Skip to content
2000
image of Poly Lactic Co-glycolic Acid d-α-tocopheryl Polyethylene Glycol 1000 Succinate Fabricated Polyethylene Glycol Hybrid Nanoparticles of Imatinib Mesylate for the Treatment of Glioblastoma Multiforme

Abstract

Aims

This study aimed to develop Imatinib Mesylate (IMT)-loaded Poly Lactic-co-Glycolic Acid (PLGA)-D-α-tocopheryl polyethylene glycol succinate (TPGS)- Polyethylene glycol (PEG) hybrid nanoparticles (CSLHNPs) with optimized physicochemical properties for targeted delivery to glioblastoma multiforme.

Background

Glioblastoma multiforme (GBM) is the most destructive type of brain tumor with several complications. Currently, most treatments for drug delivery for this disease face challenges due to the poor blood-brain barrier (BBB) and lack of site-specific delivery. Imatinib Mesylate (IMT) is one of the most effective drugs for GBM, but its primary issue is low bioavailability. Therefore, nanotechnology presents a promising solution for targeted IMT delivery to GBM. This article primarily explores the fabrication of IMT-loaded core-shell lipid-polymer hybrid nanoparticles (CSLHNPs) to achieve enhanced brain delivery with therapeutic efficacy.

Objective

The primary objective of this study is to develop optimized, stable IMT-loaded hybrid nanoparticles with an encapsulated polymer matrix and to evaluate these nanoparticles using sophisticated instruments such as SEM and TEM to achieve smooth, spherical nanoparticles in a monodispersed phase.

Methods

The enhanced stable formulation yielded a notable increase in entrapment efficiency, reaching 58.89 ± 0.5%. The physical stability analysis of nanoparticles was assessed over 30 days under conditions of 25 ± 2°C and 60 ± 5% relative humidity. Hemolytic assays affirmed the biocompatibility and safety profile of the nanoparticles. drug release kinetics revealed a sustained IMT release over 48 hours.

Results

The formulated CSLHNPs achieved a narrow size distribution with a mean vesicle diameter of 155.03 ± 2.41 nm and a low polydispersity index (PDI) of 0.23 ± 0.4, indicating monodispersity. A high negative zeta potential of -23.89 ± 3.47 mV ensured excellent colloidal stability in physiological conditions. XRD analysis confirmed the successful encapsulation of IMT within the nanoparticle matrix, with the drug transitioning to an amorphous state for enhanced dissolution. During cell-cell viability assays on LN229, glioblastoma cells were treated with IMT-loaded nanoparticles and showed a significantly enhanced inhibitory effect compared to free IMT. These hybrid nanoparticles demonstrated potential in reducing oxidative stress-induced cellular damage by mitigating reactive oxygen species (ROS). Thus, the prepared IMT hybrid nanoparticles showed higher cellular uptake and superior cytotoxicity compared to the plain drug.

Conclusion

This study posits the IMT-PLGA-TPGS-DSPE PEG 2000-CSPLHNPs as a formidable and innovative drug delivery system for Glioblastoma Multiforme (GBM) treatment, warranting further exploration into their clinical application potential. Future work could involve conducting studies to evaluate the pharmacokinetics, biodistribution, and therapeutic efficacy of the IMT-PLGA-TPGS-DSPE PEG 2000-CSPLHNPs in animal models of Glioblastoma Multiforme (GBM). Additionally, further research may focus on optimizing the nanoparticle formulation for enhanced targeting capabilities, investigating long-term stability under varied storage conditions, exploring potential combination therapies to synergize with the nanoparticles, and assessing the scalability and manufacturability of the developed drug delivery system for potential clinical translation. Integration of advanced imaging techniques for real- time tracking and visualization of nanoparticle distribution within tumours could also be a promising direction for future investigations.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673323270241118103546
2025-01-14
2025-02-10
Loading full text...

Full text loading...

References

  1. Afshari A.R. Sanati M. Aminyavari S. Shakeri F. Bibak B. Keshavarzi Z. Soukhtanloo M. Jalili-Nik M. Sadeghi M.M. Mollazadeh H. Johnston T.P. Sahebkar A. Advantages and drawbacks of dexamethasone in glioblastoma multiforme. Crit. Rev. Oncol. Hematol. 2022 172 103625 10.1016/j.critrevonc.2022.103625 35158070
    [Google Scholar]
  2. Sanati M. Aminyavari S. Mollazadeh H. Bibak B. Mohtashami E. Afshari A.R. How do phosphodiesterase-5 inhibitors affect cancer? A focus on glioblastoma multiforme. Pharmacol. Rep. 2022 74 2 323 339 10.1007/s43440‑021‑00349‑6 35050491
    [Google Scholar]
  3. Maghrouni A. Givari M. Jalili-Nik M. Mollazadeh H. Bibak B. Sadeghi M.M. Afshari A.R. Johnston T.P. Sahebkar A. Targeting the PD-1/PD-L1 pathway in glioblastoma multiforme: Preclinical evidence and clinical interventions. Int. Immunopharmacol. 2021 93 107403 10.1016/j.intimp.2021.107403 33581502
    [Google Scholar]
  4. Afshari A.R. Mollazadeh H. Soukhtanloo M. Hosseini A. Mohtashami E. Jalili-Nik M. Modaresi S.M.S. Soltani A. Sahebkar A. Modulation of calcium signaling in glioblastoma multiforme: A therapeutic promise for natural products. Mini Rev. Med. Chem. 2020 20 18 1879 1899 10.2174/1389557520666200807133659 32767939
    [Google Scholar]
  5. Adegboyega G. Kanmounye U.S. Petrinic T. Ozair A. Bandyopadhyay S. Kuri A. Zolo Y. Marks K. Ramjee S. Baticulon R. Vaqas B. Global landscape of glioblastoma multiforme management in the stupp protocol era: Systematic review protocol. Int. J. Surg. Protoc. 2021 25 1 108 113 10.29337/ijsp.148 34222733
    [Google Scholar]
  6. Afshari A.R. Motamed-Sanaye A. Sabri H. Soltani A. Karkon-Shayan S. Radvar S. Javid H. Mollazadeh H. Sathyapalan T. Sahebkar A. Neurokinin-1 receptor (NK-1R) antagonists: Potential targets in the treatment of glioblastoma multiforme. Curr. Med. Chem. 2021 28 24 4877 4892 10.2174/0929867328666210113165805 33441062
    [Google Scholar]
  7. Jalili-Nik M. Afshari A.R. Sabri H. Bibak B. Mollazadeh H. Sahebkar A. Zerumbone, a ginger sesquiterpene, inhibits migration, invasion, and metastatic behavior of human malignant glioblastoma multiforme in vitro. Biofactors 2021 47 5 729 739 10.1002/biof.1756 34046952
    [Google Scholar]
  8. Diao W. Tong X. Yang C. Zhang F. Bao C. Chen H. Liu L. Li M. Ye F. Fan Q. Wang J. Ou-Yang Z.C. Behaviors of glioblastoma cells in in vitro microenvironments. Sci. Rep. 2019 9 1 85 10.1038/s41598‑018‑36347‑7 30643153
    [Google Scholar]
  9. Mohtashami E. Shafaei-Bajestani N. Mollazadeh H. Mousavi S.H. Jalili-Nik M. Sahebkar A. Afshari A.R. The current state of potential therapeutic modalities for glioblastoma multiforme: A clinical review. Curr. Drug Metab. 2020 21 8 564 578 10.2174/1389200221666200714101038 32664839
    [Google Scholar]
  10. Trivedi S. Bhoyar V. Akojwar N. Belgamwar V. Transport of nanocarriers to brain for treatment of glioblastoma multiforme: Routes and challenges. Nano Trends 2023 1 100005 10.1016/j.nwnano.2023.100005
    [Google Scholar]
  11. Jatyan R. Sahel D.K. Singh P. Sakhuja R. Mittal A. Chitkara D. Temozolomide-fatty acid conjugates for glioblastoma multiforme: In vitro and in vivo evaluation. J. Control. Release 2023 359 161 174 10.1016/j.jconrel.2023.05.012 37182806
    [Google Scholar]
  12. Nicoleti L.R. Di Filippo L.D. Duarte J.L. Luiz M.T. Sábio R.M. Chorilli M. Development, characterization and in vitro cytotoxicity of kaempferol-loaded nanostructured lipid carriers in glioblastoma multiforme cells. Colloids Surf. B Biointerfaces 2023 226 113309 10.1016/j.colsurfb.2023.113309 37054466
    [Google Scholar]
  13. Oliveira A.L.C. Schomann T. Geus-Oei L.F.D. Kapiteijn E. Cruz L.J. Araújo R.F.D. Nanocarriers as a tool for the treatment of colorectal cancer. Pharmaceutics 2021 13 8 1321 10.3390/pharmaceutics13081321 34452282
    [Google Scholar]
  14. Kriplani P. Guarve K. Nanotechnology a boon for colorectal cancer treatment. Rec. Pat. Anticancer Drug Discov. 2023 18 3 379 396 10.2174/1574892817666221011094619 36221866
    [Google Scholar]
  15. Sheeba C.J. Marslin G. Revina A.M. Khandelwal V. Balakumar K. Prakash J. Franklin G. Delivery as nanoparticles reduces imatinib mesylate-induced cardiotoxicity and improves anticancer activity. Int. J. Nanomedicine 2015 10 3163 3170 10.2147/IJN.S75962 25995626
    [Google Scholar]
  16. Wu X.Y. Strategies for optimizing polymer-lipid hybrid nanoparticle-mediated drug delivery. Expert Opin. Drug Deliv. 2016 13 5 609 612 10.1517/17425247.2016.1165662 26978527
    [Google Scholar]
  17. Rao S. Prestidge C.A. Polymer-lipid hybrid systems: Merging the benefits of polymeric and lipid-based nanocarriers to improve oral drug delivery. Expert Opin. Drug Deliv. 2016 13 5 691 707 10.1517/17425247.2016.1151872 26866382
    [Google Scholar]
  18. Xie S. Wang S. Zhao B. Han C. Wang M. Zhou W. Effect of PLGA as a polymeric emulsifier on preparation of hydrophilic protein-loaded solid lipid nanoparticles. Colloids Surf. B Biointerfaces 2008 67 2 199 204 10.1016/j.colsurfb.2008.08.018 18829272
    [Google Scholar]
  19. Mu L. Feng S.S. A novel controlled release formulation for the anticancer drug paclitaxel (Taxol®): PLGA nanoparticles containing vitamin E TPGS. J. Control. Release 2003 86 1 33 48 10.1016/S0168‑3659(02)00320‑6 12490371
    [Google Scholar]
  20. Korde L.A. Somerfield M.R. Carey L.A. Crews J.R. Denduluri N. Hwang E.S. Khan S.A. Loibl S. Morris E.A. Perez A. Regan M.M. Spears P.A. Sudheendra P.K. Symmans W.F. Yung R.L. Harvey B.E. Hershman D.L. Neoadjuvant chemotherapy, endocrine therapy, and targeted therapy for breast cancer: ASCO guideline. J. Clin. Oncol. 2021 39 13 1485 1505 10.1200/JCO.20.03399 33507815
    [Google Scholar]
  21. Iván Martínez-Muñoz O. Elizabeth Mora-Huertas C. Nanoprecipitation technology to prepare carrier systems of interest in pharmaceutics: An overview of patenting. Int. J. Pharm. 2022 614 121440 10.1016/j.ijpharm.2021.121440 34998924
    [Google Scholar]
  22. Bailey-Hytholt C.M. Ghosh P. Dugas J. Zarraga I.E. Bandekar A. Formulating and characterizing lipid nanoparticles for gene delivery using a microfluidic mixing platform. J. Vis. Exp. 2021 2021 168 10.3791/62226‑v 33720139
    [Google Scholar]
  23. Shinde P. Page A. Bhattacharya S. Ethosomes and their monotonous effects on Skin cancer disruption. Front. Nanotechnol. 2023 5 1087413 10.3389/fnano.2023.1087413
    [Google Scholar]
  24. Jain A.S. Pawar P.S. Sarkar A. Junnuthula V. Dyawanapelly S. Bionanofactories for green synthesis of silver nanoparticles: Toward antimicrobial applications. Int. J. Mol. Sci. 2021 22 21 11993 10.3390/ijms222111993 34769419
    [Google Scholar]
  25. Namasivayam S.K.R. Venkatachalam G. Bharani R.S.A. Kumar J.A. Sivasubramanian S. Molecular intervention of colon cancer and inflammation manifestation by tannin capped biocompatible controlled sized gold nanoparticles from Terminalia bellirica: A green strategy for pharmacological drug formulation based on nanotechnology principles. 2021 11 9 401 34422541 10.1007/s13205‑021‑02944‑z
    [Google Scholar]
  26. Rajpoot K. Jain S.K. Colorectal cancer-targeted delivery of oxaliplatin via folic acid-grafted solid lipid nanoparticles: Preparation, optimization, and in vitro evaluation. Artif. Cells Nanomed. Biotechnol. 2018 46 6 1236 1247 10.1080/21691401.2017.1366338 28849671
    [Google Scholar]
  27. Alfareed T.M. Slimani Y. Almessiere M.A. Nawaz M. Khan F.A. Baykal A. Al-Suhaimi E.A. Biocompatibility and colorectal anti-cancer activity study of nanosized BaTiO3 coated spinel ferrites. Sci. Rep. 2022 12 1 14127 10.1038/s41598‑022‑18306‑5 35986070
    [Google Scholar]
  28. Zhao Y. Xu J. Le V.M. Gong Q. Li S. Gao F. Ni L. Liu J. Liang X. EpCAM aptamer-functionalized cationic liposome-based nanoparticles loaded with miR-139-5p for targeted therapy in colorectal cancer. Mol. Pharm. 2019 16 11 4696 4710 10.1021/acs.molpharmaceut.9b00867 31589818
    [Google Scholar]
  29. Jayachandran P. Ilango S. Suseela V. Nirmaladevi R. Shaik M.R. Khan M. Khan M. Shaik B. Green synthesized silver nanoparticle-loaded liposome-based nanoarchitectonics for cancer management: In vitro drug release analysis. Biomedicines 2023 11 1 217 10.3390/biomedicines11010217 36672725
    [Google Scholar]
  30. Herdiana Y. Wathoni N. Shamsuddin S. Muchtaridi M. Drug release study of the chitosan-based nanoparticles. Heliyon 2022 8 1 e08674 10.1016/j.heliyon.2021.e08674 35028457
    [Google Scholar]
  31. Li J. Tian J. Yin H. Peng Y. Liu S. Yao S. Zhang L. Chemical conjugation of FITC to track silica nanoparticles in vivo and in vitro: An emerging method to assess the reproductive toxicity of industrial nanomaterials. Environ. Int. 2021 152 106497 10.1016/j.envint.2021.106497 33714870
    [Google Scholar]
  32. Bhattacharya S. Shinde P. Page A. Sharma S. 5-Fluorouracil and Anti-EGFR antibody scaffold chitosan-stabilized pickering emulsion: Formulations, physical characterization, in-vitro studies in NCL-H226 cells, and in-vivo investigations in Wistar rats for the augmented therapeutic effects against squamous cell carcinoma. Int. J. Biol. Macromol. 2023 253 Pt 1 126716 10.1016/j.ijbiomac.2023.126716 37673158
    [Google Scholar]
  33. De Matteis V. Rizzello L. Cascione M. Pellegrino P. Singh J. Manno D. Rinaldi R. Sustainable synthesis of FITC chitosan-capped gold nanoparticles for biomedical applications. Clean Technol. 2022 4 4 942 953 10.3390/cleantechnol4040058
    [Google Scholar]
  34. Dutta S. Mitra S.K. Bir A. T R P. Ghosh A. Enhancing anti-cancer activity: Green synthesis and cytotoxicity evaluation of turmeric-gold nanocapsules on A549 lung cancer cells. Cureus 2023 15 8 e43087 10.7759/cureus.43087 37680423
    [Google Scholar]
  35. Andleeb A. Andleeb A. Asghar S. Zaman G. Tariq M. Mehmood A. Nadeem M. Hano C. Lorenzo J.M. Abbasi B.H. A systematic review of biosynthesized metallic nanoparticles as a promising anti-cancer-strategy. Cancers (Basel) 2021 13 11 2818 10.3390/cancers13112818 34198769
    [Google Scholar]
  36. Naqishbandi A.M. Cytotoxic and apoptotic potential of gemini-chrysophanol nanoparticles against human colorectal cancer HCT-116 cell lines. BMC Pharmacol. Toxicol. 2022 23 1 56 10.1186/s40360‑022‑00597‑z 35870982
    [Google Scholar]
  37. Herdiana Y. Sriwidodo S. Sofian F.F. Wilar G. Diantini A. Nanoparticle-based antioxidants in stress signaling and programmed cell death in breast cancer treatment. Molecules 2023 28 14 5305 10.3390/molecules28145305
    [Google Scholar]
  38. Tu Y. Zhang W. Fan G. Zou C. Zhang J. Wu N. Ding J. Zou W.Q. Xiao H. Tan S. Paclitaxel-loaded ROS-responsive nanoparticles for head and neck cancer therapy. Drug Deliv. 2023 30 1 2189106 10.1080/10717544.2023.2189106 36916054
    [Google Scholar]
  39. Chaturvedi V.K. Sharma B. Tripathi A.D. Yadav D.P. Singh K.R.B. Singh J. Singh R.P. Biosynthesized nanoparticles: A novel approach for cancer therapeutics. Front. Med. Technol. 2023 5 1236107 10.3389/fmedt.2023.1236107 37521721
    [Google Scholar]
  40. Tripathi D. Hajra K. Maity D. Recent advancement of bio-inspired nanoparticles in cancer theragnostic. J. Nanotheranostics 2023 4 3 299 322 10.3390/jnt4030014
    [Google Scholar]
  41. Haider T. Pandey V. Behera C. Kumar P. Gupta P.N. Soni V. Nisin and nisin-loaded nanoparticles: A cytotoxicity investigation. Drug Dev. Ind. Pharm. 2022 48 7 310 321 10.1080/03639045.2022.2111438
    [Google Scholar]
  42. Mohammadi-Jam S. Waters K.E. Greenwood R.W. A review of zeta potential measurements using electroacoustics. Adv. Colloid Interface Sci. 2022 309 102778 10.1016/j.cis.2022.102778 36209685
    [Google Scholar]
  43. Tabatabaei Mirakabad F.S. Nejati-Koshki K. Akbarzadeh A. Yamchi M.R. Milani M. Zarghami N. Zeighamian V. Rahimzadeh A. Alimohammadi S. Hanifehpour Y. Joo S.W. PLGA-based nanoparticles as cancer drug delivery systems. Asian Pac. J. Cancer Prev. 2014 15 2 517 535 10.7314/APJCP.2014.15.2.517 24568455
    [Google Scholar]
  44. Thakar M.A. Saurabh Jha S. Phasinam K. Manne R. Qureshi Y. Hari Babu V.V. X ray diffraction (XRD) analysis and evaluation of antioxidant activity of copper oxide nanoparticles synthesized from leaf extract of Cissus vitiginea. Mater. Today Proc. 2022 51 319 324 10.1016/j.matpr.2021.05.410
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673323270241118103546
Loading
/content/journals/cmc/10.2174/0109298673323270241118103546
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: hybrid nanoparticles ; imatinib mesylate ; PLGA ; TPGS ; glioblastoma ; nanoprecipitation method
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test