirimanoffR.O. CairncrossJ.G. JanzerR.C. StuppR. MGMT gene silencing and benefit from temozolomide in glioblastoma.N. Engl. J. Med.200535210997100310.1056/NEJMoa04333115758010
    [Google Scholar]
  4. VerhaakR.G.W. HoadleyK.A. PurdomE. WangV. QiY. WilkersonM.D. MillerC.R. DingL. GolubT. MesirovJ.P. AlexeG. LawrenceM. O’KellyM. TamayoP. WeirB.A. GabrielS. WincklerW. GuptaS. JakkulaL. FeilerH.S. HodgsonJ.G. JamesC.D. SarkariaJ.N. BrennanC. KahnA. SpellmanP.T. WilsonR.K. SpeedT.P. GrayJ.W. MeyersonM. GetzG. PerouC.M. HayesD.N. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1.Cancer Cell20101719811010.1016/j.ccr.2009.12.02020129251
    [Google Scholar]
  5. WatanabeK. TachibanaO. SatoK. YonekawaY. KleihuesP. OhgakiH. Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas.Brain Pathol.19966321722310.1111/j.1750‑3639.1996.tb00848.x8864278
    [Google Scholar]
  6. SimonM. HosenI. GousiasK. RachakondaS. HeidenreichB. GessiM. SchrammJ. HemminkiK. WahaA. KumarR. TERT promoter mutations: a novel independent prognostic factor in primary glioblastomas.Neuro-oncol.2015171455210.1093/neuonc/nou15825140036
    [Google Scholar]
  7. LiJ. YenC. LiawD. PodsypaninaK. BoseS. WangS.I. PucJ. MiliaresisC. RodgersL. McCombieR. BignerS.H. GiovanellaB.C. IttmannM. TyckoB. HibshooshH. WiglerM.H. ParsonsR. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer.Science199727553081943194710.1126/science.275.5308.19439072974
    [Google Scholar]
  8. ZawlikI. VaccarellaS. KitaD. MittelbronnM. FranceschiS. OhgakiH. Promoter methylation and polymorphisms of the MGMT gene in glioblastomas: a population-based study.Neuroepidemiology2009321212910.1159/00017008818997474
    [Google Scholar]
  9. GareevI. BeylerliO. LiangY. XiangH. LiuC. XuX. YuanC. AhmadA. YangG. The role of MicroRNAs in therapeutic resistance of malignant primary brain tumors.Front. Cell Dev. Biol.2021974030310.3389/fcell.2021.74030334692698
    [Google Scholar]
  10. LanZ. LiX. ZhangX. Glioblastoma: An update in pathology, molecular mechanisms and biomarkers.Int. J. Mol. Sci.2024255304010.3390/ijms2505304038474286
    [Google Scholar]
  11. SalvalaggioA. PiniL. BertoldoA. CorbettaM. Glioblastoma and brain connectivity: the need for a paradigm shift.Lancet Neurol.202423774074810.1016/S1474‑4422(24)00160‑138876751
    [Google Scholar]
  12. YaboY.A. HeilandD.H. Understanding glioblastoma at the single-cell level: Recent advances and future challenges.PLoS Biol.2024225e300264010.1371/journal.pbio.300264038814900
    [Google Scholar]
  13. SunJ. SunZ. GareevI. YanT. ChenX. AhmadA. ZhangD. ZhaoB. BeylerliO. YangG. ZhaoS. Exosomal miR-2276-5p in plasma is a potential diagnostic and prognostic biomarker in glioma.Front. Cell Dev. Biol.2021967120210.3389/fcell.2021.67120234141710
    [Google Scholar]
  14. GareevI. BeylerliO. YangG. SunJ. PavlovV. IzmailovA. ShiH. ZhaoS. The current state of MiRNAs as biomarkers and therapeutic tools.Clin. Exp. Med.202020334935910.1007/s10238‑020‑00627‑232399814
    [Google Scholar]
  15. EdgarR. DomrachevM. LashA.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository.Nucleic Acids Res.200230120721010.1093/nar/30.1.20711752295
    [Google Scholar]
  16. MangiolaA. SaulnierN. De BonisP. OrteschiD. SicaG. LamaG. PettoriniB.L. SabatinoG. ZollinoM. LauriolaL. ColabianchiA. ProiettiG. KovacsG. MairaG. AnileC. Gene expression profile of glioblastoma peritumoral tissue: an ex vivo study.PLoS One201383e5714510.1371/journal.pone.005714523472076
    [Google Scholar]
  17. HodgsonJ.G. YehR.F. RayA. WangN.J. SmirnovI. YuM. HarionoS. SilberJ. FeilerH.S. GrayJ.W. SpellmanP.T. VandenbergS.R. BergerM.S. JamesC.D. Comparative analyses of gene copy number and mRNA expression in glioblastoma multiforme tumors and xenografts.Neuro-oncol.200911547748710.1215/15228517‑2008‑11319139420
    [Google Scholar]
  18. ZhangB. WangY. LiH. FengL. LiW. ChengS. Identification of prognostic biomarkers for multiple solid tumors using a human villi development model.Front. Cell Dev. Biol.2020849210.3389/fcell.2020.0049232656211
    [Google Scholar]
  19. HuangD. ShermanB.T. TanQ. CollinsJ.R. AlvordW.G. RoayaeiJ. StephensR. BaselerM.W. LaneH.C. LempickiR.A. The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists.Genome Biol.200789R18310.1186/gb‑2007‑8‑9‑r18317784955
    [Google Scholar]
  20. KanehisaM. The KEGG database.Novartis Found Symp.20022479110110.1002/0470857897.ch8
    [Google Scholar]
  21. AshburnerM. BallC.A. BlakeJ.A. BotsteinD. ButlerH. CherryJ.M. DavisA.P. DolinskiK. DwightS.S. EppigJ.T. HarrisM.A. HillD.P. Issel-TarverL. KasarskisA. LewisS. MateseJ.C. RichardsonJ.E. RingwaldM. RubinG.M. SherlockG. Gene Ontology: tool for the unification of biology.Nat. Genet.2000251252910.1038/7555610802651
    [Google Scholar]
  22. FranceschiniA. SzklarczykD. FrankildS. KuhnM. SimonovicM. RothA. LinJ. MinguezP. BorkP. von MeringC. JensenL.J. STRING v9.1: protein-protein interaction networks, with increased coverage and integration.Nucleic Acids Res.201341Database issueD808D81523203871
    [Google Scholar]
  23. SmootM.E. OnoK. RuscheinskiJ. WangP.L. IdekerT. Cytoscape 2.8: new features for data integration and network visualization.Bioinformatics201127343143210.1093/bioinformatics/btq67521149340
    [Google Scholar]
  24. BandettiniW.P. KellmanP. ManciniC. BookerO.J. VasuS. LeungS.W. WilsonJ.R. ShanbhagS.M. ChenM.Y. AraiA.E. MultiContrast Delayed Enhancement (MCODE) improves detection of subendocardial myocardial infarction by late gadolinium enhancement cardiovascular magnetic resonance: a clinical validation study.J. Cardiovasc. Magn. Reson.20121418610.1186/1532‑429X‑14‑8323199362
    [Google Scholar]
  25. CeramiE. GaoJ. DogrusozU. GrossB.E. SumerS.O. AksoyB.A. JacobsenA. ByrneC.J. HeuerM.L. LarssonE. AntipinY. RevaB. GoldbergA.P. SanderC. SchultzN. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data.Cancer Discov.20122540140410.1158/2159‑8290.CD‑12‑009522588877
    [Google Scholar]
  26. GaoJ. AksoyB.A. DogrusozU. DresdnerG. GrossB. SumerS.O. SunY. JacobsenA. SinhaR. LarssonE. CeramiE. SanderC. SchultzN. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal.Sci. Signal.20136269pl110.1126/scisignal.200408823550210
    [Google Scholar]
  27. MaereS. HeymansK. KuiperM. BiNGO: a cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks.Bioinformatics200521163448344910.1093/bioinformatics/bti55115972284
    [Google Scholar]
  28. KentW.J. SugnetC.W. FureyT.S. RoskinK.M. PringleT.H. ZahlerA.M. HausslerD. The human genome browser at UCSC.Genome Res.2002126996100610.1101/gr.22910212045153
    [Google Scholar]
  29. OstromQ.T. GittlemanH. TruittG. BosciaA. KruchkoC. Barnholtz-SloanJ.S. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the united states in 2011–2015.Neuro-oncol.201820Suppl. 4iv1iv8610.1093/neuonc/noy13130445539
    [Google Scholar]
  30. van TellingenO. Yetkin-ArikB. de GooijerM.C. WesselingP. WurdingerT. de VriesH.E. Overcoming the blood–brain tumor barrier for effective glioblastoma treatment.Drug Resist. Updat.20151911210.1016/j.drup.2015.02.00225791797
    [Google Scholar]
  31. RongL. LiN. ZhangZ. Emerging therapies for glioblastoma: current state and future directions.J. Exp. Clin. Cancer Res.202241114210.1186/s13046‑022‑02349‑735428347
    [Google Scholar]
  32. OuA. YungW.K.A. MajdN. Molecular mechanisms of treatment resistance in glioblastoma.Int. J. Mol. Sci.202022135110.3390/ijms2201035133396284
    [Google Scholar]
  33. FisherJ.L. SchwartzbaumJ.A. WrenschM. WiemelsJ.L. Epidemiology of brain tumors.Neurol. Clin.200725486789010.1016/j.ncl.2007.07.00217964019
    [Google Scholar]
  34. AmirianE.S. ZhouR. WrenschM.R. OlsonS.H. ScheurerM.E. Il’yasovaD. LachanceD. ArmstrongG.N. McCoyL.S. LauC.C. ClausE.B. Barnholtz-SloanJ.S. SchildkrautJ. Ali-OsmanF. SadetzkiS. JohansenC. HoulstonR.S. JenkinsR.B. BernsteinJ.L. MerrellR.T. DavisF.G. LaiR. SheteS. AmosC.I. MelinB.S. BondyM.L. Approaching a scientific consensus on the association between allergies and glioma risk: A report from the glioma international case-control study.Cancer Epidemiol. Biomarkers Prev.201625228229010.1158/1055‑9965.EPI‑15‑084726908595
    [Google Scholar]
  35. LinosE. RaineT. AlonsoA. MichaudD. Atopy and risk of brain tumors: a meta-analysis.J. Natl. Cancer Inst.200799201544155010.1093/jnci/djm17017925535
    [Google Scholar]
  36. ScheurerM.E. EtzelC.J. LiuM. Barnholtz-SloanJ. WiklundF. TavelinB. WrenschM.R. MelinB.S. BondyM.L. Familial aggregation of glioma: a pooled analysis.Am. J. Epidemiol.2010172101099110710.1093/aje/kwq26120858744
    [Google Scholar]
  37. XuD. GareevI. BeylerliO. PavlovV. LeH. ShiH. Integrative bioinformatics analysis of miRNA and mRNA expression profiles and identification of associated miRNA-mRNA network in intracranial aneurysms.Noncoding RNA Res.20249247148510.1016/j.ncrna.2024.01.00438511055
    [Google Scholar]
  38. FengS. LiuY. Metabolomics of glioma.Adv. Exp. Med. Biol.2021128026127610.1007/978‑3‑030‑51652‑9_1833791988
    [Google Scholar]
  39. CuiK. ChenJ. ZouY. ZhangS. WuB. JingK. LiL. XiaL. SunC. DongY. Hub biomarkers for the diagnosis and treatment of glioblastoma based on microarray technology.Technol. Cancer Res. Treat.20212010.1177/153303382199036834018447
    [Google Scholar]
  40. ShergalisA. BankheadA.III LuesakulU. MuangsinN. NeamatiN. Current challenges and opportunities in treating glioblastoma.Pharmacol. Rev.201870341244510.1124/pr.117.01494429669750
    [Google Scholar]
  41. ZhangY. YangX. ZhuX.L. HaoJ.Q. BaiH. XiaoY.C. WangZ.Z. HaoC.Y. DuanH.B. Bioinformatics analysis of potential core genes for glioblastoma.Biosci. Rep.2020407BSR2020162510.1042/BSR2020162532667033
    [Google Scholar]
  42. MichelettiC. BonettiG. MadeoG. GadlerM. BenedettiS. GuerriG. CristofoliF. GeneraliD. DonofrioC.A. CominettiM. FioravantiA. RiccioL. ManganottiP. CarusoP. BerniniA. FulcheriE. StuppiaL. GattaV. CecchinS. MarcedduG. BertelliM. Omics sciences and precision medicine in glioblastoma.Clin Ter.202317426778410.7417/CT.2023.2474
    [Google Scholar]
  43. WangD. JiangY. WangT. WangZ. ZouF. Identification of a novel autophagy-related prognostic signature and small molecule drugs for glioblastoma by bioinformatics.BMC Med. Genomics202215111110.1186/s12920‑022‑01261‑535550147
    [Google Scholar]
  44. YeS. YangB. ZhangT. WeiW. LiZ. ChenJ. LiX. Identification of an immune-related prognostic signature for glioblastoma by comprehensive bioinformatics and experimental analyses.Cells20221119300010.3390/cells1119300036230961
    [Google Scholar]
  45. UhlinU. EklundH. Structure of ribonucleotide reductase protein R1.Nature1994370649053353910.1038/370533a08052308
    [Google Scholar]
  46. AyeY. LiM. LongM.J.C. WeissR.S. Ribonucleotide reductase and cancer: biological mechanisms and targeted therapies.Oncogene201534162011202110.1038/onc.2014.15524909171
    [Google Scholar]
  47. DesaiA.A. SchilskyR.L. YoungA. JanischL. StadlerW.M. VogelzangN.J. CaddenS. WrightJ.A. RatainM.J. A phase I study of antisense oligonucleotide GTI-2040 given by continuous intravenous infusion in patients with advanced solid tumors.Ann. Oncol.200516695896510.1093/annonc/mdi17815824081
    [Google Scholar]
  48. Corrales-GuerreroS. CuiT. Castro-AceitunoV. YangL. NairS. FengH. VenereM. YoonS. DeWeesT. ShenC. WilliamsT.M. Inhibition of RRM2 radiosensitizes glioblastoma and uncovers synthetic lethality in combination with targeting CHK1.Cancer Lett.202357021630810.1016/j.canlet.2023.21630837482342
    [Google Scholar]
  49. DanesiR. AltavillaG. GiovannettiE. RosellR. Pharmacogenomics of gemcitabine in non-small-cell lung cancer and other solid tumors.Pharmacogenomics2009101698010.2217/14622416.10.1.6919102717
    [Google Scholar]
  50. LiuC. LiY. HuR. HanW. GaoS. Knockdown of ribonucleotide reductase regulatory subunit M2 increases the drug sensitivity of chronic myeloid leukemia to imatinib-based therapy.Oncol. Rep.201942257158010.3892/or.2019.719431233186
    [Google Scholar]
  51. ZhouS. LiJ. XuH. ZhangS. ChenX. ChenW. YangS. ZhongS. ZhaoJ. TangJ. Liposomal curcumin alters chemosensitivity of breast cancer cells to Adriamycin via regulating microRNA expression.Gene201762211210.1016/j.gene.2017.04.02628431975
    [Google Scholar]
  52. ZhouB. MoX. LiuX. QiuW. YenY. Human ribonucleotide reductase M2 subunit gene amplification and transcriptional regulation in a homogeneous staining chromosome region responsible for the mechanism of drug resistance.Cytogenet. Genome Res.2001951-2344210.1159/00005701411978967
    [Google Scholar]
  53. TuM. LiH. LvN. XiC. LuZ. WeiJ. ChenJ. GuoF. JiangK. SongG. GaoW. MiaoY. Vasohibin 2 reduces chemosensitivity to gemcitabine in pancreatic cancer cells via Jun proto-oncogene dependent transactivation of ribonucleotide reductase regulatory subunit M2.Mol. Cancer20171616610.1186/s12943‑017‑0619‑628327155
    [Google Scholar]
  54. ZhangY.W. JonesT.L. MartinS.E. CaplenN.J. PommierY. Implication of checkpoint kinase-dependent up-regulation of ribonucleotide reductase R2 in DNA damage response.J. Biol. Chem.200928427180851809510.1074/jbc.M109.00302019416980
    [Google Scholar]
  55. DuxburyM.S. ItoH. ZinnerM.J. AshleyS.W. WhangE.E. Inhibition of SRC tyrosine kinase impairs inherent and acquired gemcitabine resistance in human pancreatic adenocarcinoma cells.Clin. Cancer Res.20041072307231810.1158/1078‑0432.CCR‑1183‑315073106
    [Google Scholar]
  56. XiaG. WangH. SongZ. MengQ. HuangX. HuangX. Gambogic acid sensitizes gemcitabine efficacy in pancreatic cancer by reducing the expression of ribonucleotide reductase subunit-M2 (RRM2).J. Exp. Clin. Cancer Res.201736110710.1186/s13046‑017‑0579‑028797284
    [Google Scholar]
  57. LiuX. ZhouB. XueL. QiuW. ShihJ. ZhengS. YenY. Nuclear factor Y regulation and promoter transactivation of human ribonucleotide reductase subunit M2 gene in a Gemcitabine resistant KB clone.Biochem. Pharmacol.20046781499151110.1016/j.bcp.2003.12.02615041467
    [Google Scholar]
  58. SaitoY. YinD. KubotaN. WangX. FilliolA. RemottiH. NairA. FazlollahiL. HoshidaY. TabasI. WangensteenK.J. SchwabeR.F. A Therapeutically targetable TAZ-TEAD2 pathway drives the growth of hepatocellular carcinoma via ANLN and KIF23.Gastroenterology202316471279129210.1053/j.gastro.2023.02.04336894036
    [Google Scholar]
  59. GaoC.T. RenJ. YuJ. LiS.N. GuoX.F. ZhouY.Z. KIF23 enhances cell proliferation in pancreatic ductal adenocarcinoma and is a potent therapeutic target.Ann. Transl. Med.2020821139410.21037/atm‑20‑197033313139
    [Google Scholar]
  60. ZhaoZ. WangZ. BaoZ.S. GaoW.Z. ZhangY.D. RuanC.J. LvT. WangY. SunL.H. Mutation and copy number alterations analysis of KIF23 in glioma.Front. Genet.20211264692910.3389/fgene.2021.64692934017355
    [Google Scholar]
  61. TakahashiS. FusakiN. OhtaS. IwahoriY. IizukaY. InagawaK. KawakamiY. YoshidaK. TodaM. Downregulation of KIF23 suppresses glioma proliferation.J. Neurooncol.2012106351952910.1007/s11060‑011‑0706‑221904957
    [Google Scholar]
  62. ZhuangR. LiuH. Mechanism of regulation of KIF23 on endometrial cancer cell growth and apoptosis.Discover Oncology20241518310.1007/s12672‑024‑00937‑x38514510
    [Google Scholar]
  63. NislowC. LombilloV.A. KuriyamaR. MclntoshJ.R. A plus-end-directed motor enzyme that moves antiparallel microtubules in vitro localizes to the interzone of mitotic spindles.Nature1992359639554354710.1038/359543a01406973
    [Google Scholar]
  64. LiuX. ZhouT. KuriyamaR. EriksonR.L. Molecular interactions of Polo-like-kinase 1 with the mitotic kinesin- like protein CHO1/MKLP-1.J. Cell Sci.2004117153233324610.1242/jcs.0117315199097
    [Google Scholar]
  65. ZhuC. Bossy-WetzelE. JiangW. Recruitment of MKLP1 to the spindle midzone/midbody by INCENP is essential for midbody formation and completion of cytokinesis in human cells.Biochem. J.2005389237338110.1042/BJ2005009715796717
    [Google Scholar]
  66. CalligarisD. Verdier-PinardP. DevredF. VillardC. BraguerD. LafitteD. Microtubule targeting agents: from biophysics to proteomics.Cell. Mol. Life Sci.20106771089110410.1007/s00018‑009‑0245‑620107862
    [Google Scholar]
  67. Kline-SmithS.L. WalczakC.E. Mitotic spindle assembly and chromosome segregation: refocusing on microtubule dynamics.Mol. Cell200415331732710.1016/j.molcel.2004.07.01215304213
    [Google Scholar]
  68. VasilievJ.M. GelfandI.M. DomninaL.V. IvanovaO.Y. KommS.G. OlshevskajaL.V. Effect of colcemid on the locomotory behaviour of fibroblasts.Development197024362564010.1242/dev.24.3.6254923996
    [Google Scholar]
  69. WittmannT. HymanA. DesaiA. The spindle: a dynamic assembly of microtubules and motors.Nat. Cell Biol.200131E28E3410.1038/3505066911146647
    [Google Scholar]
  70. RahaneC.S. KutznerA. HeeseK. A cancer tissue-specific FAM72 expression profile defines a novel glioblastoma multiform (GBM) gene-mutation signature.J. Neurooncol.20191411577010.1007/s11060‑018‑03029‑330414097
    [Google Scholar]
  71. HymanG. ManglikV. RouschJ.M. VermaM. KinkebielD. BanerjeeH.N. Epigenetic approaches in glioblastoma multiforme and their implication in screening and diagnosis.Methods Mol. Biol.2015123851152110.1007/978‑1‑4939‑1804‑1_2625421677
    [Google Scholar]
  72. CloughE. BarrettT. The gene expression omnibus database.Methods Mol. Biol.201614189311010.1007/978‑1‑4939‑3578‑9_527008011
    [Google Scholar]
  73. Carracedo-ReboredoP. Liñares-BlancoJ. Rodríguez-FernándezN. CedrónF. NovoaF.J. CarballalA. MaojoV. PazosA. Fernandez-LozanoC. A review on machine learning approaches and trends in drug discovery.Comput. Struct. Biotechnol. J.2021194538455810.1016/j.csbj.2021.08.01134471498
    [Google Scholar]
  74. VriendJ. KlonischT. Genes of the ubiquitin proteasome system qualify as differential markers in malignant glioma of astrocytic and oligodendroglial origin.Cell. Mol. Neurobiol.20234341425145210.1007/s10571‑022‑01261‑035896929
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673316883240829073901
Loading
/content/journals/cmc/10.2174/0109298673316883240829073901
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test