Skip to content
2000
Volume 32, Issue 37
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Aims

This study aimed to develop Imatinib Mesylate (IMT)-loaded Poly Lactic-co-Glycolic Acid (PLGA)-D-α-tocopheryl polyethylene glycol succinate (TPGS)- Polyethylene glycol (PEG) hybrid nanoparticles (CSLHNPs) with optimized physicochemical properties for targeted delivery to glioblastoma multiforme.

Background

Glioblastoma multiforme (GBM) is the most destructive type of brain tumor with several complications. Currently, most treatments for drug delivery for this disease face challenges due to the poor blood-brain barrier (BBB) and lack of site-specific delivery. Imatinib Mesylate (IMT) is one of the most effective drugs for GBM, but its primary issue is low bioavailability. Therefore, nanotechnology presents a promising solution for targeted IMT delivery to GBM. This article primarily explores the fabrication of IMT-loaded core-shell lipid-polymer hybrid nanoparticles (CSLHNPs) to achieve enhanced brain delivery with therapeutic efficacy.

Objective

The primary objective of this study is to develop optimized, stable IMT-loaded hybrid nanoparticles with an encapsulated polymer matrix and to evaluate these nanoparticles using sophisticated instruments such as SEM and TEM to achieve smooth, spherical nanoparticles in a monodispersed phase.

Methods

The enhanced stable formulation yielded a notable increase in entrapment efficiency, reaching 58.89 ± 0.5%. The physical stability analysis of nanoparticles was assessed over 30 days under conditions of 25 ± 2°C and 60 ± 5% relative humidity. Hemolytic assays affirmed the biocompatibility and safety profile of the nanoparticles. drug release kinetics revealed a sustained IMT release over 48 hours.

Results

The formulated CSLHNPs achieved a narrow size distribution with a mean vesicle diameter of 155.03 ± 2.41 nm and a low polydispersity index (PDI) of 0.23 ± 0.4, indicating monodispersity. A high negative zeta potential of -23.89 ± 3.47 mV ensured excellent colloidal stability in physiological conditions. XRD analysis confirmed the successful encapsulation of IMT within the nanoparticle matrix, with the drug transitioning to an amorphous state for enhanced dissolution. During cell-cell viability assays on LN229, glioblastoma cells were treated with IMT-loaded nanoparticles and showed a significantly enhanced inhibitory effect compared to free IMT. These hybrid nanoparticles demonstrated potential in reducing oxidative stress-induced cellular damage by mitigating reactive oxygen species (ROS). Thus, the prepared IMT hybrid nanoparticles showed higher cellular uptake and superior cytotoxicity compared to the plain drug.

Conclusion

This study posits the IMT-PLGA-TPGS-DSPE PEG 2000-CSPLHNPs as a formidable and innovative drug delivery system for Glioblastoma Multiforme (GBM) treatment, warranting further exploration into their clinical application potential. Future work could involve conducting studies to evaluate the pharmacokinetics, biodistribution, and therapeutic efficacy of the IMT-PLGA-TPGS-DSPE PEG 2000-CSPLHNPs in animal models of Glioblastoma Multiforme (GBM). Additionally, further research may focus on optimizing the nanoparticle formulation for enhanced targeting capabilities, investigating long-term stability under varied storage conditions, exploring potential combination therapies to synergize with the nanoparticles, and assessing the scalability and manufacturability of the developed drug delivery system for potential clinical translation. Integration of advanced imaging techniques for real- time tracking and visualization of nanoparticle distribution within tumours could also be a promising direction for future investigations.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673323270241118103546
2025-01-14
2025-11-02
Loading full text...

Full text loading...

References

  1. AfshariA.R. SanatiM. AminyavariS. ShakeriF. BibakB. KeshavarziZ. SoukhtanlooM. Jalili-NikM. SadeghiM.M. MollazadehH. JohnstonT.P. SahebkarA. Advantages and drawbacks of dexamethasone in glioblastoma multiforme.Crit. Rev. Oncol. Hematol.202217210362510.1016/j.critrevonc.2022.10362535158070
    [Google Scholar]
  2. SanatiM. AminyavariS. MollazadehH. BibakB. MohtashamiE. AfshariA.R. How do phosphodiesterase-5 inhibitors affect cancer? A focus on glioblastoma multiforme.Pharmacol. Rep.202274232333910.1007/s43440‑021‑00349‑635050491
    [Google Scholar]
  3. MaghrouniA. GivariM. Jalili-NikM. MollazadehH. BibakB. SadeghiM.M. AfshariA.R. JohnstonT.P. SahebkarA. Targeting the PD-1/PD-L1 pathway in glioblastoma multiforme: Preclinical evidence and clinical interventions.Int. Immunopharmacol.20219310740310.1016/j.intimp.2021.10740333581502
    [Google Scholar]
  4. AfshariA.R. MollazadehH. SoukhtanlooM. HosseiniA. MohtashamiE. Jalili-NikM. ModaresiS.M.S. SoltaniA. SahebkarA. Modulation of calcium signaling in glioblastoma multiforme: A therapeutic promise for natural products.Mini Rev. Med. Chem.202020181879189910.2174/138955752066620080713365932767939
    [Google Scholar]
  5. AdegboyegaG. KanmounyeU.S. PetrinicT. OzairA. BandyopadhyayS. KuriA. ZoloY. MarksK. RamjeeS. BaticulonR. VaqasB. Global landscape of glioblastoma multiforme management in the stupp protocol era: Systematic review protocol.Int. J. Surg. Protoc.202125110811310.29337/ijsp.14834222733
    [Google Scholar]
  6. AfshariA.R. Motamed-SanayeA. SabriH. SoltaniA. Karkon-ShayanS. RadvarS. JavidH. MollazadehH. SathyapalanT. SahebkarA. Neurokinin-1 receptor (NK-1R) antagonists: Potential targets in the treatment of glioblastoma multiforme.Curr. Med. Chem.202128244877489210.2174/092986732866621011316580533441062
    [Google Scholar]
  7. Jalili-NikM. AfshariA.R. SabriH. BibakB. MollazadehH. SahebkarA. Zerumbone, a ginger sesquiterpene, inhibits migration, invasion, and metastatic behavior of human malignant glioblastoma multiforme in vitro.Biofactors202147572973910.1002/biof.175634046952
    [Google Scholar]
  8. DiaoW. TongX. YangC. ZhangF. BaoC. ChenH. LiuL. LiM. YeF. FanQ. WangJ. Ou-YangZ.C. Behaviors of glioblastoma cells in in vitro microenvironments.Sci. Rep.2019918510.1038/s41598‑018‑36347‑730643153
    [Google Scholar]
  9. MohtashamiE. Shafaei-BajestaniN. MollazadehH. MousaviS.H. Jalili-NikM. SahebkarA. AfshariA.R. The current state of potential therapeutic modalities for glioblastoma multiforme: A clinical review.Curr. Drug Metab.202021856457810.2174/138920022166620071410103832664839
    [Google Scholar]
  10. TrivediS. BhoyarV. AkojwarN. BelgamwarV. Transport of nanocarriers to brain for treatment of glioblastoma multiforme: Routes and challenges.Nano Trends2023110000510.1016/j.nwnano.2023.100005
    [Google Scholar]
  11. JatyanR. SahelD.K. SinghP. SakhujaR. MittalA. ChitkaraD. Temozolomide-fatty acid conjugates for glioblastoma multiforme: In vitro and in vivo evaluation.J. Control. Release202335916117410.1016/j.jconrel.2023.05.01237182806
    [Google Scholar]
  12. NicoletiL.R. Di FilippoL.D. DuarteJ.L. LuizM.T. SábioR.M. ChorilliM. Development, characterization and in vitro cytotoxicity of kaempferol-loaded nanostructured lipid carriers in glioblastoma multiforme cells.Colloids Surf. B Biointerfaces202322611330910.1016/j.colsurfb.2023.11330937054466
    [Google Scholar]
  13. OliveiraA.L.C. SchomannT. Geus-OeiL.F.D. KapiteijnE. CruzL.J. AraújoR.F.D. Nanocarriers as a tool for the treatment of colorectal cancer.Pharmaceutics2021138132110.3390/pharmaceutics1308132134452282
    [Google Scholar]
  14. KriplaniP. GuarveK. Nanotechnology a boon for colorectal cancer treatment.Rec. Pat. Anticancer Drug Discov.202318337939610.2174/157489281766622101109461936221866
    [Google Scholar]
  15. SheebaC.J. MarslinG. RevinaA.M. KhandelwalV. BalakumarK. PrakashJ. FranklinG. Delivery as nanoparticles reduces imatinib mesylate-induced cardiotoxicity and improves anticancer activity.Int. J. Nanomedicine2015103163317010.2147/IJN.S7596225995626
    [Google Scholar]
  16. WuX.Y. Strategies for optimizing polymer-lipid hybrid nanoparticle-mediated drug delivery.Expert Opin. Drug Deliv.201613560961210.1517/17425247.2016.116566226978527
    [Google Scholar]
  17. RaoS. PrestidgeC.A. Polymer-lipid hybrid systems: Merging the benefits of polymeric and lipid-based nanocarriers to improve oral drug delivery.Expert Opin. Drug Deliv.201613569170710.1517/17425247.2016.115187226866382
    [Google Scholar]
  18. XieS. WangS. ZhaoB. HanC. WangM. ZhouW. Effect of PLGA as a polymeric emulsifier on preparation of hydrophilic protein-loaded solid lipid nanoparticles.Colloids Surf. B Biointerfaces200867219920410.1016/j.colsurfb.2008.08.01818829272
    [Google Scholar]
  19. MuL. FengS.S. A novel controlled release formulation for the anticancer drug paclitaxel (Taxol®): PLGA nanoparticles containing vitamin E TPGS.J. Control. Release2003861334810.1016/S0168‑3659(02)00320‑612490371
    [Google Scholar]
  20. KordeL.A. SomerfieldM.R. CareyL.A. CrewsJ.R. DenduluriN. HwangE.S. KhanS.A. LoiblS. MorrisE.A. PerezA. ReganM.M. SpearsP.A. SudheendraP.K. SymmansW.F. YungR.L. HarveyB.E. HershmanD.L. Neoadjuvant chemotherapy, endocrine therapy, and targeted therapy for breast cancer: ASCO guideline.J. Clin. Oncol.202139131485150510.1200/JCO.20.0339933507815
    [Google Scholar]
  21. Iván Martínez-MuñozO. Elizabeth Mora-HuertasC. Nanoprecipitation technology to prepare carrier systems of interest in pharmaceutics: An overview of patenting.Int. J. Pharm.202261412144010.1016/j.ijpharm.2021.12144034998924
    [Google Scholar]
  22. Bailey-HytholtC.M. GhoshP. DugasJ. ZarragaI.E. BandekarA. Formulating and characterizing lipid nanoparticles for gene delivery using a microfluidic mixing platform.J. Vis. Exp.2021202116810.3791/62226‑v33720139
    [Google Scholar]
  23. ShindeP. PageA. BhattacharyaS. Ethosomes and their monotonous effects on Skin cancer disruption.Front. Nanotechnol.20235108741310.3389/fnano.2023.1087413
    [Google Scholar]
  24. JainA.S. PawarP.S. SarkarA. JunnuthulaV. DyawanapellyS. Bionanofactories for green synthesis of silver nanoparticles: Toward antimicrobial applications.Int. J. Mol. Sci.202122211199310.3390/ijms22211199334769419
    [Google Scholar]
  25. NamasivayamS.K.R. VenkatachalamG. BharaniR.S.A. KumarJ.A. SivasubramanianS. Molecular intervention of colon cancer and inflammation manifestation by tannin capped biocompatible controlled sized gold nanoparticles from Terminalia bellirica: A green strategy for pharmacological drug formulation based on nanotechnology principles.20211194013442254110.1007/s13205‑021‑02944‑z
    [Google Scholar]
  26. RajpootK. JainS.K. Colorectal cancer-targeted delivery of oxaliplatin via folic acid-grafted solid lipid nanoparticles: Preparation, optimization, and in vitro evaluation.Artif. Cells Nanomed. Biotechnol.20184661236124710.1080/21691401.2017.136633828849671
    [Google Scholar]
  27. AlfareedT.M. SlimaniY. AlmessiereM.A. NawazM. KhanF.A. BaykalA. Al-SuhaimiE.A. Biocompatibility and colorectal anti-cancer activity study of nanosized BaTiO3 coated spinel ferrites.Sci. Rep.20221211412710.1038/s41598‑022‑18306‑535986070
    [Google Scholar]
  28. ZhaoY. XuJ. LeV.M. GongQ. LiS. GaoF. NiL. LiuJ. LiangX. EpCAM aptamer-functionalized cationic liposome-based nanoparticles loaded with miR-139-5p for targeted therapy in colorectal cancer.Mol. Pharm.201916114696471010.1021/acs.molpharmaceut.9b0086731589818
    [Google Scholar]
  29. JayachandranP. IlangoS. SuseelaV. NirmaladeviR. ShaikM.R. KhanM. KhanM. ShaikB. Green synthesized silver nanoparticle-loaded liposome-based nanoarchitectonics for cancer management: In vitro drug release analysis.Biomedicines202311121710.3390/biomedicines1101021736672725
    [Google Scholar]
  30. HerdianaY. WathoniN. ShamsuddinS. MuchtaridiM. Drug release study of the chitosan-based nanoparticles.Heliyon202281e0867410.1016/j.heliyon.2021.e0867435028457
    [Google Scholar]
  31. LiJ. TianJ. YinH. PengY. LiuS. YaoS. ZhangL. Chemical conjugation of FITC to track silica nanoparticles in vivo and in vitro: An emerging method to assess the reproductive toxicity of industrial nanomaterials.Environ. Int.202115210649710.1016/j.envint.2021.10649733714870
    [Google Scholar]
  32. BhattacharyaS. ShindeP. PageA. SharmaS. 5-Fluorouracil and Anti-EGFR antibody scaffold chitosan-stabilized pickering emulsion: Formulations, physical characterization, in-vitro studies in NCL-H226 cells, and in-vivo investigations in Wistar rats for the augmented therapeutic effects against squamous cell carcinoma.Int. J. Biol. Macromol.2023253Pt 112671610.1016/j.ijbiomac.2023.12671637673158
    [Google Scholar]
  33. De MatteisV. RizzelloL. CascioneM. PellegrinoP. SinghJ. MannoD. RinaldiR. Sustainable synthesis of FITC chitosan-capped gold nanoparticles for biomedical applications.Clean Technol.20224494295310.3390/cleantechnol4040058
    [Google Scholar]
  34. DuttaS. MitraS.K. BirA. T RP. GhoshA. Enhancing anti-cancer activity: Green synthesis and cytotoxicity evaluation of turmeric-gold nanocapsules on A549 lung cancer cells.Cureus2023158e4308710.7759/cureus.4308737680423
    [Google Scholar]
  35. AndleebA. AndleebA. AsgharS. ZamanG. TariqM. MehmoodA. NadeemM. HanoC. LorenzoJ.M. AbbasiB.H. A systematic review of biosynthesized metallic nanoparticles as a promising anti-cancer-strategy.Cancers (Basel)20211311281810.3390/cancers1311281834198769
    [Google Scholar]
  36. NaqishbandiA.M. Cytotoxic and apoptotic potential of gemini-chrysophanol nanoparticles against human colorectal cancer HCT-116 cell lines.BMC Pharmacol. Toxicol.20222315610.1186/s40360‑022‑00597‑z35870982
    [Google Scholar]
  37. HerdianaY. SriwidodoS. SofianF.F. WilarG. DiantiniA. Nanoparticle-based antioxidants in stress signaling and programmed cell death in breast cancer treatment.Molecules20232814530510.3390/molecules28145305
    [Google Scholar]
  38. TuY. ZhangW. FanG. ZouC. ZhangJ. WuN. DingJ. ZouW.Q. XiaoH. TanS. Paclitaxel-loaded ROS-responsive nanoparticles for head and neck cancer therapy.Drug Deliv.2023301218910610.1080/10717544.2023.218910636916054
    [Google Scholar]
  39. ChaturvediV.K. SharmaB. TripathiA.D. YadavD.P. SinghK.R.B. SinghJ. SinghR.P. Biosynthesized nanoparticles: A novel approach for cancer therapeutics.Front. Med. Technol.20235123610710.3389/fmedt.2023.123610737521721
    [Google Scholar]
  40. TripathiD. HajraK. MaityD. Recent advancement of bio-inspired nanoparticles in cancer theragnostic.J. Nanotheranostics20234329932210.3390/jnt4030014
    [Google Scholar]
  41. HaiderT. PandeyV. BeheraC. KumarP. GuptaP.N. SoniV. Nisin and nisin-loaded nanoparticles: A cytotoxicity investigation.Drug Dev. Ind. Pharm.202248731032110.1080/03639045.2022.2111438
    [Google Scholar]
  42. Mohammadi-JamS. WatersK.E. GreenwoodR.W. A review of zeta potential measurements using electroacoustics.Adv. Colloid Interface Sci.202230910277810.1016/j.cis.2022.10277836209685
    [Google Scholar]
  43. Tabatabaei MirakabadF.S. Nejati-KoshkiK. AkbarzadehA. YamchiM.R. MilaniM. ZarghamiN. ZeighamianV. RahimzadehA. AlimohammadiS. HanifehpourY. JooS.W. PLGA-based nanoparticles as cancer drug delivery systems.Asian Pac. J. Cancer Prev.201415251753510.7314/APJCP.2014.15.2.51724568455
    [Google Scholar]
  44. ThakarM.A. Saurabh JhaS. PhasinamK. ManneR. QureshiY. Hari BabuV.V. X ray diffraction (XRD) analysis and evaluation of antioxidant activity of copper oxide nanoparticles synthesized from leaf extract of Cissus vitiginea.Mater. Today Proc.20225131932410.1016/j.matpr.2021.05.410
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673323270241118103546
Loading
/content/journals/cmc/10.2174/0109298673323270241118103546
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): glioblastoma; hybrid nanoparticles; imatinib mesylate; nanoprecipitation method; PLGA; TPGS
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test