Skip to content
2000
Volume 32, Issue 25
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Introduction

Breast cancer (BRCA) is one of the leading causes of cancer-related death in women. The improvement of the BRCA risk assessment method is of positive clinical significance. Although many clues showed the potential role of disulfidptosis in BRCA as a novel type of programmed cell death, whether disulfidptosis is involved in BRCA tumorigenesis remains unclear.

Methods

We used LASSO-univariate Cox analysis and multivariate Cox analysis to identify six disulfidptosis-related lncRNAs (DPLs) that correlated with BRCA clinical outcome and confirmed that these DPLs were independent prognostic factors for BRCA (YTHDF3−AS1, AC002398.1, AL451085.2, AC092718.4, AC097662.1 and AC053503.5). The BRCA risk prognosis model was subsequently established based on these DPLs.

Results

After verifying the model reliability in predicting prognosis, immune infiltration and somatic mutation analysis showed significant differences in the immune microenvironment and mutation of DPLs by risk stratification. Immunotherapy response and drug resistance analysis suggest the reference value of DPLs in clinical individualized therapy.

Conclusion

The abnormal expressions of selected DPLs were further validated by the BRCA cell line experiment. Our results shed new light on the role of DPLs in BRCA.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673294711240405090150
2024-04-17
2025-10-23
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.2176336633525
    [Google Scholar]
  2. GerberB. MüllerH. ReimerT. KrauseA. FrieseK. Nutrition and lifestyle factors on the risk of developing breast cancer.Breast Cancer Res. Treat.200379226527610.1023/A:102395981851312825861
    [Google Scholar]
  3. MartinA.M. WeberB.L. Genetic and hormonal risk factors in breast cancer.J. Natl. Cancer Inst.200092141126113510.1093/jnci/92.14.112610904085
    [Google Scholar]
  4. MavaddatN. MichailidouK. DennisJ. LushM. FachalL. LeeA. TyrerJ.P. ChenT.H. WangQ. BollaM.K. YangX. AdankM.A. AhearnT. AittomäkiK. AllenJ. AndrulisI.L. Anton-CulverH. AntonenkovaN.N. ArndtV. AronsonK.J. AuerP.L. AuvinenP. BarrdahlM. Beane FreemanL.E. BeckmannM.W. BehrensS. BenitezJ. BermishevaM. BernsteinL. BlomqvistC. BogdanovaN.V. BojesenS.E. BonanniB. Børresen-DaleA.L. BrauchH. BremerM. BrennerH. BrentnallA. BrockI.W. Brooks-WilsonA. BruckerS.Y. BrüningT. BurwinkelB. CampaD. CarterB.D. CastelaoJ.E. ChanockS.J. ChlebowskiR. ChristiansenH. ClarkeC.L. ColléeJ.M. Cordina-DuvergerE. CornelissenS. CouchF.J. CoxA. CrossS.S. CzeneK. DalyM.B. DevileeP. DörkT. dos-Santos-SilvaI. DumontM. DurcanL. DwekM. EcclesD.M. EkiciA.B. EliassenA.H. EllbergC. EngelC. ErikssonM. EvansD.G. FaschingP.A. FigueroaJ. FletcherO. FlygerH. FörstiA. FritschiL. GabrielsonM. Gago-DominguezM. GapsturS.M. García-SáenzJ.A. GaudetM.M. GeorgouliasV. GilesG.G. GilyazovaI.R. GlendonG. GoldbergM.S. GoldgarD.E. González-NeiraA. Grenaker AlnæsG.I. GripM. GronwaldJ. GrundyA. GuénelP. HaeberleL. HahnenE. HaimanC.A. HåkanssonN. HamannU. HankinsonS.E. HarknessE.F. HartS.N. HeW. HeinA. HeyworthJ. HillemannsP. HollestelleA. HooningM.J. HooverR.N. HopperJ.L. HowellA. HuangG. HumphreysK. HunterD.J. JakimovskaM. JakubowskaA. JanniW. JohnE.M. JohnsonN. JonesM.E. Jukkola-VuorinenA. JungA. KaaksR. KaczmarekK. KatajaV. KeemanR. KerinM.J. KhusnutdinovaE. KiiskiJ.I. KnightJ.A. KoY.D. KosmaV.M. KoutrosS. KristensenV.N. KrügerU. KühlT. LambrechtsD. Le MarchandL. LeeE. LejbkowiczF. LilyquistJ. LindblomA. LindströmS. LissowskaJ. LoW.Y. LoiblS. LongJ. LubińskiJ. LuxM.P. MacInnisR.J. MaishmanT. MakalicE. Maleva KostovskaI. MannermaaA. ManoukianS. MargolinS. MartensJ.W.M. MartinezM.E. MavroudisD. McLeanC. MeindlA. MenonU. MiddhaP. MillerN. MorenoF. MulliganA.M. MulotC. Muñoz-GarzonV.M. NeuhausenS.L. NevanlinnaH. NevenP. NewmanW.G. NielsenS.F. NordestgaardB.G. NormanA. OffitK. OlsonJ.E. OlssonH. OrrN. PankratzV.S. Park-SimonT.W. PerezJ.I.A. Pérez-BarriosC. PeterlongoP. PetoJ. PinchevM. Plaseska-KaranfilskaD. PolleyE.C. PrenticeR. PresneauN. ProkofyevaD. PurringtonK. PylkäsK. RackB. RadiceP. Rau-MurthyR. RennertG. RennertH.S. RheniusV. RobsonM. RomeroA. RuddyK.J. RuebnerM. SaloustrosE. SandlerD.P. SawyerE.J. SchmidtD.F. SchmutzlerR.K. SchneeweissA. SchoemakerM.J. SchumacherF. SchürmannP. SchwentnerL. ScottC. ScottR.J. SeynaeveC. ShahM. ShermanM.E. ShrubsoleM.J. ShuX.O. SlagerS. SmeetsA. SohnC. SoucyP. SoutheyM.C. SpinelliJ.J. StegmaierC. StoneJ. SwerdlowA.J. TamimiR.M. TapperW.J. TaylorJ.A. TerryM.B. ThöneK. TollenaarR.A.E.M. TomlinsonI. TruongT. TzardiM. UlmerH.U. UntchM. VachonC.M. van VeenE.M. VijaiJ. WeinbergC.R. WendtC. WhittemoreA.S. WildiersH. WillettW. WinqvistR. WolkA. YangX.R. YannoukakosD. ZhangY. ZhengW. ZiogasA. DunningA.M. ThompsonD.J. Chenevix-TrenchG. Chang-ClaudeJ. SchmidtM.K. HallP. MilneR.L. PharoahP.D.P. AntoniouA.C. ChatterjeeN. KraftP. García-ClosasM. SimardJ. EastonD.F. Polygenic risk scores for prediction of breast cancer and breast cancer subtypes.Am. J. Hum. Genet.20191041213410.1016/j.ajhg.2018.11.00230554720
    [Google Scholar]
  5. SahuA. AhmadS. ImtiyazK. Kizhakkeppurath KumaranA. IslamM. RazaK. EaswaranM. Kurukkan KunnathA. RizviM.A. VermaS. In-silico and in-vitro study reveals ziprasidone as a potential aromatase inhibitor against breast carcinoma.Sci. Rep.20231311654510.1038/s41598‑023‑43789‑137783782
    [Google Scholar]
  6. XuF. GuanY. XueL. ZhangP. LiM. GaoM. ChongT. The roles of ferroptosis regulatory gene SLC7A11 in renal cell carcinoma: A multi-omics study.Cancer Med.202110249078909610.1002/cam4.439534761566
    [Google Scholar]
  7. LiuX. NieL. ZhangY. YanY. WangC. ColicM. OlszewskiK. HorbathA. ChenX. LeiG. MaoC. WuS. ZhuangL. PoyurovskyM.V. James YouM. HartT. BilladeauD.D. ChenJ. GanB. Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis.Nat. Cell Biol.202325340441410.1038/s41556‑023‑01091‑236747082
    [Google Scholar]
  8. DixonS.J. LembergK.M. LamprechtM.R. SkoutaR. ZaitsevE.M. GleasonC.E. PatelD.N. BauerA.J. CantleyA.M. YangW.S. MorrisonB.III StockwellB.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death.Cell201214951060107210.1016/j.cell.2012.03.04222632970
    [Google Scholar]
  9. ChenM.C. HsuL.L. WangS.F. HsuC.Y. LeeH.C. TsengL.M. ROS mediate xCT-dependent cell death in human breast cancer cells under glucose deprivation.Cells202097159810.3390/cells907159832630312
    [Google Scholar]
  10. YangY. YeeD. IGF-I regulates redox status in breast cancer cells by activating the amino acid transport molecule xC-.Cancer Res.20147482295230510.1158/0008‑5472.CAN‑13‑180324686172
    [Google Scholar]
  11. RuiuR. RolihV. BolliE. BarutelloG. RiccardoF. QuaglinoE. MerighiI.F. PericleF. DonofrioG. CavalloF. ContiL. Fighting breast cancer stem cells through the immune-targeting of the xCT cystine–glutamate antiporter.Cancer Immunol. Immunother.201968113114110.1007/s00262‑018‑2185‑129947961
    [Google Scholar]
  12. ShinE. KooJ.S. Glucose metabolism and glucose transporters in breast cancer.Front. Cell Dev. Biol.2021972875910.3389/fcell.2021.72875934552932
    [Google Scholar]
  13. LiuY. CaoY. ZhangW. BergmeierS. QianY. AkbarH. ColvinR. DingJ. TongL. WuS. HinesJ. ChenX. A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo.Mol. Cancer Ther.20121181672168210.1158/1535‑7163.MCT‑12‑013122689530
    [Google Scholar]
  14. ShiG.J. ZhouQ. ZhuQ. WangL. JiangG.Q. A novel prognostic model associated with the overall survival in patients with breast cancer based on lipid metabolism-related long noncoding RNAs.J. Clin. Lab. Anal.2022366e2438410.1002/jcla.2438435441740
    [Google Scholar]
  15. TaoS. TaoK. CaiX. Necroptosis-associated lncRNA prognostic model and clustering analysis: prognosis prediction and tumor-infiltrating lymphocytes in breast cancer.J. Oncol.2022202211810.1155/2022/709993035528236
    [Google Scholar]
  16. ChenS. YuY. YuanY. ChenX. ZhouF. LiY. WangP. JiangX. TianS. RenW. A novel long noncoding RNA AC092718.4 as a prognostic biomarker and promotes lung adenocarcinoma progression.Aging (Albany NY)202214249924994110.18632/aging.20442636490353
    [Google Scholar]
  17. LinN. LinJ. TanakaY. SunP. ZhouX. Identification and validation of a five-lncRNA signature for predicting survival with targeted drug candidates in ovarian cancer.Bioengineered20211213263327410.1080/21655979.2021.194663234224310
    [Google Scholar]
  18. ParkS.E. ParkK. LeeE. KimJ.Y. AhnJ.S. ImY.H. LeeC. JungH. ChoS.Y. ParkW.Y. CristescuR. ParkY.H. Clinical implication of tumor mutational burden in patients with HER2-positive refractory metastatic breast cancer.OncoImmunology201878e146676810.1080/2162402X.2018.146676830221068
    [Google Scholar]
  19. Barroso-SousaR. JainE. CohenO. KimD. Buendia-BuendiaJ. WinerE. LinN. TolaneyS.M. WagleN. Prevalence and mutational determinants of high tumor mutation burden in breast cancer.Ann. Oncol.202031338739410.1016/j.annonc.2019.11.01032067680
    [Google Scholar]
  20. SamsteinR.M. LeeC.H. ShoushtariA.N. HellmannM.D. ShenR. JanjigianY.Y. BarronD.A. ZehirA. JordanE.J. OmuroA. KaleyT.J. KendallS.M. MotzerR.J. HakimiA.A. VossM.H. RussoP. RosenbergJ. IyerG. BochnerB.H. BajorinD.F. Al-AhmadieH.A. ChaftJ.E. RudinC.M. RielyG.J. BaxiS. HoA.L. WongR.J. PfisterD.G. WolchokJ.D. BarkerC.A. GutinP.H. BrennanC.W. TabarV. MellinghoffI.K. DeAngelisL.M. AriyanC.E. LeeN. TapW.D. GounderM.M. D’AngeloS.P. SaltzL. StadlerZ.K. ScherH.I. BaselgaJ. RazaviP. KlebanoffC.A. YaegerR. SegalN.H. KuG.Y. DeMatteoR.P. LadanyiM. RizviN.A. BergerM.F. RiazN. SolitD.B. ChanT.A. MorrisL.G.T. Tumor mutational load predicts survival after immunotherapy across multiple cancer types.Nat. Genet.201951220220610.1038/s41588‑018‑0312‑830643254
    [Google Scholar]
  21. MeléndezB. Van CampenhoutC. RoriveS. RemmelinkM. SalmonI. D’HaeneN. Methods of measurement for tumor mutational burden in tumor tissue.Transl. Lung Cancer Res.20187566166710.21037/tlcr.2018.08.0230505710
    [Google Scholar]
  22. Barroso-SousaR. KeenanT.E. PernasS. ExmanP. JainE. Garrido-CastroA.C. HughesM. BychkovskyB. UmetonR. FilesJ.L. LindemanN.I. MacConaillL.E. HodiF.S. KropI.E. DillonD. WinerE.P. WagleN. LinN.U. MittendorfE.A. Van AllenE.M. TolaneyS.M. Tumor mutational burden and PTEN alterations as molecular correlates of response to PD-1/L1 blockade in metastatic triple-negative breast cancer.Clin. Cancer Res.202026112565257210.1158/1078‑0432.CCR‑19‑350732019858
    [Google Scholar]
  23. AlvaA.S. MangatP.K. Garrett-MayerE. HalabiS. HansraD. CalfaC.J. KhalilM.F. AhnE.R. CannonT.L. CrilleyP. FisherJ.G. HaslemD.S. ShresthaS. AntonelliK.R. ButlerN.L. WarrenS.L. RygielA.L. RanasingheS. BruinoogeS.S. SchilskyR.L. Pembrolizumab in patients with metastatic breast cancer with high tumor mutational burden: results from the targeted agent and profiling utilization registry (TAPUR) study.J. Clin. Oncol.202139222443245110.1200/JCO.20.0292333844595
    [Google Scholar]
  24. KeL. LiS. CuiH. The prognostic role of tumor mutation burden on survival of breast cancer: a systematic review and meta-analysis.BMC Cancer2022221118510.1186/s12885‑022‑10284‑136397030
    [Google Scholar]
  25. SheuB.C. KuoW.H. ChenR.J. HuangS.C. ChangK.J. ChowS.N. Clinical significance of tumor-infiltrating lymphocytes in neoplastic progression and lymph node metastasis of human breast cancer.Breast200817660461010.1016/j.breast.2008.06.00118656354
    [Google Scholar]
  26. BeckM.L. FreihautB. HenryR. PierceS. BayerW.L. A serum haemagglutinating property dependent upon polycarboxyl groups.Br. J. Haematol.197529114915610.1111/j.1365‑2141.1975.tb01808.x32
    [Google Scholar]
  27. ZhangH. ZhuZ. ModrakS. LittleA. Tissue-resident memory CD4+ T cells play a dominant role in the initiation of antitumor immunity.J. Immunol.2022208122837284610.4049/jimmunol.210085235589124
    [Google Scholar]
  28. Gu-TrantienC. LoiS. GaraudS. EqueterC. LibinM. de WindA. RavoetM. Le BuanecH. SibilleC. Manfouo-FoutsopG. VeysI. Haibe-KainsB. SinghalS.K. MichielsS. RothéF. SalgadoR. DuvillierH. IgnatiadisM. DesmedtC. BronD. LarsimontD. PiccartM. SotiriouC. Willard-GalloK. CD4+ follicular helper T cell infiltration predicts breast cancer survival.J. Clin. Invest.201312372873289210.1172/JCI6742823778140
    [Google Scholar]
  29. RuffellB. AuA. RugoH.S. EssermanL.J. HwangE.S. CoussensL.M. Leukocyte composition of human breast cancer.Proc. Natl. Acad. Sci. USA201210982796280110.1073/pnas.110430310821825174
    [Google Scholar]
  30. LiuD. VadgamaJ. WuY. Basal-like breast cancer with low TGFβ and high TNFα pathway activity is rich in activated memory CD4 T cells and has a good prognosis.Int. J. Biol. Sci.202117367068210.7150/ijbs.5612833767579
    [Google Scholar]
  31. BhattacharyyaS. Md Sakib HossainD. MohantyS. Sankar SenG. ChattopadhyayS. BanerjeeS. ChakrabortyJ. DasK. SarkarD. DasT. SaG. Curcumin reverses T cell-mediated adaptive immune dysfunctions in tumor-bearing hosts.Cell. Mol. Immunol.20107430631510.1038/cmi.2010.1120305684
    [Google Scholar]
  32. HeJ. WangX. ChenK. ZhangM. WangJ. The amino acid transporter SLC7A11-mediated crosstalk implicated in cancer therapy and the tumor microenvironment.Biochem. Pharmacol.202220511524110.1016/j.bcp.2022.11524136084707
    [Google Scholar]
  33. CheungE.C. VousdenK.H. The role of ROS in tumour development and progression.Nat. Rev. Cancer202222528029710.1038/s41568‑021‑00435‑035102280
    [Google Scholar]
  34. ZhaoD. MengY. DianY. ZhouQ. SunY. LeJ. ZengF. ChenX. HeY. DengG. Molecular landmarks of tumor disulfidptosis across cancer types to promote disulfidptosis-target therapy.Redox Biol.20236810296610.1016/j.redox.2023.10296638035663
    [Google Scholar]
  35. ZhongF. JiangJ. YaoF.Y. LiuJ. ShuaiX. WangX.L. HuangB. WangX. Development and validation of a disulfidptosis-related scoring system to predict clinical outcome and immunotherapy response in acute myeloid leukemia by integrated analysis of single-cell and bulk RNA-sequencing.Front. Pharmacol.202314127270110.3389/fphar.2023.127270138053840
    [Google Scholar]
  36. XuK. DaiC. YangJ. XuJ. XiaC. LiJ. ZhangC. XuN. WuT. Disulfidptosis-related lncRNA signatures assess immune microenvironment and drug sensitivity in hepatocellular carcinoma.Comput. Biol. Med.202416910793010.1016/j.compbiomed.2024.10793038199215
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673294711240405090150
Loading
/content/journals/cmc/10.2174/0109298673294711240405090150
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Breast cancer; carcinoma cells; disulfidptosis; immune microenvironment; lncRNAs; prognosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test