Skip to content
2000
image of Lysyl Oxidase as a Target to Reduce Graft Failure Post Solid Organ Transplantation, a Potential Target for Novel Treatment

Abstract

The present review was undertaken to clarify the potential role of the lysyl oxidase (Lox) family of enzymes in delaying graft dysfunction. Delayed graft failure is a well-known event that occurs post-transplantation period. Ischemia and trauma to the graft tissue before or during the operation procedures are likely to be the most important etiological causes of this complication. The lox proteins family including Lox and Lox- like proteins (LoxL1-4) are copper-dependent enzymes that catalyze the cross-linking of collagens to stabilize extracellular matrix (ECM). Hypoxia-induced factor 1-α (HIF-1α) and transforming growth factor β (TGF-β) are two upstream regulators of the Lox proteins family whose expression increased following hypoxia and tissue injury. Lox proteins’ overactivation upregulates several intracellular transduction pathways to promote oxidative stress (OS), ECM proteins accumulation, and epithelial to mesenchymal transition (EMT) contribute to vascular stiffness and tissue fibrogenesis, which increase the risk of graft failure post solid organ transplantation (SOT). Preclinical studies have shown that Lox protein inhibitors have the potential to prevent organ fibrosis. Regarding the molecular effects of Lox proteins in causing tissue fibrosis, these molecules can be further investigated as a drug target in reducing the possibility of organ fibrosis after allograft transplantation.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673346346241211063452
2025-01-30
2025-09-08
Loading full text...

Full text loading...

References

  1. Lechler R.I. Sykes M. Thomson A.W. Turka L.A. Organ transplantation—how much of the promise has been realized? Nat. Med. 2005 11 6 605 613 10.1038/nm1251 15937473
    [Google Scholar]
  2. Ahmed E.B. Alegre M.L. Chong A.S. Role of bacterial infections in allograft rejection. Expert Rev. Clin. Immunol. 2008 4 2 281 293 10.1586/1744666X.4.2.281 20477057
    [Google Scholar]
  3. Claeys E. Vermeire K.J.J.o.i.s. Immunosuppressive drugs in organ transplantation to prevent allograft rejection: Mode of action and side effects. J Immunological Sci. 2019 3 4 14 21 10.29245/2578‑3009/2019/4.1178
    [Google Scholar]
  4. Spahn J.H. Li W. Kreisel D. Innate immune cells in transplantation. Curr. Opin. Organ Transplant. 2014 19 1 14 19 10.1097/MOT.0000000000000041 24316757
    [Google Scholar]
  5. Torres I.B. Moreso F. Sarró E. Meseguer A. Serón D. The Interplay between inflammation and fibrosis in kidney transplantation. BioMed Res. Int. 2014 2014 1 9 10.1155/2014/750602 24991565
    [Google Scholar]
  6. Higgins D.F. Hypoxia-inducible factor signaling in the development of tissue fibrosis. Cell Cycle 2008 7 9 1128 1132 10.4161/cc.7.9.5804
    [Google Scholar]
  7. Chen Z. Li Y. Xu H. Ma F. Li J. Zhao L. Xu Y. Elevated ischaemia‐associated lysyl oxidase activity in delayed graft failure 6–12 months after renal transplantation. Exp. Physiol. 2017 102 2 282 287 10.1113/EP085444 28024102
    [Google Scholar]
  8. Ikenaga N. Selective targeting of lysyl oxidase-like 2 (LOXL2) suppresses hepatic fibrosis progression and accelerates its reversal. Gut. 2017 66 9 1697 1708
    [Google Scholar]
  9. Diaz U.C. Thievend P.C. Marchand M.F. Atlas Y. Salza R. Malbouyres M. Barret A. Teillon J. Robouant A.C. Ruggiero F. Monnot C. Girard P. Guilluy C. Blum R.S. Germain S. Muller L. Scavenger receptor cysteine-rich domains of lysyl oxidase-like2 regulate endothelial ECM and angiogenesis through non-catalytic scaffolding mechanisms. Matrix Biol. 2020 88 33 52 10.1016/j.matbio.2019.11.003 31759052
    [Google Scholar]
  10. Martins P.R. Leach R.E. Krawetz S.A. Whole-body gene expression by data mining. Genomics 2001 72 1 34 42 10.1006/geno.2000.6437 11247664
    [Google Scholar]
  11. Asuncion L. Fogelgren B. Fong K.S.K. Fong S.F.T. Kim Y. Csiszar K. A novel human lysyl oxidase-like gene (LOXL4) on chromosome 10q24 has an altered scavenger receptor cysteine rich domain. Matrix Biol. 2001 20 7 487 491 10.1016/S0945‑053X(01)00161‑5 11691588
    [Google Scholar]
  12. Mäki J.M. Tikkanen H. Kivirikko K.I. Cloning and characterization of a fifth human lysyl oxidase isoenzyme: The third member of the lysyl oxidase-related subfamily with four scavenger receptor cysteine-rich domains. Matrix Biol. 2001 20 7 493 496 10.1016/S0945‑053X(01)00157‑3 11691589
    [Google Scholar]
  13. Laczko R. Csiszar K. Lysyl oxidase (LOX): Functional contributions to signaling pathways. Biomolecules 2020 10 8 1093 10.3390/biom10081093 32708046
    [Google Scholar]
  14. Vallet S.D. Blum R.S. Lysyl oxidases: From enzyme activity to extracellular matrix cross-links. Essays Biochem. 2019 63 3 349 364 10.1042/EBC20180050 31488698
    [Google Scholar]
  15. Zhao W. Yang A. Chen W. Wang P. Liu T. Cong M. Xu A. Yan X. Jia J. You H. Inhibition of lysyl oxidase-like 1 (LOXL1) expression arrests liver fibrosis progression in cirrhosis by reducing elastin crosslinking. Biochim. Biophys. Acta Mol. Basis Dis. 2018 1864 4 1129 1137 10.1016/j.bbadis.2018.01.019 29366776
    [Google Scholar]
  16. Choi S.E. Jeon N. Choi H.Y. Shin J.I. Jeong H.J. Lim B.J. Lysyl oxidase-like 2 is expressed in kidney tissue and is associated with the progression of tubulointerstitial fibrosis. Mol. Med. Rep. 2017 16 3 2477 2482 10.3892/mmr.2017.6918 28677767
    [Google Scholar]
  17. Zhang X. Li X. Zhou W. Liu X. Huang J. Zhang Y. Lindholm B. Yu C. Serum lysyl oxidase is a potential diagnostic biomarker for kidney fibrosis. Am. J. Nephrol. 2020 51 11 907 918 10.1159/000509381 33152735
    [Google Scholar]
  18. Zhang X. Zhou W. Niu Y. Zhu S. Zhang Y. Li X. Yu C. Lysyl oxidase promotes renal fibrosis via accelerating collagen cross‐link driving by β‐arrestin/ ERK / STAT3 pathway. FASEB J. 2022 36 8 e22427 10.1096/fj.202200573R 35792886
    [Google Scholar]
  19. Fraga A. Ribeiro R. Príncipe P. Lopes C. Medeiros R. Hypoxia and prostate cancer aggressiveness: A tale with many endings. Clin. Genitourin. Cancer 2015 13 4 295 301 10.1016/j.clgc.2015.03.006 26007708
    [Google Scholar]
  20. Cox T.R. Rumney R.M.H. Schoof E.M. Perryman L. Høye A.M. Agrawal A. Bird D. Latif N.A. Forrest H. Evans H.R. Huggins I.D. Lang G. Linding R. Gartland A. Erler J.T. Retracted article: The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase. Nature 2015 522 7554 106 110 10.1038/nature14492 26017313
    [Google Scholar]
  21. Palazon A. Goldrath A.W. Nizet V. Johnson R.S. HIF transcription factors, inflammation, and immunity. Immunity 2014 41 4 518 528 10.1016/j.immuni.2014.09.008 25367569
    [Google Scholar]
  22. Lu M. Qin Q. Yao J. Sun L. Qin X. Induction of LOX by TGF‐β1/Smad/AP‐1 signaling aggravates rat myocardial fibrosis and heart failure. IUBMB Life 2019 71 11 1729 1739 10.1002/iub.2112 31317653
    [Google Scholar]
  23. Ma L. Zeng Y. Wei J. Yang D. Ding G. Liu J. Shang J. Kang Y. Ji X. Knockdown of LOXL1 inhibits TGF-β1-induced proliferation and fibrogenesis of hepatic stellate cells by inhibition of Smad2/3 phosphorylation. Biomed. Pharmacother. 2018 107 1728 1735 10.1016/j.biopha.2018.08.156 30257391
    [Google Scholar]
  24. Zhang X. Wang Q. Wu J. Wang J. Shi Y. Liu M. Crystal structure of human lysyl oxidase-like 2 (hLOXL2) in a precursor state. Proc. Natl. Acad. Sci. 2018 115 15 3828 3833 10.1073/pnas.1720859115 29581294
    [Google Scholar]
  25. Klinman J.P. Bonnot F. Intrigues and intricacies of the biosynthetic pathways for the enzymatic quinocofactors: PQQ, TTQ, CTQ, TPQ, and LTQ. Chem. Rev. 2014 114 8 4343 4365 10.1021/cr400475g 24350630
    [Google Scholar]
  26. Bové G.X. Trillo R.I. Pascual R.F. Origin and evolution of lysyl oxidases. Sci. Rep. 2015 5 1 10568 10.1038/srep10568 26024311
    [Google Scholar]
  27. Bignon M. Thievend P.C. Hardouin J. Malbouyres M. Bréchot N. Nasciutti L. Barret A. Teillon J. Guillon E. Etienne E. Caron M. Caron J.R. Monnot C. Ruggiero F. Muller L. Germain S. Lysyl oxidase-like protein-2 regulates sprouting angiogenesis and type IV collagen assembly in the endothelial basement membrane. Blood 2011 118 14 3979 3989 10.1182/blood‑2010‑10‑313296 21835952
    [Google Scholar]
  28. Saux C.J-L. Tronecker H. Bogic L. Greenwood B.G.D. Boyd C.D. Csiszar K. The LOXL2 gene encodes a new lysyl oxidase-like protein and is expressed at high levels in reproductive tissues. J. Biol. Chem. 1999 274 18 12939 12944 10.1074/jbc.274.18.12939 10212285
    [Google Scholar]
  29. Saux L.J.C. Tomsche A. Ujfalusi A. Jia L. Csiszar K. Central nervous system, uterus, heart, and leukocyte expression of the LOXL3 gene, encoding a novel lysyl oxidase-like protein. Genomics 2001 74 2 211 218 10.1006/geno.2001.6545 11386757
    [Google Scholar]
  30. Akahori D. Inui N. Inoue Y. Yasui H. Hozumi H. Suzuki Y. Karayama M. Furuhashi K. Enomoto N. Fujisawa T. Suda T. Effect of hypoxia on pulmonary endothelial cells from bleomycin-induced pulmonary fibrosis model mice. Int. J. Mol. Sci. 2022 23 16 8996 10.3390/ijms23168996 36012260
    [Google Scholar]
  31. Thankam F.G. Association of hypoxia and mitochondrial damage associated molecular patterns in the pathogenesis of vein graft failure: A pilot study. Transl Res. 2021 229 38 52 10.1016/j.trsl.2020.08.010
    [Google Scholar]
  32. Yu T.-M. Expression of hypoxia-inducible factor-1α (HIF-1α) in infiltrating inflammatory cells is associated with chronic allograft dysfunction and predicts long-term graft survival. Nephrol Dial Transplant. 2013 28 3 659 670
    [Google Scholar]
  33. Erler J.T. Bennewith K.L. Nicolau M. Dornhöfer N. Kong C. Le Q.T. Chi J.T.A. Jeffrey S.S. Giaccia A.J. Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 2006 440 7088 1222 1226 10.1038/nature04695 16642001
    [Google Scholar]
  34. Wong C.C.L. Gilkes D.M. Zhang H. Chen J. Wei H. Chaturvedi P. Fraley S.I. Wong C.M. Khoo U.S. Ng I.O.L. Wirtz D. Semenza G.L. Hypoxia-inducible factor 1 is a master regulator of breast cancer metastatic niche formation. Proc. Natl. Acad. Sci. 2011 108 39 16369 16374 10.1073/pnas.1113483108 21911388
    [Google Scholar]
  35. Wang V. Davis D.A. Haque M. Huang L.E. Yarchoan R. Differential gene up-regulation by hypoxia-inducible factor-1alpha and hypoxia-inducible factor-2alpha in HEK293T cells. Cancer Res. 2005 65 8 3299 3306 10.1158/0008‑5472.CAN‑04‑4130 15833863
    [Google Scholar]
  36. Halberg N. Khan T. Trujillo M.E. Asterholm W.I. Attie A.D. Sherwani S. Wang Z.V. Eiger L.S. Dineen S. Magalang U.J. Brekken R.A. Scherer P.E. Hypoxia-inducible factor 1alpha induces fibrosis and insulin resistance in white adipose tissue. Mol. Cell. Biol. 2009 29 16 4467 4483 10.1128/MCB.00192‑09 19546236
    [Google Scholar]
  37. Higgins D.F. Kimura K. Bernhardt W.M. Shrimanker N. Akai Y. Hohenstein B. Saito Y. Johnson R.S. Kretzler M. Cohen C.D. Eckardt K.U. Iwano M. Haase V.H. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J. Clin. Invest. 2007 117 12 3810 3820 10.1172/JCI30487 18037992
    [Google Scholar]
  38. Kagan H.M. Li W. Lysyl oxidase: Properties, specificity, and biological roles inside and outside of the cell. J. Cell. Biochem. 2003 88 4 660 672 10.1002/jcb.10413 12577300
    [Google Scholar]
  39. Sethi A. Mao W. Wordinger R.J. Clark A.F. Transforming growth factor-beta induces extracellular matrix protein cross-linking lysyl oxidase (LOX) genes in human trabecular meshwork cells. Invest. Ophthalmol. Vis. Sci. 2011 52 8 5240 5250 10.1167/iovs.11‑7287 21546528
    [Google Scholar]
  40. Remst D.F.G. Blom A.B. Vitters E.L. Bank R.A. Berg V.D.W.B. Davidson B.E.N. Kraan V.D.P.M. Gene expression analysis of murine and human osteoarthritis synovium reveals elevation of transforming growth factor β-responsive genes in osteoarthritis-related fibrosis. Arthritis Rheumatol. 2014 66 3 647 656 10.1002/art.38266 24574225
    [Google Scholar]
  41. Loomis T. Smith L.R. Thrown for a loop: Fibro-adipogenic progenitors in skeletal muscle fibrosis. Am. J. Physiol. Cell Physiol. 2023 325 4 C895 C906 10.1152/ajpcell.00245.2023 37602412
    [Google Scholar]
  42. Cheng T. Liu Q. Zhang R. Zhang Y. Chen J. Yu R. Ge G. Lysyl oxidase promotes bleomycin-induced lung fibrosis through modulating inflammation. J. Mol. Cell Biol. 2014 6 6 506 515 10.1093/jmcb/mju039 25348956
    [Google Scholar]
  43. Mao X.Y. Li Q.Q. Gao Y.F. Zhou H.H. Liu Z.Q. Jin W.L. Gap junction as an intercellular glue: Emerging roles in cancer EMT and metastasis. Cancer Lett. 2016 381 1 133 137 10.1016/j.canlet.2016.07.037 27490999
    [Google Scholar]
  44. Wang Y. Zhou Q. Tang R. Huang Y. He T. FoxM1 inhibition ameliorates renal interstitial fibrosis by decreasing extracellular matrix and epithelial–mesenchymal transition. J. Pharmacol. Sci. 2020 143 4 281 289 10.1016/j.jphs.2020.05.007 32513569
    [Google Scholar]
  45. Djamali A. Reese S. Yracheta J. Oberley T. Hullett D. Becker B. Epithelial-to-mesenchymal transition and oxidative stress in chronic allograft nephropathy. Am. J. Transplant. 2005 5 3 500 509 10.1111/j.1600‑6143.2004.00713.x 15707404
    [Google Scholar]
  46. Robertson H. Biliary epithelial‐mesenchymal transition in posttransplantation recurrence of primary biliary cirrhosis. Hepatology. 2007 45 4 977 81 10.1002/hep.21624
    [Google Scholar]
  47. Novoa L.J.M. Nieto M.A. Inflammation and EMT: An alliance towards organ fibrosis and cancer progression. EMBO Mol. Med. 2009 1 6-7 303 314 10.1002/emmm.200900043 20049734
    [Google Scholar]
  48. Cordenonsi M. Montagner M. Adorno M. Zacchigna L. Martello G. Mamidi A. Soligo S. Dupont S. Piccolo S. Integration of TGF-beta and Ras/MAPK signaling through p53 phosphorylation. Science 2007 315 5813 840 843 10.1126/science.1135961 17234915
    [Google Scholar]
  49. Moustakas A. Heldin C.H. Non-Smad TGF-β signals. J. Cell Sci. 2005 118 16 3573 3584 10.1242/jcs.02554 16105881
    [Google Scholar]
  50. Novo E. Parola M. Redox mechanisms in hepatic chronic wound healing and fibrogenesis. Fibr. Tis. Rep. 2008 1 1 5 10.1186/1755‑1536‑1‑5 19014652
    [Google Scholar]
  51. Fiaschi T. Cozzi G. Raugei G. Formigli L. Ramponi G. Chiarugi P. Redox regulation of beta-actin during integrin-mediated cell adhesion. J. Biol. Chem. 2006 281 32 22983 22991 10.1074/jbc.M603040200 16757472
    [Google Scholar]
  52. Zhang H. Akman H.O. Smith E.L.P. Zhao J. Ullrich M.J.E. Batuman O.A. Cellular response to hypoxia involves signaling via Smad proteins. Blood 2003 101 6 2253 2260 10.1182/blood‑2002‑02‑0629 12411310
    [Google Scholar]
  53. Wen S.X. Leask A. Abraham D. Regulation and function of connective tissue growth factor/CCN2 in tissue repair, scarring and fibrosis. Cytokine Growth Factor Rev. 2008 19 2 133 144 10.1016/j.cytogfr.2008.01.002 18358427
    [Google Scholar]
  54. Krishnamachary B. Zagzag D. Nagasawa H. Rainey K. Okuyama H. Baek J.H. Semenza G.L. Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. Cancer Res. 2006 66 5 2725 2731 10.1158/0008‑5472.CAN‑05‑3719 16510593
    [Google Scholar]
  55. Lee K. Gjorevski N. Boghaert E. Radisky D.C. Nelson C.M. Snail1, Snail2, and E47 promote mammary epithelial branching morphogenesis. EMBO J. 2011 30 13 2662 2674 10.1038/emboj.2011.159 21610693
    [Google Scholar]
  56. Díaz R. Kim J.W. Hui J.J. Li Z. Swain G.P. Fong K.S.K. Csiszar K. Russo P.A. Rand E.B. Furth E.E. Wells R.G. Evidence for the epithelial to mesenchymal transition in biliary atresia fibrosis. Hum. Pathol. 2008 39 1 102 115 10.1016/j.humpath.2007.05.021 17900655
    [Google Scholar]
  57. Willis B.C. Liebler J.M. Phelps L.K. Nicholson A.G. Crandall E.D. du Bois R.M. Borok Z. Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-beta1: Potential role in idiopathic pulmonary fibrosis. Am. J. Pathol. 2005 166 5 1321 1332 10.1016/S0002‑9440(10)62351‑6 15855634
    [Google Scholar]
  58. Kim K.K. Kugler M.C. Wolters P.J. Robillard L. Galvez M.G. Brumwell A.N. Sheppard D. Chapman H.A. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc. Natl. Acad. Sci. 2006 103 35 13180 13185 10.1073/pnas.0605669103 16924102
    [Google Scholar]
  59. Borthwick L.A. McIlroy E.I. Gorowiec M.R. Brodlie M. Johnson G.E. Ward C. Lordan J.L. Corris P.A. Kirby J.A. Fisher A.J. Inflammation and epithelial to mesenchymal transition in lung transplant recipients: Role in dysregulated epithelial wound repair. Am. J. Transplant. 2010 10 3 498 509 10.1111/j.1600‑6143.2009.02953.x 20055810
    [Google Scholar]
  60. Ward C. Forrest I.A. Murphy D.M. Johnson G.E. Robertson H. Cawston T.E. Fisher A.J. Dark J.H. Lordan J.L. Kirby J.A. Corris P.A. Phenotype of airway epithelial cells suggests epithelial to mesenchymal cell transition in clinically stable lung transplant recipients. Thorax 2005 60 10 865 871 10.1136/thx.2005.043026 15972366
    [Google Scholar]
  61. Rastaldi M.P. Ferrario F. Giardino L. Dell’Antonio G. Grillo C. Grillo P. Strutz F. Müller G.A. Colasanti G. D’Amico G. Epithelial-mesenchymal transition of tubular epithelial cells in human renal biopsies. Kidney Int. 2002 62 1 137 146 10.1046/j.1523‑1755.2002.00430.x 12081572
    [Google Scholar]
  62. Lucero H. Kagan H.J.C. Lysyl oxidase: An oxidative enzyme and effector of cell function. Cell Mol Life Sci. 2006 63 2304 2316
    [Google Scholar]
  63. Schietke R. The lysyl oxidases LOX and LOXL2 are necessary and sufficient to repress E-cadherin in hypoxia: Insights into cellular transformation processes mediated by HIF-1. J Biol Chem. 2010 285 9 6658 69
    [Google Scholar]
  64. Peinado H. Cruz C.I.M. Olmeda D. Csiszar K. Fong K.S.K. Vega S. Nieto M.A. Cano A. Portillo F. A molecular role for lysyl oxidase-like 2 enzyme in Snail regulation and tumor progression. EMBO J. 2005 24 19 3446 3458 10.1038/sj.emboj.7600781 16096638
    [Google Scholar]
  65. Wang J. Zhu Y. Tan J. Meng X. Xie H. Wang R. Lysyl oxidase promotes epithelial-to-mesenchymal transition during paraquat-induced pulmonary fibrosis. Mol. Biosyst. 2016 12 2 499 507 10.1039/C5MB00698H 26670953
    [Google Scholar]
  66. Kasashima H. Yashiro M. Kinoshita H. Fukuoka T. Morisaki T. Masuda G. Sakurai K. Kubo N. Ohira M. Hirakawa K. Lysyl oxidase is associated with the epithelial–mesenchymal transition of gastric cancer cells in hypoxia. Gastric Cancer 2016 19 2 431 442 10.1007/s10120‑015‑0510‑3 26100130
    [Google Scholar]
  67. Matsuoka J. Yashiro M. Doi Y. Fuyuhiro Y. Kato Y. Shinto O. Noda S. Kashiwagi S. Aomatsu N. Hirakawa T. Hasegawa T. Shimizu K. Shimizu T. Miwa A. Yamada N. Sawada T. Hirakawa K. Hypoxia stimulates the EMT of gastric cancer cells through autocrine TGFβ signaling. PLoS One 2013 8 5 e62310 10.1371/journal.pone.0062310 23690936
    [Google Scholar]
  68. Moon H.J. Finney J. Xu L. Moore D. Welch D.R. Mure M. MCF-7 cells expressing nuclear associated lysyl oxidase-like 2 (LOXL2) exhibit an epithelial-to-mesenchymal transition (EMT) phenotype and are highly invasive in vitro. J. Biol. Chem. 2013 288 42 30000 30008 10.1074/jbc.C113.502310 24014025
    [Google Scholar]
  69. Lu J. Qian Y. Jin W. Tian R. Zhu Y. Wang J. Meng X. Wang R. Hypoxia-inducible factor-1α regulates epithelial-to-mesenchymal transition in paraquat-induced pulmonary fibrosis by activating lysyl oxidase. Exp. Ther. Med. 2018 15 3 2287 2294 29467842
    [Google Scholar]
  70. El-Haibi C.P. Bell G.W. Zhang J. Collmann A.Y. Wood D. Scherber C.M. Csizmadia E. Mariani O. Zhu C. Campagne A. Toner M. Bhatia S.N. Irimia D. Salomon V.A. Karnoub A.E. Critical role for lysyl oxidase in mesenchymal stem cell-driven breast cancer malignancy. Proc. Natl. Acad. Sci. 2012 109 43 17460 17465 10.1073/pnas.1206653109 23033492
    [Google Scholar]
  71. Wei L. Song X.R. Sun J.J. Wang X.W. Xie L. Lv L.Y. Lysyl oxidase may play a critical role in hypoxia-induced NSCLC cells invasion and migration. Cancer Biother. Radiopharm. 2012 27 10 672 677 10.1089/cbr.2012.1241 23140307
    [Google Scholar]
  72. Hong X. Yu J.J. Silencing of lysyl oxidase‑like 2 inhibits the migration, invasion and epithelial‑to‑mesenchymal transition of renal cell carcinoma cells through the Src/FAK signaling pathway. Int. J. Oncol. 2019 54 5 1676 1690 10.3892/ijo.2019.4726 30816490
    [Google Scholar]
  73. Csiszar K. Lysyl oxidases: A novel multifunctional amine oxidase family. Prog. Nucleic Acid Res. Mol. Biol. 2001 70 1 32 10.1016/S0079‑6603(01)70012‑8 11642359
    [Google Scholar]
  74. Steward A.J. Kelly D.J. Mechanical regulation of mesenchymal stem cell differentiation. J. Anat. 2015 227 6 717 731 10.1111/joa.12243 25382217
    [Google Scholar]
  75. Handorf A.M. Zhou Y. Halanski M.A. Li W.J. Tissue stiffness dictates development, homeostasis, and disease progression. Organogenesis 2015 11 1 1 15 10.1080/15476278.2015.1019687 25915734
    [Google Scholar]
  76. Sreenivasappa H. Chaki S.P. Lim S.M. Trzeciakowski J.P. Davidson M.W. Rivera G.M. Trache A. Selective regulation of cytoskeletal tension and cell–matrix adhesion by RhoA and Src. Integr. Biol. 2014 6 8 743 754 10.1039/C4IB00019F 24984203
    [Google Scholar]
  77. Matthews A.T. Ross M.K. Role of lysyl oxidase on microvascular function. Am. J. Physiol. Heart Circ. Physiol. 2018 314 4 H784 H786 10.1152/ajpheart.00729.2017 29351472
    [Google Scholar]
  78. Balasubramanian P. Csiszar A.J.A.J.o.P.-H. Physiology C. Lysyl oxidases as driving forces behind age-related macrovascular rigidity. Am J Physiol Heart Circ Physiol. 2019 317 1 H37 H38 10.1152/ajpheart.00264.2019
    [Google Scholar]
  79. Kneifel M. Scholze A. Burkert A. Offermann G. Rothermund L. Zidek W. Tepel M. Impaired renal allograft function is associated with increased arterial stiffness in renal transplant recipients. Am. J. Transplant. 2006 6 7 1624 1630 10.1111/j.1600‑6143.2006.01341.x 16827863
    [Google Scholar]
  80. Korogiannou M. Xagas E. Marinaki S. Sarafidis P. Boletis J.N. Arterial stiffness in patients with renal transplantation; Associations with co-morbid conditions, evolution, and prognostic importance for cardiovascular and renal outcomes. Front. Cardiovasc. Med. 2019 6 67 10.3389/fcvm.2019.00067 31179288
    [Google Scholar]
  81. Gaspari R. Teofili L. Mignani V. Franco A. Valentini C.G. Cutuli S.L. Cina A. Agnes S. Avolio A.W. Antonelli M. Duplex doppler evidence of high hepatic artery resistive index after liver transplantation: Role of portal hypertension and clinical impact. Dig. Liver Dis. 2020 52 3 301 307 10.1016/j.dld.2019.10.017 31806469
    [Google Scholar]
  82. Revelles M.S. Redondo G.A.B. Avendaño M.S. Varona S. Palao T. Orriols M. Roque F.R. Fortuño A. Touyz R.M. González M.J. Salaices M. Rodríguez C. Briones A.M. Lysyl oxidase induces vascular oxidative stress and contributes to arterial stiffness and abnormal elastin structure in hypertension: Role of p38MAPK. Antioxid. Redox Signal. 2017 27 7 379 397 10.1089/ars.2016.6642 28010122
    [Google Scholar]
  83. Orriols M. Guadall A. Galán M. Pàmies M.I. Varona S. Calvo R.R. Briones A.M. Navarro M.A. de Diego A. Osada J. González M.J. Rodríguez C. Lysyl oxidase (LOX) in vascular remodelling. Insight from a new animal model. Thromb. Haemost. 2014 112 4 812 824 24990180
    [Google Scholar]
  84. Servera B.C. Alonso J. Cañes L. Sufuentes V.P. Umbert P.L. Celis F.A. Taurón M. Sinovas R.A. Andrés L.N. Rodríguez C. González M.J. Lysyl oxidase-dependent extracellular matrix crosslinking modulates calcification in atherosclerosis and aortic valve disease. Biomed. Pharmacother. 2023 167 115469 10.1016/j.biopha.2023.115469 37729730
    [Google Scholar]
  85. Uto K. Yoshizawa S. Aoki C. Nishikawa T. Oda H. Inhibition of extracellular matrix integrity attenuates the early phase of aortic medial calcification in a rodent model. Atherosclerosis 2021 319 10 20 10.1016/j.atherosclerosis.2020.12.015 33453491
    [Google Scholar]
  86. Gacheru S.N. Thomas K.M. Murray S.A. Csiszar K. Mungo S.L.I. Kagan H.M. Transcriptional and post-transcriptional control of lysyl oxidase expression in vascular smooth muscle cells: Effects of TGF-β1 and serum deprivation. J. Cell. Biochem. 1997 65 3 395 407 10.1002/(SICI)1097‑4644(19970601)65:3<395::AID‑JCB9>3.0.CO;2‑N 9138095
    [Google Scholar]
  87. Shanley C.J. Kermani G.M. Sarkar R. Welling T.H. Kriegel A. Ford J.W. Stanley J.C. Phan S.H. Transforming growth factor-β1 increases lysyl oxidase enzyme activity and mRNA in rat aortic smooth muscle cells. J. Vasc. Surg. 1997 25 3 446 452 10.1016/S0741‑5214(97)70254‑4 9081125
    [Google Scholar]
  88. Rodríguez C. González M.J. Raposo B. Alcudia J.F. Guadall A. Badimon L. Regulation of lysyl oxidase in vascular cells: Lysyl oxidase as a new player in cardiovascular diseases. Cardiovasc. Res. 2008 79 1 7 13 10.1093/cvr/cvn102 18469024
    [Google Scholar]
  89. Schilter H. Findlay A.D. Perryman L. Yow T.T. Moses J. Zahoor A. Turner C.I. Deodhar M. Foot J.S. Zhou W. Greco A. Joshi A. Rayner B. Townsend S. Buson A. Jarolimek W. The lysyl oxidase like 2/3 enzymatic inhibitor, PXS‐5153A, reduces crosslinks and ameliorates fibrosis. J. Cell. Mol. Med. 2019 23 3 1759 1770 10.1111/jcmm.14074 30536539
    [Google Scholar]
  90. Harlow C.R. Wu X. van Deemter M. Gardiner F. Poland C. Green R. Sarvi S. Brown P. Kadler K.E. Lu Y. Mason J.I. Critchley H.O.D. Hillier S.G. Targeting lysyl oxidase reduces peritoneal fibrosis. PLoS One 2017 12 8 e0183013 10.1371/journal.pone.0183013 28800626
    [Google Scholar]
  91. Liu S.B. Ikenaga N. Peng Z.W. Sverdlov D.Y. Greenstein A. Smith V. Schuppan D. Popov Y. Lysyl oxidase activity contributes to collagen stabilization during liver fibrosis progression and limits spontaneous fibrosis reversal in mice. FASEB J. 2016 30 4 1599 1609 10.1096/fj.14‑268425 26700732
    [Google Scholar]
  92. Wei Y. Kim T.J. Peng D.H. Duan D. Gibbons D.L. Yamauchi M. Jackson J.R. Le Saux C.J. Calhoun C. Peters J. Derynck R. Backes B.J. Chapman H.A. Fibroblast-specific inhibition of TGF-β1 signaling attenuates lung and tumor fibrosis. J. Clin. Invest. 2017 127 10 3675 3688 10.1172/JCI94624 28872461
    [Google Scholar]
  93. Hamilton B.V. Spangler R. Marshall D. McCauley S. Rodriguez H.M. Oyasu M. Mikels A. Vaysberg M. Ghermazien H. Wai C. Garcia C.A. Velayo A.C. Jorgensen B. Biermann D. Tsai D. Green J. Eilot Z.S. Holzer A. Ogg S. Thai D. Neufeld G. Vlasselaer V.P. Smith V. Allosteric inhibition of lysyl oxidase–like-2 impedes the development of a pathologic microenvironment. Nat. Med. 2010 16 9 1009 1017 10.1038/nm.2208 20818376
    [Google Scholar]
  94. Selman M. Carrillo G. Salas J. Padilla R.P. Chavira P.R. Sansores R. Chapela R. Colchicine, D-penicillamine, and prednisone in the treatment of idiopathic pulmonary fibrosis: A controlled clinical trial. Chest 1998 114 2 507 512 10.1378/chest.114.2.507 9726738
    [Google Scholar]
  95. Pradhan A.M. Bhave S.A. Joshi V.V. Bavdekar A.R. Pandit A.N. Tanner M.S. Reversal of Indian childhood cirrhosis by D-penicillamine therapy. J. Pediatr. Gastroenterol. Nutr. 1995 20 1 28 35 7884615
    [Google Scholar]
  96. Ovet H. Oztay F. The copper chelator tetrathiomolybdate regressed bleomycin-induced pulmonary fibrosis in mice, by reducing lysyl oxidase expressions. Biol. Trace Elem. Res. 2014 162 1-3 189 199 10.1007/s12011‑014‑0142‑1 25349139
    [Google Scholar]
  97. Song M. Song Z. Barve S. Zhang J. Chen T. Liu M. Arteel G.E. Brewer G.J. McClain C.J. Tetrathiomolybdate protects against bile duct ligation-induced cholestatic liver injury and fibrosis. J. Pharmacol. Exp. Ther. 2008 325 2 409 416 10.1124/jpet.107.131227 18299419
    [Google Scholar]
  98. Yao Y. Findlay A. Stolp J. Rayner B. Ask K. Jarolimek W. Pan-lysyl oxidase inhibitor PXS-5505 ameliorates multiple-organ fibrosis by inhibiting collagen crosslinks in rodent models of systemic sclerosis. Int. J. Mol. Sci. 2022 23 10 5533 10.3390/ijms23105533 35628342
    [Google Scholar]
  99. Matsuo A. Tanida R. Yanagi S. Tsubouchi H. Miura A. Shigekusa T. Matsumoto N. Nakazato M. Significance of nuclear LOXL2 inhibition in fibroblasts and myofibroblasts in the fibrotic process of acute respiratory distress syndrome. Eur. J. Pharmacol. 2021 892 173754 10.1016/j.ejphar.2020.173754 33248114
    [Google Scholar]
  100. Sharma R.K. Kamble S.H. Krishnan S. Gomes J. To B. Li S. Liu I.C. Gumz M.L. Mohandas R. Involvement of lysyl oxidase in the pathogenesis of arterial stiffness in chronic kidney disease. Am. J. Physiol. Renal Physiol. 2023 324 4 F364 F373 10.1152/ajprenal.00239.2022 36825626
    [Google Scholar]
  101. Kim Y. Boyd C.D. Csiszar K. A new gene with sequence and structural similarity to the gene encoding human lysyl oxidase. J. Biol. Chem. 1995 270 13 7176 7182 10.1074/jbc.270.13.7176 7706256
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673346346241211063452
Loading
/content/journals/cmc/10.2174/0109298673346346241211063452
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test