Skip to content
2000
Volume 32, Issue 37
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

The present review was undertaken to clarify the potential role of the lysyl oxidase (Lox) family of enzymes in delaying graft dysfunction. Delayed graft failure is a well-known event that occurs post-transplantation period. Ischemia and trauma to the graft tissue before or during the operation procedures are likely to be the most important etiological causes of this complication. The lox proteins family including Lox and Lox- like proteins (LoxL1-4) are copper-dependent enzymes that catalyze the cross-linking of collagens to stabilize extracellular matrix (ECM). Hypoxia-induced factor 1-α (HIF-1α) and transforming growth factor β (TGF-β) are two upstream regulators of the Lox proteins family whose expression increased following hypoxia and tissue injury. Lox proteins’ overactivation upregulates several intracellular transduction pathways to promote oxidative stress (OS), ECM proteins accumulation, and epithelial to mesenchymal transition (EMT) contribute to vascular stiffness and tissue fibrogenesis, which increase the risk of graft failure post solid organ transplantation (SOT). Preclinical studies have shown that Lox protein inhibitors have the potential to prevent organ fibrosis. Regarding the molecular effects of Lox proteins in causing tissue fibrosis, these molecules can be further investigated as a drug target in reducing the possibility of organ fibrosis after allograft transplantation.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673346346241211063452
2025-01-30
2025-11-01
Loading full text...

Full text loading...

References

  1. LechlerR.I. SykesM. ThomsonA.W. TurkaL.A. Organ transplantation—how much of the promise has been realized?Nat. Med.200511660561310.1038/nm125115937473
    [Google Scholar]
  2. AhmedE.B. AlegreM.L. ChongA.S. Role of bacterial infections in allograft rejection.Expert Rev. Clin. Immunol.20084228129310.1586/1744666X.4.2.28120477057
    [Google Scholar]
  3. ClaeysE. VermeireK. Immunosuppressive drugs in organ transplantation to prevent allograft rejection: Mode of action and side effects.J. Immunological Sci.201934142110.29245/2578‑3009/2019/4.1178
    [Google Scholar]
  4. SpahnJ.H. LiW. KreiselD. Innate immune cells in transplantation.Curr. Opin. Organ Transplant.2014191141910.1097/MOT.000000000000004124316757
    [Google Scholar]
  5. TorresI.B. MoresoF. SarróE. MeseguerA. SerónD. The Interplay between inflammation and fibrosis in kidney transplantation.BioMed. Res. Int.201420141910.1155/2014/75060224991565
    [Google Scholar]
  6. HigginsD.F. Hypoxia-inducible factor signaling in the development of tissue fibrosis.Cell Cycle2008791128113210.4161/cc.7.9.5804
    [Google Scholar]
  7. ChenZ. LiY. XuH. MaF. LiJ. ZhaoL. XuY. Elevated ischaemia-associated lysyl oxidase activity in delayed graft failure 6–12 months after renal transplantation.Exp. Physiol.2017102228228710.1113/EP08544428024102
    [Google Scholar]
  8. IkenagaN. Selective targeting of lysyl oxidase-like 2 (LOXL2) suppresses hepatic fibrosis progression and accelerates its reversal.Gut.201766916971708
    [Google Scholar]
  9. DiazU.C. ThievendP.C. MarchandM.F. AtlasY. SalzaR. MalbouyresM. BarretA. TeillonJ. RobouantA.C. RuggieroF. MonnotC. GirardP. GuilluyC. BlumR.S. GermainS. MullerL. Scavenger receptor cysteine-rich domains of lysyl oxidase-like2 regulate endothelial ECM and angiogenesis through non-catalytic scaffolding mechanisms.Matrix Biol.202088335210.1016/j.matbio.2019.11.00331759052
    [Google Scholar]
  10. MartinsP.R. LeachR.E. KrawetzS.A. Whole-body gene expression by data mining.Genomics2001721344210.1006/geno.2000.643711247664
    [Google Scholar]
  11. AsuncionL. FogelgrenB. FongK.S.K. FongS.F.T. KimY. CsiszarK. A novel human lysyl oxidase-like gene (LOXL4) on chromosome 10q24 has an altered scavenger receptor cysteine rich domain.Matrix Biol.200120748749110.1016/S0945‑053X(01)00161‑511691588
    [Google Scholar]
  12. MäkiJ.M. TikkanenH. KivirikkoK.I. Cloning and characterization of a fifth human lysyl oxidase isoenzyme: The third member of the lysyl oxidase-related subfamily with four scavenger receptor cysteine-rich domains.Matrix Biol.200120749349610.1016/S0945‑053X(01)00157‑311691589
    [Google Scholar]
  13. LaczkoR. CsiszarK. Lysyl oxidase (LOX): Functional contributions to signaling pathways.Biomolecules2020108109310.3390/biom1008109332708046
    [Google Scholar]
  14. ValletS.D. BlumR.S. Lysyl oxidases: From enzyme activity to extracellular matrix cross-links.Essays Biochem.201963334936410.1042/EBC2018005031488698
    [Google Scholar]
  15. ZhaoW. YangA. ChenW. WangP. LiuT. CongM. XuA. YanX. JiaJ. YouH. Inhibition of lysyl oxidase-like 1 (LOXL1) expression arrests liver fibrosis progression in cirrhosis by reducing elastin crosslinking.Biochim. Biophys. Acta Mol. Basis Dis.2018186441129113710.1016/j.bbadis.2018.01.01929366776
    [Google Scholar]
  16. ChoiS.E. JeonN. ChoiH.Y. ShinJ.I. JeongH.J. LimB.J. Lysyl oxidase-like 2 is expressed in kidney tissue and is associated with the progression of tubulointerstitial fibrosis.Mol. Med. Rep.20171632477248210.3892/mmr.2017.691828677767
    [Google Scholar]
  17. ZhangX. LiX. ZhouW. LiuX. HuangJ. ZhangY. LindholmB. YuC. Serum lysyl oxidase is a potential diagnostic biomarker for kidney fibrosis.Am. J. Nephrol.2020511190791810.1159/00050938133152735
    [Google Scholar]
  18. ZhangX. ZhouW. NiuY. ZhuS. ZhangY. LiX. YuC. Lysyl oxidase promotes renal fibrosis via accelerating collagen cross-link driving by β-arrestin/ERK/STAT3 pathway.FASEB J.2022368e2242710.1096/fj.202200573R35792886
    [Google Scholar]
  19. FragaA. RibeiroR. PríncipeP. LopesC. MedeirosR. Hypoxia and prostate cancer aggressiveness: A tale with many endings.Clin. Genitourin. Cancer201513429530110.1016/j.clgc.2015.03.00626007708
    [Google Scholar]
  20. Mesarwi, O.A.; Shin, M.K.; Drager, L.F.; Bevans-Fonti, S.; Jun, J.C.; Putcha, N.; Torbenson, M.S.; Pedrosa, R.P.; Lorenzi-Filho, G.; Steele, K.E.; Schweitzer, M.A. Lysyl oxidase as a serum biomarker of liver fibrosis in patients with severe obesity and obstructive sleep apnea.Sleep201538101583159110.1038/nature1449226017313
    [Google Scholar]
  21. PalazonA. GoldrathA.W. NizetV. JohnsonR.S. HIF transcription factors, inflammation, and immunity.Immunity201441451852810.1016/j.immuni.2014.09.00825367569
    [Google Scholar]
  22. LuM. QinQ. YaoJ. SunL. QinX. Induction of LOX by TGF-β1/Smad/AP-1 signaling aggravates rat myocardial fibrosis and heart failure.IUBMB Life201971111729173910.1002/iub.211231317653
    [Google Scholar]
  23. MaL. ZengY. WeiJ. YangD. DingG. LiuJ. ShangJ. KangY. JiX. Knockdown of LOXL1 inhibits TGF-β1-induced proliferation and fibrogenesis of hepatic stellate cells by inhibition of Smad2/3 phosphorylation.Biomed. Pharmacother.20181071728173510.1016/j.biopha.2018.08.15630257391
    [Google Scholar]
  24. ZhangX. WangQ. WuJ. WangJ. ShiY. LiuM. Crystal structure of human lysyl oxidase-like 2 (hLOXL2) in a precursor state.Proc. Natl. Acad. Sci.2018115153828383310.1073/pnas.172085911529581294
    [Google Scholar]
  25. KlinmanJ.P. BonnotF. Intrigues and intricacies of the biosynthetic pathways for the enzymatic quinocofactors: PQQ, TTQ, CTQ, TPQ, and LTQ.Chem. Rev.201411484343436510.1021/cr400475g24350630
    [Google Scholar]
  26. BovéG.X. TrilloR.I. PascualR.F. Origin and evolution of lysyl oxidases.Sci. Rep.2015511056810.1038/srep1056826024311
    [Google Scholar]
  27. BignonM. ThievendP.C. HardouinJ. MalbouyresM. BréchotN. NasciuttiL. BarretA. TeillonJ. GuillonE. EtienneE. CaronM. CaronJ.R. MonnotC. RuggieroF. MullerL. GermainS. Lysyl oxidase-like protein-2 regulates sprouting angiogenesis and type IV collagen assembly in the endothelial basement membrane.Blood2011118143979398910.1182/blood‑2010‑10‑31329621835952
    [Google Scholar]
  28. SauxC.J-L. TroneckerH. BogicL. GreenwoodB.G.D. BoydC.D. CsiszarK. The LOXL2 gene encodes a new lysyl oxidase-like protein and is expressed at high levels in reproductive tissues.J. Biol. Chem.199927418129391294410.1074/jbc.274.18.1293910212285
    [Google Scholar]
  29. SauxL.J.C. TomscheA. UjfalusiA. JiaL. CsiszarK. Central nervous system, uterus, heart, and leukocyte expression of the LOXL3 gene, encoding a novel lysyl oxidase-like protein.Genomics200174221121810.1006/geno.2001.654511386757
    [Google Scholar]
  30. AkahoriD. InuiN. InoueY. YasuiH. HozumiH. SuzukiY. KarayamaM. FuruhashiK. EnomotoN. FujisawaT. SudaT. Effect of hypoxia on pulmonary endothelial cells from bleomycin-induced pulmonary fibrosis model mice.Int. J. Mol. Sci.20222316899610.3390/ijms2316899636012260
    [Google Scholar]
  31. ThankamF.G. Association of hypoxia and mitochondrial damage associated molecular patterns in the pathogenesis of vein graft failure: A pilot study.Transl Res.2021229385210.1016/j.trsl.2020.08.010
    [Google Scholar]
  32. YuT.-M. Expression of hypoxia-inducible factor-1α (HIF-1α) in infiltrating inflammatory cells is associated with chronic allograft dysfunction and predicts long-term graft survival.Nephrol. Dial. Transplant.2013283659670
    [Google Scholar]
  33. ErlerJ.T. BennewithK.L. NicolauM. DornhöferN. KongC. LeQ.T. ChiJ.T.A. JeffreyS.S. GiacciaA.J. Lysyl oxidase is essential for hypoxia-induced metastasis.Nature200644070881222122610.1038/nature0469516642001
    [Google Scholar]
  34. WongC.C.L. GilkesD.M. ZhangH. ChenJ. WeiH. ChaturvediP. FraleyS.I. WongC.M. KhooU.S. NgI.O.L. WirtzD. SemenzaG.L. Hypoxia-inducible factor 1 is a master regulator of breast cancer metastatic niche formation.Proc. Natl. Acad. Sci.201110839163691637410.1073/pnas.111348310821911388
    [Google Scholar]
  35. WangV. DavisD.A. HaqueM. HuangL.E. YarchoanR. Differential gene up-regulation by hypoxia-inducible factor-1 alpha and hypoxia-inducible factor-2 alpha in HEK293T cells.Cancer Res.20056583299330610.1158/0008‑5472.CAN‑04‑413015833863
    [Google Scholar]
  36. HalbergN. KhanT. TrujilloM.E. AsterholmW.I. AttieA.D. SherwaniS. WangZ.V. EigerL.S. DineenS. MagalangU.J. BrekkenR.A. SchererP.E. Hypoxia- inducible factor 1 alpha induces fibrosis and insulin resistance in white adipose tissue.Mol. Cell. Biol.200929164467448310.1128/MCB.00192‑0919546236
    [Google Scholar]
  37. HigginsD.F. KimuraK. BernhardtW.M. ShrimankerN. AkaiY. HohensteinB. SaitoY. JohnsonR.S. KretzlerM. CohenC.D. EckardtK.U. IwanoM. HaaseV.H. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition.J. Clin. Invest.2007117123810382010.1172/JCI3048718037992
    [Google Scholar]
  38. KaganH.M. LiW. Lysyl oxidase: Properties, specificity, and biological roles inside and outside of the cell.J. Cell. Biochem.200388466067210.1002/jcb.1041312577300
    [Google Scholar]
  39. SethiA. MaoW. WordingerR.J. ClarkA.F. Transforming growth factor-beta induces extracellular matrix protein cross-linking lysyl oxidase (LOX) genes in human trabecular meshwork cells.Invest. Ophthalmol. Vis. Sci.20115285240525010.1167/iovs.11‑728721546528
    [Google Scholar]
  40. RemstD.F.G. BlomA.B. VittersE.L. BankR.A. BergV.D.W.B. DavidsonB.E.N. KraanV.D.P.M. Gene expression analysis of murine and human osteoarthritis synovium reveals elevation of transforming growth factor β-responsive genes in osteoarthritis-related fibrosis.Arthritis Rheumatol.201466364765610.1002/art.3826624574225
    [Google Scholar]
  41. LoomisT. SmithL.R. Thrown for a loop: Fibro-adipogenic progenitors in skeletal muscle fibrosis.Am. J. Physiol. Cell Physiol.20233254C895C90610.1152/ajpcell.00245.202337602412
    [Google Scholar]
  42. ChengT. LiuQ. ZhangR. ZhangY. ChenJ. YuR. GeG. Lysyl oxidase promotes bleomycin-induced lung fibrosis through modulating inflammation.J. Mol. Cell Biol.20146650651510.1093/jmcb/mju03925348956
    [Google Scholar]
  43. MaoX.Y. LiQ.Q. GaoY.F. ZhouH.H. LiuZ.Q. JinW.L. Gap junction as an intercellular glue: Emerging roles in cancer EMT and metastasis.Cancer Lett.2016381113313710.1016/j.canlet.2016.07.03727490999
    [Google Scholar]
  44. WangY. ZhouQ. TangR. HuangY. HeT. FoxM1 inhibition ameliorates renal interstitial fibrosis by decreasing extracellular matrix and epithelial–mesenchymal transition.J. Pharmacol. Sci.2020143428128910.1016/j.jphs.2020.05.00732513569
    [Google Scholar]
  45. DjamaliA. ReeseS. YrachetaJ. OberleyT. HullettD. BeckerB. Epithelial-to-mesenchymal transition and oxidative stress in chronic allograft nephropathy.Am. J. Transplant.20055350050910.1111/j.1600‑6143.2004.00713.x15707404
    [Google Scholar]
  46. RobertsonH. Biliary epithelial-mesenchymal transition in posttransplantation recurrence of primary biliary cirrhosis.Hepatology.20074549778110.1002/hep.21624
    [Google Scholar]
  47. NovoaL.J.M. NietoM.A. Inflammation and EMT: An alliance towards organ fibrosis and cancer progression.EMBO Mol. Med.200916-730331410.1002/emmm.20090004320049734
    [Google Scholar]
  48. CordenonsiM. MontagnerM. AdornoM. ZacchignaL. MartelloG. MamidiA. SoligoS. DupontS. PiccoloS. Integration of TGF-beta and Ras/MAPK signaling through p53 phosphorylation.Science2007315581384084310.1126/science.113596117234915
    [Google Scholar]
  49. MoustakasA. HeldinC.H. Non-Smad TGF-β signals.J. Cell Sci.2005118163573358410.1242/jcs.0255416105881
    [Google Scholar]
  50. NovoE. ParolaM. Redox mechanisms in hepatic chronic wound healing and fibrogenesis.Fibr. Tis. Rep.200811510.1186/1755‑1536‑1‑519014652
    [Google Scholar]
  51. FiaschiT. CozziG. RaugeiG. FormigliL. RamponiG. ChiarugiP. Redox regulation of beta-actin during integrin-mediated cell adhesion.J. Biol. Chem.200628132229832299110.1074/jbc.M60304020016757472
    [Google Scholar]
  52. ZhangH. AkmanH.O. SmithE.L.P. ZhaoJ. UllrichM.J.E. BatumanO.A. Cellular response to hypoxia involves signaling via Smad proteins.Blood200310162253226010.1182/blood‑2002‑02‑062912411310
    [Google Scholar]
  53. WenS.X. LeaskA. AbrahamD. Regulation and function of connective tissue growth factor/CCN2 in tissue repair, scarring and fibrosis.Cytokine Growth Factor Rev.200819213314410.1016/j.cytogfr.2008.01.00218358427
    [Google Scholar]
  54. KrishnamacharyB. ZagzagD. NagasawaH. RaineyK. OkuyamaH. BaekJ.H. SemenzaG.L. Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B.Cancer Res.20066652725273110.1158/0008‑5472.CAN‑05‑371916510593
    [Google Scholar]
  55. LeeK. GjorevskiN. BoghaertE. RadiskyD.C. NelsonC.M. Snail1, Snail2, and E47 promote mammary epithelial branching morphogenesis.EMBO J.201130132662267410.1038/emboj.2011.15921610693
    [Google Scholar]
  56. DíazR. KimJ.W. HuiJ.J. LiZ. SwainG.P. FongK.S.K. CsiszarK. RussoP.A. RandE.B. FurthE.E. WellsR.G. Evidence for the epithelial to mesenchymal transition in biliary atresia fibrosis.Hum. Pathol.200839110211510.1016/j.humpath.2007.05.02117900655
    [Google Scholar]
  57. WillisB.C. LieblerJ.M. PhelpsL.K. NicholsonA.G. CrandallE.D. du BoisR.M. BorokZ. Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-beta1: Potential role in idiopathic pulmonary fibrosis.Am. J. Pathol.200516651321133210.1016/S0002‑9440(10)62351‑615855634
    [Google Scholar]
  58. KimK.K. KuglerM.C. WoltersP.J. RobillardL. GalvezM.G. BrumwellA.N. SheppardD. ChapmanH.A. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix.Proc. Natl. Acad. Sci.200610335131801318510.1073/pnas.060566910316924102
    [Google Scholar]
  59. BorthwickL.A. McIlroyE.I. GorowiecM.R. BrodlieM. JohnsonG.E. WardC. LordanJ.L. CorrisP.A. KirbyJ.A. FisherA.J. Inflammation and epithelial to mesenchymal transition in lung transplant recipients: Role in dysregulated epithelial wound repair.Am. J. Transplant.201010349850910.1111/j.1600‑6143.2009.02953.x20055810
    [Google Scholar]
  60. WardC. ForrestI.A. MurphyD.M. JohnsonG.E. RobertsonH. CawstonT.E. FisherA.J. DarkJ.H. LordanJ.L. KirbyJ.A. CorrisP.A. Phenotype of airway epithelial cells suggests epithelial to mesenchymal cell transition in clinically stable lung transplant recipients.Thorax2005601086587110.1136/thx.2005.04302615972366
    [Google Scholar]
  61. RastaldiM.P. FerrarioF. GiardinoL. Dell’AntonioG. GrilloC. GrilloP. StrutzF. MüllerG.A. ColasantiG. D’AmicoG. Epithelial-mesenchymal transition of tubular epithelial cells in human renal biopsies.Kidney Int.200262113714610.1046/j.1523‑1755.2002.00430.x12081572
    [Google Scholar]
  62. LuceroH. KaganH.J.C. Lysyl oxidase: An oxidative enzyme and effector of cell function.Cell Mol Life Sci.20066323042316
    [Google Scholar]
  63. SchietkeR. The lysyl oxidases LOX and LOXL2 are necessary and sufficient to repress E-cadherin in hypoxia: Insights into cellular transformation processes mediated by HIF-1.J Biol Chem.20102859665869
    [Google Scholar]
  64. PeinadoH. CruzC.I.M. OlmedaD. CsiszarK. FongK.S.K. VegaS. NietoM.A. CanoA. PortilloF. A molecular role for lysyl oxidase-like 2 enzyme in Snail regulation and tumor progression.EMBO J.200524193446345810.1038/sj.emboj.760078116096638
    [Google Scholar]
  65. WangJ. ZhuY. TanJ. MengX. XieH. WangR. Lysyl oxidase promotes epithelial-to-mesenchymal transition during paraquat-induced pulmonary fibrosis.Mol. Biosyst.201612249950710.1039/C5MB00698H26670953
    [Google Scholar]
  66. KasashimaH. YashiroM. KinoshitaH. FukuokaT. MorisakiT. MasudaG. SakuraiK. KuboN. OhiraM. HirakawaK. Lysyl oxidase is associated with the epithelial–mesenchymal transition of gastric cancer cells in hypoxia.Gastric Cancer201619243144210.1007/s10120‑015‑0510‑326100130
    [Google Scholar]
  67. MatsuokaJ. YashiroM. DoiY. FuyuhiroY. KatoY. ShintoO. NodaS. KashiwagiS. AomatsuN. HirakawaT. HasegawaT. ShimizuK. ShimizuT. MiwaA. YamadaN. SawadaT. HirakawaK. Hypoxia stimulates the EMT of gastric cancer cells through autocrine TGFβ signaling.PLoS One201385e6231010.1371/journal.pone.006231023690936
    [Google Scholar]
  68. MoonH.J. FinneyJ. XuL. MooreD. WelchD.R. MureM. MCF-7 cells expressing nuclear associated lysyl oxidase-like 2 (LOXL2) exhibit an epithelial-to-mesenchymal transition (EMT) phenotype and are highly invasive in vitro.J. Biol. Chem.201328842300003000810.1074/jbc.C113.50231024014025
    [Google Scholar]
  69. LuJ. QianY. JinW. TianR. ZhuY. WangJ. MengX. WangR. Hypoxia-inducible factor-1α regulates epithelial-to-mesenchymal transition in paraquat-induced pulmonary fibrosis by activating lysyl oxidase.Exp. Ther. Med.20181532287229429467842
    [Google Scholar]
  70. El-HaibiC.P. BellG.W. ZhangJ. CollmannA.Y. WoodD. ScherberC.M. CsizmadiaE. MarianiO. ZhuC. CampagneA. TonerM. BhatiaS.N. IrimiaD. SalomonV.A. KarnoubA.E. Critical role for lysyl oxidase in mesenchymal stem cell-driven breast cancer malignancy.Proc. Natl. Acad. Sci.201210943174601746510.1073/pnas.120665310923033492
    [Google Scholar]
  71. WeiL. SongX.R. SunJ.J. WangX.W. XieL. LvL.Y. Lysyl oxidase may play a critical role in hypoxia-induced NSCLC cells invasion and migration.Cancer Biother. Radiopharm.2012271067267710.1089/cbr.2012.124123140307
    [Google Scholar]
  72. HongX. YuJ.J. Silencing of lysyl oxidase-like 2 inhibits the migration, invasion and epithelial-to-mesenchymal transition of renal cell carcinoma cells through the Src/FAK signaling pathway.Int. J. Oncol.20195451676169010.3892/ijo.2019.472630816490
    [Google Scholar]
  73. CsiszarK. Lysyl oxidases: A novel multifunctional amine oxidase family.Prog. Nucleic Acid Res. Mol. Biol.20017013210.1016/S0079‑6603(01)70012‑811642359
    [Google Scholar]
  74. StewardA.J. KellyD.J. Mechanical regulation of mesenchymal stem cell differentiation.J. Anat.2015227671773110.1111/joa.1224325382217
    [Google Scholar]
  75. HandorfA.M. ZhouY. HalanskiM.A. LiW.J. Tissue stiffness dictates development, homeostasis, and disease progression.Organogenesis201511111510.1080/15476278.2015.101968725915734
    [Google Scholar]
  76. SreenivasappaH. ChakiS.P. LimS.M. TrzeciakowskiJ.P. DavidsonM.W. RiveraG.M. TracheA. Selective regulation of cytoskeletal tension and cell–matrix adhesion by RhoA and Src.Integr. Biol.20146874375410.1039/C4IB00019F24984203
    [Google Scholar]
  77. MatthewsA.T. RossM.K. Role of lysyl oxidase on microvascular function.Am. J. Physiol. Heart Circ. Physiol.20183144H784H78610.1152/ajpheart.00729.201729351472
    [Google Scholar]
  78. BalasubramanianP. CsiszarA.J.A.J.o.P.-H. PhysiologyC. Lysyl oxidases as driving forces behind age-related macrovascular rigidity.Am. J. Physiol. Heart Circ. Physiol.20193171H37H3810.1152/ajpheart.00264.2019
    [Google Scholar]
  79. KneifelM. ScholzeA. BurkertA. OffermannG. RothermundL. ZidekW. TepelM. Impaired renal allograft function is associated with increased arterial stiffness in renal transplant recipients.Am. J. Transplant.2006671624163010.1111/j.1600‑6143.2006.01341.x16827863
    [Google Scholar]
  80. KorogiannouM. XagasE. MarinakiS. SarafidisP. BoletisJ.N. Arterial stiffness in patients with renal transplantation; Associations with co-morbid conditions, evolution, and prognostic importance for cardiovascular and renal outcomes.Front. Cardiovasc. Med.201966710.3389/fcvm.2019.0006731179288
    [Google Scholar]
  81. GaspariR. TeofiliL. MignaniV. FrancoA. ValentiniC.G. CutuliS.L. CinaA. AgnesS. AvolioA.W. AntonelliM. Duplex doppler evidence of high hepatic artery resistive index after liver transplantation: Role of portal hypertension and clinical impact.Dig. Liver Dis.202052330130710.1016/j.dld.2019.10.01731806469
    [Google Scholar]
  82. RevellesM.S. RedondoG.A.B. AvendañoM.S. VaronaS. PalaoT. OrriolsM. RoqueF.R. FortuñoA. TouyzR.M. GonzálezM.J. SalaicesM. RodríguezC. BrionesA.M. Lysyl oxidase induces vascular oxidative stress and contributes to arterial stiffness and abnormal elastin structure in hypertension: Role of p38 MAPK.Antioxid. Redox Signal.201727737939710.1089/ars.2016.664228010122
    [Google Scholar]
  83. OrriolsM. GuadallA. GalánM. PàmiesM.I. VaronaS. CalvoR.R. BrionesA.M. NavarroM.A. de DiegoA. OsadaJ. GonzálezM.J. RodríguezC. Lysyl oxidase (LOX) in vascular remodelling. Insight from a new animal model.Thromb. Haemost.2014112481282424990180
    [Google Scholar]
  84. ServeraB.C. AlonsoJ. CañesL. SufuentesV.P. UmbertP.L. CelisF.A. TaurónM. SinovasR.A. AndrésL.N. RodríguezC. GonzálezM.J. Lysyl oxidase-dependent extracellular matrix crosslinking modulates calcification in atherosclerosis and aortic valve disease.Biomed. Pharmacother.202316711546910.1016/j.biopha.2023.11546937729730
    [Google Scholar]
  85. UtoK. YoshizawaS. AokiC. NishikawaT. OdaH. Inhibition of extracellular matrix integrity attenuates the early phase of aortic medial calcification in a rodent model.Atherosclerosis2021319102010.1016/j.atherosclerosis.2020.12.01533453491
    [Google Scholar]
  86. GacheruS.N. ThomasK.M. MurrayS.A. CsiszarK. MungoS.L.I. KaganH.M. Transcriptional and post-transcriptional control of lysyl oxidase expression in vascular smooth muscle cells: Effects of TGF-β1 and serum deprivation.J. Cell. Biochem.199765339540710.1002/(SICI)1097‑4644(19970601)65:3<395::AID‑JCB9>3.0.CO;2‑N9138095
    [Google Scholar]
  87. ShanleyC.J. KermaniG.M. SarkarR. WellingT.H. KriegelA. FordJ.W. StanleyJ.C. PhanS.H. Transforming growth factor-β1 increases lysyl oxidase enzyme activity and mRNA in rat aortic smooth muscle cells.J. Vasc. Surg.199725344645210.1016/S0741‑5214(97)70254‑49081125
    [Google Scholar]
  88. RodríguezC. GonzálezM.J. RaposoB. AlcudiaJ.F. GuadallA. BadimonL. Regulation of lysyl oxidase in vascular cells: Lysyl oxidase as a new player in cardiovascular diseases.Cardiovasc. Res.200879171310.1093/cvr/cvn10218469024
    [Google Scholar]
  89. SchilterH. FindlayA.D. PerrymanL. YowT.T. MosesJ. ZahoorA. TurnerC.I. DeodharM. FootJ.S. ZhouW. GrecoA. JoshiA. RaynerB. TownsendS. BusonA. JarolimekW. The lysyl oxidase like 2/3 enzymatic inhibitor, PXS-5153A, reduces crosslinks and ameliorates fibrosis.J. Cell. Mol. Med.20192331759177010.1111/jcmm.1407430536539
    [Google Scholar]
  90. HarlowC.R. WuX. van DeemterM. GardinerF. PolandC. GreenR. SarviS. BrownP. KadlerK.E. LuY. MasonJ.I. CritchleyH.O.D. HillierS.G. Targeting lysyl oxidase reduces peritoneal fibrosis.PLoS One2017128e018301310.1371/journal.pone.018301328800626
    [Google Scholar]
  91. LiuS.B. IkenagaN. PengZ.W. SverdlovD.Y. GreensteinA. SmithV. SchuppanD. PopovY. Lysyl oxidase activity contributes to collagen stabilization during liver fibrosis progression and limits spontaneous fibrosis reversal in mice.FASEB J.20163041599160910.1096/fj.14‑26842526700732
    [Google Scholar]
  92. WeiY. KimT.J. PengD.H. DuanD. GibbonsD.L. YamauchiM. JacksonJ.R. Le SauxC.J. CalhounC. PetersJ. DerynckR. BackesB.J. ChapmanH.A. Fibroblast-specific inhibition of TGF-β1 signaling attenuates lung and tumor fibrosis.J. Clin. Invest.2017127103675368810.1172/JCI9462428872461
    [Google Scholar]
  93. HamiltonB.V. SpanglerR. MarshallD. McCauleyS. RodriguezH.M. OyasuM. MikelsA. VaysbergM. GhermazienH. WaiC. GarciaC.A. VelayoA.C. JorgensenB. BiermannD. TsaiD. GreenJ. EilotZ.S. HolzerA. OggS. ThaiD. NeufeldG. VlasselaerV.P. SmithV. Allosteric inhibition of lysyl oxidase–like-2 impedes the development of a pathologic microenvironment.Nat. Med.20101691009101710.1038/nm.220820818376
    [Google Scholar]
  94. SelmanM. CarrilloG. SalasJ. PadillaR.P. ChaviraP.R. SansoresR. ChapelaR. Colchicine, D-penicillamine, and prednisone in the treatment of idiopathic pulmonary fibrosis: A controlled clinical trial.Chest1998114250751210.1378/chest.114.2.5079726738
    [Google Scholar]
  95. PradhanA.M. BhaveS.A. JoshiV.V. BavdekarA.R. PanditA.N. TannerM.S. Reversal of Indian childhood cirrhosis by D-penicillamine therapy.J. Pediatr. Gastroenterol. Nutr.199520128357884615
    [Google Scholar]
  96. OvetH. OztayF. The copper chelator tetrathiomolybdate regressed bleomycin-induced pulmonary fibrosis in mice, by reducing lysyl oxidase expressions.Biol. Trace Elem. Res.20141621-318919910.1007/s12011‑014‑0142‑125349139
    [Google Scholar]
  97. SongM. SongZ. BarveS. ZhangJ. ChenT. LiuM. ArteelG.E. BrewerG.J. McClainC.J. Tetrathiomolybdate protects against bile duct ligation-induced cholestatic liver injury and fibrosis.J. Pharmacol. Exp. Ther.2008325240941610.1124/jpet.107.13122718299419
    [Google Scholar]
  98. YaoY. FindlayA. StolpJ. RaynerB. AskK. JarolimekW. Pan-lysyl oxidase inhibitor PXS-5505 ameliorates multiple-organ fibrosis by inhibiting collagen crosslinks in rodent models of systemic sclerosis.Int. J. Mol. Sci.20222310553310.3390/ijms2310553335628342
    [Google Scholar]
  99. MatsuoA. TanidaR. YanagiS. TsubouchiH. MiuraA. ShigekusaT. MatsumotoN. NakazatoM. Significance of nuclear LOXL2 inhibition in fibroblasts and myofibroblasts in the fibrotic process of acute respiratory distress syndrome.Eur. J. Pharmacol.202189217375410.1016/j.ejphar.2020.17375433248114
    [Google Scholar]
  100. SharmaR.K. KambleS.H. KrishnanS. GomesJ. ToB. LiS. LiuI.C. GumzM.L. MohandasR. Involvement of lysyl oxidase in the pathogenesis of arterial stiffness in chronic kidney disease.Am. J. Physiol. Renal Physiol.20233244F364F37310.1152/ajprenal.00239.202236825626
    [Google Scholar]
  101. KimY. BoydC.D. CsiszarK. A new gene with sequence and structural similarity to the gene encoding human lysyl oxidase.J. Biol. Chem.1995270137176718210.1074/jbc.270.13.71767706256
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673346346241211063452
Loading
/content/journals/cmc/10.2174/0109298673346346241211063452
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test