Skip to content
2000
Volume 32, Issue 37
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

A planktonic population of bacteria can form a biofilm by adhesion and colonization. Proteins known as “adhesins” can bind to certain environmental structures, such as sugars, which will cause the bacteria to attach to the substrate. Quorum sensing is used to establish the population is dense enough to form a biofilm. This paper presents a comprehensive overview of our investigation into these processes, specifically focusing on , an emerging pathogen of increasing clinical relevance. In our study, we detailed the methodology employed for the proteomic analysis of , as well as our innovative application of Generative Adversarial Networks (GANs). These advanced computational tools allow us to analyze complex data sets and identify patterns that might otherwise remain obscured. With a particular focus on the effectiveness of GAN, the identified proteins and their potential roles in the context of 's pathogenesis were discussed. The insights gained from this study can significantly contribute to our understanding of this emerging pathogen and pave the way for developing targeted interventions, potentially leading to improved diagnostic tools and more effective therapeutic strategies against infection. The authors achieved 95.43% accuracy for the generator and 87.89% for the discriminator. The model was validated by considering different Machine learning algorithms, reinforcing that integrating computational techniques with microbiological investigations can significantly enhance our understanding of emerging pathogens. Overall, this study emphasizes the importance of exploring the molecular mechanisms behind biofilm formation and pathogenicity, providing a foundation for future research that could lead to innovative solutions in combating infections caused by and other similar pathogens.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673345515241122024326
2025-01-14
2025-11-01
Loading full text...

Full text loading...

References

  1. JohansenM.D. HerrmannJ.L. KremerL. Non-tuberculous Mycobacteria and the rise of Mycobacterium abscessus.Nat. Rev. Microbiol.20201839240710.1128/CMR.00005‑2010
    [Google Scholar]
  2. SharmaS.K. UpadhyayV. Non-tuberculous Mycobacteria: A disease beyond TB and preparedness in India.Rev. Respir. Med.202115949958
    [Google Scholar]
  3. CoyleM.B. Mycobacteria: Acid-fast bacteria.in Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases. MandellG.L. BennettJ.E. DolinR. Philadelphia, PAElsevier200524682509
    [Google Scholar]
  4. TarashiS. SiadatS.D. FatehA. Nontuberculous mycobacterial resistance to antibiotics and disinfectants: Challenges still ahead.Biomed. Res. Int.202220221816875010.1155/2022/8168750eCollection 2022
    [Google Scholar]
  5. BaldwinS.L. LarsenS.E. OrdwayD. CassellG. ColerR.N. The complexities and challenges of preventing and treating nontuberculous mycobacterial diseases.PLoS Negl.Trop. Dis.2019132e000708310.1177/2040275813480202
    [Google Scholar]
  6. SharmaA. VashisttJ. ShrivastavaR. Next-generation omics technologies to explore microbial diversity.In Microbes in Land Use Change ManagementElsevier2021541563
    [Google Scholar]
  7. GaniefN. SjouermanJ. AlbeldasC. NakediK.C. HermannC. CalderB. Associating H2O2- and NO-related changes in the proteome of Mycobacterium smegmatis with enhanced survival in macrophage.Emerg. Microbes & Infections20187111710.1080/14789450802038440
    [Google Scholar]
  8. ChangC.-C. LinC.-J. LIBSVM: A library for support vector machines.ACM Trans. Intell. Syst. Technol2011231710.1145/1961189.1961199
    [Google Scholar]
  9. HoefslootW. van IngenJ. AndrejakC. ÄngebyK. BauriaudR. BemerP. BeylisN. BoereeM.J. CachoJ. ChihotaV. ChimaraE. ChurchyardG. CiasR. DazaR. DaleyC.L. DekhuijzenP.N.R. DomingoD. DrobniewskiF. EstebanJ. Fauville-DufauxM. FolkvardsenD.B. GibbonsN. Gómez-MampasoE. GonzalezR. HoffmannH. HsuehP.R. IndraA. JagielskiT. JamiesonF. JankovicM. JongE. KeaneJ. KohW.J. LangeB. LeaoS. MacedoR. MannsåkerT. MarrasT.K. MaugeinJ. MilburnH.J. MlinkóT. MorcilloN. MorimotoK. PapaventsisD. PalenqueE. Paez-PeñaM. PiersimoniC. PolanováM. RastogiN. RichterE. Ruiz-SerranoM.J. SilvaA. da SilvaM.P. SimsekH. van SoolingenD. SzabóN. ThomsonR. Tórtola FernandezT. TortoliE. TottenS.E. TyrrellG. VasankariT. VillarM. WalkiewiczR. WinthropK.L. WagnerD. Nontuberculous Mycobacteria Network European Trials Group The geographic diversity of nontuberculous Mycobacteria isolated from pulmonary samples: An NTM-NET collaborative study.Eur. Respir. J.20134261604161310.1183/09031936.0014921223598956
    [Google Scholar]
  10. MaiF. TianS. LeeC. MaL. Deep learning models for bankruptcy prediction using textual disclosures.Eur. J. Oper. Res.2019274274375810.1016/j.ejor.2018.10.024
    [Google Scholar]
  11. EapenJ. BeinD. VermaA. Novel deep learning model with CNN and bi-directional LSTM for improved stock market index prediction.IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC),Las Vegas, NV, USA, 07-09 January 2019, pp. 0264-027010.1109/CCWC.2019.8666592
    [Google Scholar]
  12. KatayamaD. KinoY. TsudaK. A method of sentiment polarity identification in financial news using deep learning.Procedia Comput. Sci.20191591287129410.1016/j.procs.2019.09.298
    [Google Scholar]
  13. ZhangK. ZhongG. DongJ. WangS. WangY. Stock market prediction based on generative adversarial network.Procedia Comput. Sci.201914740040610.1016/j.procs.2019.01.256
    [Google Scholar]
  14. Shubham ShahE. PatelP. BihaniR. GadaD. GhagK. Stock prediction using GAN and sentiment analysis.Int. J. Recent Innov. Trends Comput. Commun.20231192307231610.17762/ijritcc.v11i9.9238
    [Google Scholar]
  15. YeK. WangZ. ChenP. PiaoY. ZhangK. WangS. JiangX. CuiX. A novel GAN-based regression model for predicting frying oil deterioration.Sci. Rep.20221211042410.1038/s41598‑022‑13762‑535729239
    [Google Scholar]
  16. LiW. DingW. SadasivamR. CuiX. ChenP. His-GAN: A histogram-based GAN model to improve data generation quality.Neural Netw.2019119314510.1016/j.neunet.2019.07.00131376636
    [Google Scholar]
  17. LiW. LiangZ. MaP. WangR. CuiX. ChenP. "Hausdorff GAN: Improving GAN generation quality with hausdorff metric.IEEE Trans. Cybern20215210104071041910.1109/TCYB.2021.3062396
    [Google Scholar]
  18. LiW. FanL. WangZ. MaC. CuiX. Tackling mode collapse in multi-generator GANs with orthogonal vectors.Pattern Recognit.202111010764610.1016/j.patcog.2020.107646
    [Google Scholar]
  19. UmraoJ. SinghD. ZiaA. SaxenaS. SarsaiyaS. SinghS. KhatoonJ. DholeT.N. J. Umraoet al Prevalence and species spectrum of both pulmonary and extrapulmonary nontuberculous Mycobacteria isolates at a tertiary care center.Int. J. Mycobacteriol.20165328829310.1016/j.ijmyco.2016.06.00827847012
    [Google Scholar]
  20. MauryaA.K. NagV.L. KantS. KushwahaR.A.S. KumarM. SinghA.K. DholeT.N. Prevalence of nontuberculous Mycobacteria among extrapulmonary tuberculosis cases in tertiary care centers in Northern India.BioMed Res. Int.201520151510.1155/2015/46540325883962
    [Google Scholar]
  21. MacenteS. HelbelC. SouzaS.F.R. SiqueiraV.L.D. PaduaR.A.F. CardosoR.F. Disseminated folliculitis by Mycobacterium fortuitum in an immunocompetent woman.An. Bras. Dermatol.201388110210410.1590/S0365‑0596201300010001423539012
    [Google Scholar]
  22. ChetchotisakdP. MootsikapunP. AnunnatsiriS. JirarattanapochaiK. ChoonhakarnC. ChaiprasertA. UbolP.N. WheatL.J. DavisT.E. P. Chetchotisakdet al Disseminated infection due to rapidly growing Mycobacteria in immunocompetent hosts presenting with chronic lymphadenopathy: A previously unrecognized clinical entity.Clin. Infect. Dis.2000301293410.1086/31358910619729
    [Google Scholar]
  23. ShrivastavaK. KumarC. SinghA. NarangA. GiriA. SharmaN.K. GuptaS. ChauhanV. GunasekaranJ. BalasubramanianV. ChaudhryA. SinglaR. PrasadR. Varma-BasilM. An overview of pulmonary infections due to rapidly growing Mycobacteria in South Asia and impressions from a subtropical region.Int. J. Mycobacteriol.202091627010.4103/ijmy.ijmy_179_1932474491
    [Google Scholar]
  24. PoonamR.M. YennamalliR.M. BishtG.. ShrivastavaR. Ribosomal maturation factor (RimP) is essential for survival of nontuberculous Mycobacteria M. fortuitumunder in vitro acidic stress conditions.Biotech.20199412710.1007/s13205‑019‑1659‑y
    [Google Scholar]
  25. HandW.L. SanfordJ.P. Mycobacterium fortuitum A human pathogen.Ann. Intern. Med.197073697197710.7326/0003‑4819‑73‑6‑9715211741
    [Google Scholar]
  26. SharmaA. BansalS. KumariN. VashisttJ. ShrivastavaR. Comparative proteomic investigation unravels the pathobiology of Mycobacterium fortuitum biofilm.Appl. Microbiol. Biotechnol.2023107196029604610.1007/s00253‑023‑12705‑y37542577
    [Google Scholar]
  27. BardouniotisE. CeriH. OlsonM.E. Biofilm formation and biocide susceptibility testing of Mycobacterium fortuitum and Mycobacterium marinum.Curr. Microbiol.2003461283210.1007/s00284‑002‑3796‑412432460
    [Google Scholar]
  28. KatochP. GuptaK. YennamalliR.M. VashisttJ. BishtG.S. ShrivastavaR. Random insertion transposon mutagenesis of Mycobacterium fortuitum identified mutant defective in biofilm formation.Biochem. Biophys. Res. Commun.2020521499199610.1016/j.bbrc.2019.11.02131727369
    [Google Scholar]
  29. Hall-StoodleyL. KeevilC.W. Lappin-ScottH.M. Mycobacterium fortuitum and Mycobacterium chelonae biofilm formation under high and low nutrient conditions.J. Appl. Microbiol.199885S1Suppl. 160S69S10.1111/j.1365‑2672.1998.tb05284.x21182694
    [Google Scholar]
  30. Brown-ElliottB.A. Wallace, R.J.Jr. Clinical and taxonomic status of pathogenic nonpigmented or late-pigmenting rapidly growing Mycobacteria.Clin. Microbiol. Rev.200215471674610.1128/CMR.15.4.716‑746.200212364376
    [Google Scholar]
  31. El HelouG. ViolaG.M. HachemR. HanX.Y. RaadI.I. Rapidly growing Mycobacterial bloodstream infections.Lancet Infect. Dis.201313216617410.1016/S1473‑3099(12)70316‑X23347634
    [Google Scholar]
  32. De GrooteM.A. HuittG. Infections due to rapidly growing Mycobacteria.Clin. Infect. Dis.200642121756176310.1086/50438116705584
    [Google Scholar]
  33. KumarC. ShrivastavaK. SinghA. ChauhanV. Varma-BasilM. Skin and soft-tissue infections due to rapidly growing Mycobacteria: An overview.Int. J. Mycobacteriol.202110329330010.4103/ijmy.ijmy_110_2134494569
    [Google Scholar]
  34. Ortíz-PérezA. Martín-de-HijasN. Alonso-RodríguezN. Molina-MansoD. Fernández-RoblasR. EstebanJ. Importance of antibiotic penetration in the antimicrobial resistance of biofilm formed by non-pigmented rapidly growing Mycobacteria against amikacin, ciprofloxacin and clarithromycin.Enferm. Infecc. Microbiol. Clin.2011292798410.1016/j.eimc.2010.08.01621333405
    [Google Scholar]
  35. AungT.T. YamJ.K.H. LinS. SallehS.M. GivskovM. LiuS. LwinN.C. YangL. BeuermanR.W. Biofilms of pathogenic nontuberculous Mycobacteria targeted by new therapeutic approaches.Antimicrob. Agents Chemother.2016601243510.1128/AAC.01509‑1526459903
    [Google Scholar]
  36. SharmaA. VashisttJ. ShrivastavaR. Response surface modeling integrated microtiter plate assay for Mycobacterium fortuitum biofilm quantification.Biofouling20213783084310.1080/08927014.2021.1974846
    [Google Scholar]
  37. FalkinhamJ.O. Epidemiology of infection by nontuberculous Mycobacteria.Clin. Microbiol.199692177215
    [Google Scholar]
  38. HondaJ.R. VirdiR. ChanE.D. Global environmental nontuberculous Mycobacteria and their contemporaneous man-made and natural niches.Front. Microbiol.20189202910.3389/fmicb.2018.0202930214436
    [Google Scholar]
  39. Gonzalez-DiazE. Morfin-OteroR. Perez-GomezH.R. Esparza-AhumadaS. Rodriguez-NoriegaE. Rapidly growing Mycobacterial infections of the skin and soft tissues caused by M. fortuitum and M. chelonae. Curr. Trop. Med. Rep.20185316216910.1007/s40475‑018‑0150‑x
    [Google Scholar]
  40. ZamoraN. EstebanJ. KinnariT.J. CeldránA. GranizoJ.J. ZafraC. In-vitro evaluation of the adhesion to polypropylene sutures of non-pigmented, rapidly growing Mycobacteria.Clin. Microbiol. Infect.200713990290710.1111/j.1469‑0691.2007.01769.x17608747
    [Google Scholar]
  41. TaylorR.K. MillerV.L. FurlongD.B. MekalanosJ.J. Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxinProc. Natl. Acad. Sci.19878492833283710.1073/pnas.84.9.2833
    [Google Scholar]
  42. PartiR. ShrivastavaR. SrivastavaS. SubramanianA. RoyR. SrivastavaB.S. SrivastavaR. A transposon insertion mutant of Mycobacterium fortuitum attenuated in virulence and persistence in a murine infection model that is complemented by Rv3291c of Mycobacterium tuberculosis.Microb. Pathog.20084537037610.1016/j.micpath.2008.08.008
    [Google Scholar]
  43. SalauA.O. JainS. SoodM. ParadigmsComputational Intelligence and Data Sciences.U.K.CRC, Taylor & Francis Group202210.1201/9781003224068
    [Google Scholar]
  44. GhaiA.S. GhaiK. CakirG.K. Generative AI enabled IoT applications for smart cities.Secure and Intelligent IoT-Enabled Smart CitiesIGI Global2024
    [Google Scholar]
  45. TanY. SuB. ShuW. CaiX. KuangS. KuangH. LiuJ. PangY. Epidemiology of pulmonary disease due to nontuberculous Mycobacteria in Southern China.BMC Pulm. Med.201818116810.1186/s12890‑018‑0728‑z30413193
    [Google Scholar]
  46. JordanM.I. MitchellT.M. Machine learning: Trends, perspectives, and prospects.Science2015349624525526010.1126/science.aaa841526185243
    [Google Scholar]
  47. PrasharN. SoodM. JainS. Novel Cardiac arrhythmia processing using machine learning techniques.Int. J. Image Graph.2020203205002310.1142/S0219467820500230
    [Google Scholar]
  48. DograJ. JainS. SoodM. Glioma classification of MR brain tumor employing machine learning.Int. J. Innov. Technol. Explor. Eng.20198826762682
    [Google Scholar]
  49. JainS. A computational model for detection of lung diseases due to forkhead transcription factors.Emergent Converging Technologies and Biomedical Systems. Lecture Notes in Electrical Engineering. MarriwalaN. TripathiC.C. JainS. MathapathiS. SingaporeSpringer2022718110.1007/978‑981‑16‑8774‑7_7
    [Google Scholar]
  50. PaulT. RajR. GargP. JainS. Real time monitoring of water quality for rural areas: A machine learning and internet of things approach.4th International Conference on Intelligent Engineering and Management (ICIEM),London, United Kingdom, 2023, pp. 1-6.10.1109/ICIEM59379.2023.10165824
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673345515241122024326
Loading
/content/journals/cmc/10.2174/0109298673345515241122024326
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test