Skip to content
2000
Volume 32, Issue 27
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Glioblastoma (GBM) is a highly aggressive and lethal brain tumor characterized by rapid growth, invasive behavior, and resistance to conventional therapies, such as surgery, radiotherapy, and chemotherapy. Despite these interventions, patient survival remains poor due to the tumor’s ability to recur and adapt to treatments. The function of GBM-derived exosomes (GBM-exosomes) as essential mediators in tumor growth has drawn attention in recent years. These small extracellular vesicles are involved in the transfer of a variety of molecules, including cytokines, miRNAs, proteins, and DNA, facilitating intercellular communication that promotes GBM cell proliferation, angiogenesis, immune evasion, and resistance to therapies. This review aims to provide an in-depth examination of the mechanisms through which GBM-exosomes contribute to these pathological processes, as well as to discuss the current methodologies for isolating and characterizing GBM exosomes. Additionally, we explore the potential of exosomes as biomarkers for diagnosis and prognosis and as novel therapeutic targets in the fight against GBM. By improving our understanding of GBM-exosomes, we can pave the way for the development of more effective, personalized treatment strategies that may improve patient outcomes and quality of life.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673344390241017065119
2024-11-04
2025-09-06
Loading full text...

Full text loading...

References

  1. GritschS. BatchelorT.T. Gonzalez CastroL.N. Diagnostic, therapeutic, and prognostic implications of the 2021 World Health Organization classification of tumors of the central nervous system.Cancer20221281475810.1002/cncr.3391834633681
    [Google Scholar]
  2. OstromQ.T. PriceM. NeffC. CioffiG. WaiteK.A. KruchkoC. Barnholtz-SloanJ.S. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2015–2019.Neuro-oncol.202224Suppl. 5v1v9510.1093/neuonc/noac20236196752
    [Google Scholar]
  3. ObradorE. Moreno-MurcianoP. Oriol-CaballoM. López-BlanchR. PinedaB. Gutiérrez-ArroyoJ. LorasA. Gonzalez-BonetL. Martinez-CadenasC. EstrelaJ. Marqués-TorrejónM. Glioblastoma therapy: Past, present and future.Int. J. Mol. Sci.2024255252910.3390/ijms2505252938473776
    [Google Scholar]
  4. YangQ. WeiB. PengC. WangL. LiC. Identification of serum exosomal miR-98–5p, miR-183–5p, miR-323–3p and miR-19b-3p as potential biomarkers for glioblastoma patients and investigation of their mechanisms.Curr. Res. Transl. Med.202270110331510.1016/j.retram.2021.10331534837760
    [Google Scholar]
  5. WuJ. Al-ZahraniA. BeylerliO. SufianovR. TalybovR. MeshcheryakovaS. SufianovaG. GareevI. SufianovA. Circulating miRNAs as diagnostic and prognostic biomarkers in high-grade gliomas.Front. Oncol.20221289853710.3389/fonc.2022.89853735646622
    [Google Scholar]
  6. LiuE.M. ShiZ.F. LiK.K.W. MaltaT.M. ChungN.Y.F. ChenH. ChanJ.Y.T. PoonM.F.M. KwanJ.S.H. ChanD.T.M. NoushmehrH. MaoY. NgH.K. Molecular landscape of IDH -wild type, p TERT -wild type adult glioblastomas.Brain Pathol.2022326e1310710.1111/bpa.1310735815721
    [Google Scholar]
  7. MohamedA.A. AlshaibiR. FaragallaS. MohamedY. Lucke-WoldB. Updates on management of gliomas in the molecular age.World J. Clin. Oncol.202415217819410.5306/wjco.v15.i2.17838455131
    [Google Scholar]
  8. SimH.W. LorreyS. KhasrawM. Advances in treatment of isocitrate dehydrogenase (IDH)-wildtype glioblastomas.Curr. Neurol. Neurosci. Rep.202323626327610.1007/s11910‑023‑01268‑037154886
    [Google Scholar]
  9. BallestínA. ArmocidaD. RibeccoV. SeanoG. Peritumoral brain zone in glioblastoma: Biological, clinical and mechanical features.Front. Immunol.202415134787710.3389/fimmu.2024.134787738487525
    [Google Scholar]
  10. KalluriR. LeBleuV.S. The biology, function, and biomedical applications of exosomes.Science20203676478eaau697710.1126/science.aau697732029601
    [Google Scholar]
  11. OushyS. HellwinkelJ.E. WangM. NguyenG.J. GunaydinD. HarlandT.A. AnchordoquyT.J. GranerM.W. Glioblastoma multiforme-derived extracellular vesicles drive normal astrocytes towards a tumour-enhancing phenotype.Philos. Trans. R Soc. Lond B Biol. Sci.173737317372016047710.1098/rstb.2016.0477
    [Google Scholar]
  12. HuW. WangW. ChenZ. ChenY. WangZ. Engineered exosomes and composite biomaterials for tissue regeneration.Theranostics20241452099212610.7150/thno.9308838505616
    [Google Scholar]
  13. LiuW. MaZ. KangX. Current status and outlook of advances in exosome isolation.Anal. Bioanal. Chem.2022414247123714110.1007/s00216‑022‑04253‑735962791
    [Google Scholar]
  14. WangX. ChengW. SuJ. Research progress of extracellular vesicles-loaded microneedle technology.Pharmaceutics202416332610.3390/pharmaceutics1603032638543220
    [Google Scholar]
  15. PoinsotV. PizzinatN. Ong-MeangV. Engineered and mimicked extracellular nanovesicles for therapeutic delivery.Nanomaterials (Basel)202414763910.3390/nano1407063938607173
    [Google Scholar]
  16. WangJ. MaP. KimD.H. LiuB.F. DemirciU. Towards microfluidic-based exosome isolation and detection for tumor therapy.Nano Today20213710106610.1016/j.nantod.2020.10106633777166
    [Google Scholar]
  17. SalikhovaD.I. TimofeevaA.V. GolovichevaV.V. FatkhudinovT.K. ShevtsovaY.A. SobolevaA.G. FedorovI.S. GoryunovK.V. DyakonovA.S. MokrousovaV.O. ShedenkovaM.O. ElchaninovA.V. MakhnachO.V. KutsevS.I. ChekhoninV.P. SilachevD.N. GoldshteinD.V. Extracellular vesicles of human glial cells exert neuroprotective effects via brain miRNA modulation in a rat model of traumatic brain injury.Sci. Rep.20231312038810.1038/s41598‑023‑47627‑237989873
    [Google Scholar]
  18. SharifS. GhahremaniM.H. SoleimaniM. Delivery of exogenous miR-124 to glioblastoma multiform cells by wharton’s jelly mesenchymal stem cells decreases cell proliferation and migration, and confers chemosensitivity.Stem Cell Rev.201814223624610.1007/s12015‑017‑9788‑329185191
    [Google Scholar]
  19. LongjohnM.N. ChristianS.L. Characterizing extracellular vesicles using nanoparticle-tracking analysis.Methods Mol. Biol.2022250835337310.1007/978‑1‑0716‑2376‑3_2335737250
    [Google Scholar]
  20. MallaR.R. PandrangiS. KumariS. GavaraM.M. BadanaA.K. Exosomal tetraspanins as regulators of cancer progression and metastasis and novel diagnostic markers.Asia Pac. J. Clin. Oncol.201814638339110.1111/ajco.1286929575602
    [Google Scholar]
  21. ChistiakovD.A. ChekhoninV.P. Extracellular vesicles shed by glioma cells: Pathogenic role and clinical value.Tumour Biol.20143598425843810.1007/s13277‑014‑2262‑924969563
    [Google Scholar]
  22. SharmaS. LeClaireM. GimzewskiJ.K. Ascent of atomic force microscopy as a nanoanalytical tool for exosomes and other extracellular vesicles.Nanotechnology2018291313200110.1088/1361‑6528/aaab0629376505
    [Google Scholar]
  23. ZhangY. WangJ. Inflammasome-derived exosomes isolation and imaging by transmission electron microscopy.Methods Mol. Biol.2022245913113610.1007/978‑1‑0716‑2144‑8_1335212961
    [Google Scholar]
  24. Alejandre GonzalezA.G. Ortiz-LazarenoP.C. Solorzano-IbarraF. Gutierrez-FrancoJ. Tellez-BañuelosM.C. Bueno-TopeteM.R. del Toro-ArreolaS. HaramatiJ. A modified method for the quantification of immune checkpoint ligands on exosomes from human serum using flow cytometry.Technol. Cancer Res. Treat.20232210.1177/1533033822115032437186801
    [Google Scholar]
  25. BalajiS. KimU. MuthukkaruppanV. VanniarajanA. Emerging role of tumor microenvironment derived exosomes in therapeutic resistance and metastasis through epithelial-to-mesenchymal transition.Life Sci.202128011975010.1016/j.lfs.2021.11975034171378
    [Google Scholar]
  26. WuY. HanW. DongH. LiuX. SuX. The rising roles of exosomes in the tumor microenvironment reprogramming and cancer immunotherapy.MedComm.202054e54110.1002/mco2.541
    [Google Scholar]
  27. JurjA. ZanoagaO. BraicuC. LazarV. TomuleasaC. IrimieA. Berindan-NeagoeI. A comprehensive picture of extracellular vesicles and their contents. Molecular transfer to cancer cells.Cancers (Basel)202012229810.3390/cancers1202029832012717
    [Google Scholar]
  28. SteinbichlerT.B. DudásJ. RiechelmannH. SkvortsovaI.I. The role of exosomes in cancer metastasis.Semin. Cancer Biol.20174417018110.1016/j.semcancer.2017.02.00628215970
    [Google Scholar]
  29. JóźwickaT.M. ErdmańskaP.M. Stachowicz-KarpińskaA. OlkiewiczM. JóźwickiW. Exosomes—promising carriers for regulatory therapy in oncology.Cancers (Basel)202416592310.3390/cancers1605092338473285
    [Google Scholar]
  30. BeylerliO. Encarnacion RamirezM.J. ShumadalovaA. IlyasovaT. ZemlyanskiyM. BeilerliA. MontemurroN. Cell-free miRNAs as non-invasive biomarkers in brain tumors.Diagnostics (Basel)20231318288810.3390/diagnostics1318288837761255
    [Google Scholar]
  31. MatarredonaE.R. PastorA.M. Extracellular vesicle-mediated communication between the glioblastoma and its microenvironment.Cells2019919610.3390/cells901009631906023
    [Google Scholar]
  32. ChoiD. MonterminiL. KimD.K. MeehanB. RothF.P. RakJ. The impact of oncogenic EGFRvIII on the proteome of extracellular vesicles released from glioblastoma cells.Mol. Cell. Proteomics201817101948196410.1074/mcp.RA118.00064430006486
    [Google Scholar]
  33. PenkovaA. KuziakovaO. GulaiaV. TiastoV. GoncharovN.V. LanskikhD. ZhmeniaV. BaklanovI. FarnievV. KumeikoV. Comprehensive clinical assays for molecular diagnostics of gliomas: The current state and future prospects.Front. Mol. Biosci.202310121610210.3389/fmolb.2023.121610237908227
    [Google Scholar]
  34. BurriS.H. GondiV. BrownP.D. MehtaM.P. The evolving role of tumor treating fields in managing glioblastoma.Am. J. Clin. Oncol.201841219119610.1097/COC.000000000000039528832384
    [Google Scholar]
  35. UrbantatR. VajkoczyP. BrandenburgS. Advances in chemokine signaling pathways as therapeutic targets in glioblastoma.Cancers (Basel)20211312298310.3390/cancers1312298334203660
    [Google Scholar]
  36. SufianovA. BegliarzadeS. IlyasovaT. LiangY. BeylerliO. MicroRNAs as prognostic markers and therapeutic targets in gliomas.Noncoding RNA Res.20227317117710.1016/j.ncrna.2022.07.00135846075
    [Google Scholar]
  37. LindemannC. MarschallV. WeigertA. KlingebielT. FuldaS. Smac mimetic-induced upregulation of CCL2/MCP-1 triggers migration and invasion of glioblastoma cells and influences the tumor microenvironment in a paracrine manner.Neoplasia201517648148910.1016/j.neo.2015.05.00226152356
    [Google Scholar]
  38. AiliY. MaimaitimingN. MahemutiY. QinH. WangY. WangZ. Liquid biopsy in central nervous system tumors: The potential roles of circulating miRNA and exosomes.Am. J. Cancer Res.202010124134415033414991
    [Google Scholar]
  39. LunavatT.R. NielandL. VrijmoetA.B. Zargani-PiccardiA. SamahaY. BreyneK. BreakefieldX.O. Roles of extracellular vesicles in glioblastoma: Foes, friends and informers.Front. Oncol.202313129117710.3389/fonc.2023.129117738074665
    [Google Scholar]
  40. KhayamzadehM. NiaziV. HussenB.M. TaheriM. Ghafouri-FardS. SamadianM. Emerging role of extracellular vesicles in the pathogenesis of glioblastoma.Metab. Brain Dis.202338117718410.1007/s11011‑022‑01074‑636083425
    [Google Scholar]
  41. AbelsE.R. MaasS.L.N. NielandL. WeiZ. CheahP.S. TaiE. KolsteegC.J. DusoswaS.A. TingD.T. HickmanS. El KhouryJ. KrichevskyA.M. BroekmanM.L.D. BreakefieldX.O. Glioblastoma-associated microglia reprogramming is mediated by functional transfer of extracellular miR-21.Cell Rep.2019281231053119.e710.1016/j.celrep.2019.08.03631533034
    [Google Scholar]
  42. CaiQ. ZhuA. GongL. Exosomes of glioma cells deliver miR-148a to promote proliferation and metastasis of glioblastoma via targeting CADM1.Bull. Cancer20181057-864365110.1016/j.bulcan.2018.05.00329921422
    [Google Scholar]
  43. SufianovA. BegliarzadeS. IlyasovaT. XuX. BeylerliO. MicroRNAs as potential diagnostic markers of glial brain tumors.Noncoding RNA Res.20227424224710.1016/j.ncrna.2022.09.00836203525
    [Google Scholar]
  44. ThuringerD. ChanteloupG. BoucherJ. PernetN. BoudescoC. JegoG. ChatelierA. BoisP. GobboJ. CronierL. SolaryE. GarridoC. Modulation of the inwardly rectifying potassium channel Kir4.1 by the pro-invasive miR-5096 in glioblastoma cells.Oncotarget2017823376813769310.18632/oncotarget.1694928445150
    [Google Scholar]
  45. ChenX. YangF. ZhangT. WangW. XiW. LiY. ZhangD. HuoY. ZhangJ. YangA. WangT. MiR-9 promotes tumorigenesis and angiogenesis and is activated by MYC and OCT4 in human glioma.J. Exp. Clin. Cancer Res.20193819910.1186/s13046‑019‑1078‑230795814
    [Google Scholar]
  46. ZhaoK. WangL. LiT. ZhuM. ZhangC. ChenL. ZhaoP. ZhouH. YuS. YangX. The role of miR-451 in the switching between proliferation and migration in malignant glioma cells: AMPK signaling, mTOR modulation and Rac1 activation required.Int. J. Oncol.20175061989199910.3892/ijo.2017.397328440461
    [Google Scholar]
  47. XuH. ZhaoG. ZhangY. JiangH. WangW. ZhaoD. HongJ. YuH. QiL. Mesenchymal stem cell-derived exosomal microRNA-133b suppresses glioma progression via Wnt/β-catenin signaling pathway by targeting EZH2.Stem Cell Res. Ther.201910138110.1186/s13287‑019‑1446‑z31842978
    [Google Scholar]
  48. YuL. GuiS. LiuY. QiuX. ZhangG. ZhangX. PanJ. FanJ. QiS. QiuB. Exosomes derived from microRNA-199a-overexpressing mesenchymal stem cells inhibit glioma progression by down-regulating AGAP2.Aging (Albany NY)201911155300531810.18632/aging.10209231386624
    [Google Scholar]
  49. ShenL. SunC. LiY. LiX. SunT. LiuC. ZhouY. DuZ. MicroRNA-199a-3p suppresses glioma cell proliferation by regulating the AKT/mTOR signaling pathway.Tumour Biol.20153696929693810.1007/s13277‑015‑3409‑z25854175
    [Google Scholar]
  50. KimR. LeeS. LeeJ. KimM. KimW.J. LeeH.W. LeeM.Y. KimJ. ChangW. Exosomes derived from microRNA-584 transfected mesenchymal stem cells: Novel alternative therapeutic vehicles for cancer therapy.BMB Rep.201851840641110.5483/BMBRep.2018.51.8.10529966581
    [Google Scholar]
  51. YanT. WuM. LvS. HuQ. XuW. ZengA. HuangK. ZhuX. Exosomes derived from microRNA-512-5p-transfected bone mesenchymal stem cells inhibit glioblastoma progression by targeting JAG1.Aging (Albany NY)20211379911992610.18632/aging.20274733795521
    [Google Scholar]
  52. ShiL. CaoY. YuanW. GuoJ. SunG. Exosomal circRNA BTG2 derived from RBP-J overexpressed-macrophages inhibits glioma progression via miR-25-3p/PTEN.Cell Death Dis.202213550610.1038/s41419‑022‑04908‑435643814
    [Google Scholar]
  53. WangH. FengJ. AoF. TangY. XuP. WangM. HuangM. Tumor-derived exosomal microRNA-7-5p enhanced by verbascoside inhibits biological behaviors of glioblastoma in vitro and in vivo. Mol. Ther. Oncolytics20212056958210.1016/j.omto.2020.12.00633768139
    [Google Scholar]
  54. MonfaredH. JahangardY. NikkhahM. Mirnajafi-ZadehJ. MowlaS.J. Potential therapeutic effects of exosomes packed with a mir-21-sponge construct in a rat model of glioblastoma.Front. Oncol.2019978210.3389/fonc.2019.0078231482067
    [Google Scholar]
  55. LiL ShaoMY ZouSC XiaoZF ChenZC Correction to: MiR-101-3p inhibits EMT to attenuate proliferation and metastasis in glioblastoma by targeting TRIM44.J Neurooncol.2023164375910.1007/s11060‑023‑04429‑w
    [Google Scholar]
  56. LiuN. ZhangL. WangZ. ChengY. ZhangP. WangX. WenW. YangH. LiuH. JinW. ZhangY. TuY. MicroRNA-101 inhibits proliferation, migration and invasion of human glioblastoma by targeting SOX9.Oncotarget2017812192441925410.18632/oncotarget.1370627911279
    [Google Scholar]
  57. CaoQ. ShiY. WangX. YangJ. MiY. ZhaiG. ZhangM. Circular METRN RNA hsa_circ_0037251 promotes glioma progression by sponging miR-1229-3p and regulating mTOR expression.Sci. Rep.2019911979110.1038/s41598‑019‑56417‑831875034
    [Google Scholar]
  58. WangX. CaoQ. ShiY. WuX. MiY. LiuK. KanQ. FanR. LiuZ. ZhangM. Identification of low-dose radiation-induced exosomal circ-METRN and miR-4709-3p/GRB14/PDGFRα pathway as a key regulatory mechanism in Glioblastoma progression and radioresistance: Functional validation and clinical theranostic significance.Int. J. Biol. Sci.20211741061107810.7150/ijbs.5716833867829
    [Google Scholar]
  59. MaW. ZhouY. LiuM. QinQ. CuiY. Long non-coding RNA LINC00470 in serum derived exosome: A critical regulator for proliferation and autophagy in glioma cells.Cancer Cell Int.202121114910.1186/s12935‑021‑01825‑y33663509
    [Google Scholar]
  60. TanS.K. PastoriC. PenasC. KomotarR.J. IvanM.E. WahlestedtC. AyadN.G. Serum long noncoding RNA HOTAIR as a novel diagnostic and prognostic biomarker in glioblastoma multiforme.Mol. Cancer20181717410.1186/s12943‑018‑0822‑029558959
    [Google Scholar]
  61. CaoY. HeH. DanC. GuoH. LiangY. Expression of lncRNA FAM95B1 in glioma and its possible mechanism affecting LN382 cell proliferation and migration.Chinese J. Oncol. Biother.2021288790795
    [Google Scholar]
  62. LiangS.F. ZuoF.F. YinB.C. YeB.C. Delivery of siRNA based on engineered exosomes for glioblastoma therapy by targeting STAT3.Biomater. Sci.20221061582159010.1039/D1BM01723C35179533
    [Google Scholar]
  63. PaceK.R. DuttR. GalileoD.S. Exosomal L1CAM stimulates glioblastoma cell motility, proliferation, and invasiveness.Int. J. Mol. Sci.20192016398210.3390/ijms2016398231426278
    [Google Scholar]
  64. SunZ. WangL. ZhouY. DongL. MaW. LvL. ZhangJ. WangX. Glioblastoma stem cell-derived exosomes enhance stemness and tumorigenicity of glioma cells by transferring Notch1 protein.Cell. Mol. Neurobiol.202040576778410.1007/s10571‑019‑00771‑831853695
    [Google Scholar]
  65. AzambujaJ.H. LudwigN. YerneniS.S. BraganholE. WhitesideT.L. Arginase-1+ exosomes from reprogrammed macrophages promote glioblastoma progression.Int. J. Mol. Sci.20202111399010.3390/ijms2111399032498400
    [Google Scholar]
  66. ElbazB. PopkoB. Molecular control of oligodendrocyte development.Trends Neurosci.201942426327710.1016/j.tins.2019.01.00230770136
    [Google Scholar]
  67. MukherjeeS. Tucker-BurdenC. KaissiE. NewsamA. DuggireddyH. ChauM. ZhangC. DiwediB. RupjiM. SebyS. KowalskiJ. KongJ. ReadR. BratD.J. CDK5 inhibition resolves PKA/cAMP-independent activation of CREB1 signaling in glioma stem cells.Cell Rep.20182361651166410.1016/j.celrep.2018.04.01629742423
    [Google Scholar]
  68. HaoQ. WuY. WuY. WangP. VadgamaJ.V. Tumor-derived exosomes in tumor-induced immune suppression.Int. J. Mol. Sci.2022233146110.3390/ijms2303146135163380
    [Google Scholar]
  69. VaidyaM. SugayaK. DNA associated with circulating exosomes as a biomarker for glioma.Genes (Basel)20201111127610.3390/genes1111127633137926
    [Google Scholar]
  70. SalaudC. Alvarez-ArenasA. GeraldoF. Belmonte-BeitiaJ. CalvoG.F. GratasC. PecqueurC. GarnierD. Pérez-GarciàV. ValletteF.M. OliverL. Mitochondria transfer from tumor-activated stromal cells (TASC) to primary Glioblastoma cells.Biochem. Biophys. Res. Commun.2020533113914710.1016/j.bbrc.2020.08.10132943183
    [Google Scholar]
  71. SunJ. SunZ. GareevI. YanT. ChenX. AhmadA. ZhangD. ZhaoB. BeylerliO. YangG. ZhaoS. Exosomal miR-2276-5p in plasma is a potential diagnostic and prognostic biomarker in glioma.Front. Cell Dev. Biol.2021967120210.3389/fcell.2021.67120234141710
    [Google Scholar]
  72. FengJ. RenX. FuH. LiD. ChenX. ZuX. LiuQ. WuM. LRRC4 mediates the formation of circular RNA CD44 to inhibit GBM cell proliferation.Mol. Ther. Nucleic Acids20212647348710.1016/j.omtn.2021.08.02634631278
    [Google Scholar]
  73. ChenJ. WangH. WangJ. NiuW. DengC. ZhouM. LncRNA NEAT1 enhances glioma progression via regulating the miR-128-3p/ITGA5 axis.Mol. Neurobiol.202158105163517710.1007/s12035‑021‑02474‑y34263426
    [Google Scholar]
  74. QianM. WangS. GuoX. WangJ. ZhangZ. QiuW. GaoX. ChenZ. XuJ. ZhaoR. XueH. LiG. Hypoxic glioma-derived exosomes deliver microRNA-1246 to induce M2 macrophage polarization by targeting TERF2IP via the STAT3 and NF-κB pathways.Oncogene202039242844210.1038/s41388‑019‑0996‑y31485019
    [Google Scholar]
  75. XieP. LiX. ChenR. LiuY. LiuD. LiuW. CuiG. XuJ. Upregulation of HOTAIRM1 increases migration and invasion by glioblastoma cells.Aging (Albany NY)20211322348236410.18632/aging.20226333323548
    [Google Scholar]
  76. WenJ. LiX. DingY. ZhengS. XiaoY. Lidocaine inhibits glioma cell proliferation, migration and invasion by modulating the circEZH2/miR-181b-5p pathway.Neuroreport2021321526010.1097/WNR.000000000000156033252475
    [Google Scholar]
  77. FengZ. ZhangL. ZhouJ. ZhouS. liL. GuoX. FengG. MaZ. HuangW. HuangF. mir-218-2 promotes glioblastomas growth, invasion and drug resistance by targeting CDC27.Oncotarget2017846304631810.18632/oncotarget.1385027974673
    [Google Scholar]
  78. YangZ.Y. WangY. LiuQ. WuM. microRNA cluster MC-let-7a-1~let-7d promotes autophagy and apoptosis of glioma cells by down-regulating STAT3.CNS Neurosci. Ther.202026331933110.1111/cns.1327331868319
    [Google Scholar]
  79. KatakowskiM. BullerB. ZhengX. LuY. RogersT. OsobamiroO. ShuW. JiangF. ChoppM. Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth.Cancer Lett.2013335120120410.1016/j.canlet.2013.02.01923419525
    [Google Scholar]
  80. WangJ. LiT. WangB. Exosomal transfer of miR-25-3p promotes the proliferation and temozolomide resistance of glioblastoma cells by targeting FBXW7.Int. J. Oncol.20215926410.3892/ijo.2021.524434278448
    [Google Scholar]
  81. PengG. SuJ. XiaoS. LiuQ. LINC00152 acts as a potential marker in gliomas and promotes tumor proliferation and invasion through the LINC00152/miR-107/RAB10 axis.J. Neurooncol.2021154328529910.1007/s11060‑021‑03836‑134478013
    [Google Scholar]
  82. ChenL. WangY. HeJ. ZhangC. ChenJ. ShiD. Long noncoding RNA H19 promotes proliferation and invasion in human glioma cells by downregulating miR-152.Oncol. Res.20182691419142810.3727/096504018X1517876857795129422115
    [Google Scholar]
  83. ChaiY. WuH.T. LiangC.D. YouC.Y. XieM.X. XiaoS.W. Exosomal lncRNA ROR1-AS1 derived from tumor cells promotes glioma progression via regulating miR-4686.Int. J. Nanomedicine2020158863887210.2147/IJN.S27179533204092
    [Google Scholar]
  84. ZhangS. GuanN. MaoX. CuiJ. SuiX. GuoW. Exosomal circRNA_104948 enhances the progression of glioma by regulating miR-29b-3p and DNMT3B/MTSS1 signaling.J. Environ. Pathol. Toxicol. Oncol.2022412475910.1615/JEnvironPatholToxicolOncol.202103977535695651
    [Google Scholar]
  85. WangD. FuC.W. FanD.Q. Participation of tumor suppressors long non-coding RNA MEG3, microRNA-377 and PTEN in glioma cell invasion and migration.Pathol. Res. Pract.20192151015255810.1016/j.prp.2019.15255831378455
    [Google Scholar]
  86. ZhengJ. LiX. WangP. LiuX. XueY. HuY. LiZ. LiZ. WangZ. LiuY. CRNDE affects the malignant biological characteristics of human glioma stem cells by negatively regulating miR-186.Oncotarget2015628253392535510.18632/oncotarget.450926231038
    [Google Scholar]
  87. ZhangX. WangS. LinG. WangD. Down-regulation of circ-PTN suppresses cell proliferation, invasion and glycolysis in glioma by regulating miR-432-5p/RAB10 axis.Neurosci. Lett.202073513515310.1016/j.neulet.2020.13515332629066
    [Google Scholar]
  88. BouzariB. MohammadiS. BokovD.O. KrasnyukI.I. Hosseini-FardS.R. HajibabaM. MirzaeiR. KarampoorS. Angioregulatory role of miRNAs and exosomal miRNAs in glioblastoma pathogenesis.Biomed. Pharmacother.202214811276010.1016/j.biopha.2022.11276035228062
    [Google Scholar]
  89. BalandehE. MohammadshafieK. MahmoudiY. Hossein PourhanifehM. RajabiA. BahabadiZ.R. MohammadiA.H. RahimianN. HamblinM.R. MirzaeiH. Roles of non-coding rnas and angiogenesis in glioblastoma.Front. Cell Dev. Biol.2021971646210.3389/fcell.2021.71646234646821
    [Google Scholar]
  90. SilvermanD.A. MartinezV.K. DoughertyP.M. MyersJ.N. CalinG.A. AmitM. Cancer-associated neurogenesis and nerve-cancer cross-talk.Cancer Res.20218161431144010.1158/0008‑5472.CAN‑20‑279333334813
    [Google Scholar]
  91. LiJ. YuanH. XuH. ZhaoH. XiongN. Hypoxic cancer-secreted exosomal miR-182-5p promotes glioblastoma angiogenesis by targeting kruppel-like factor 2 and 4.Mol. Cancer Res.20201881218123110.1158/1541‑7786.MCR‑19‑072532366676
    [Google Scholar]
  92. OlejarzW. Kubiak-TomaszewskaG. ChrzanowskaA. LorencT. Exosomes in angiogenesis and anti-angiogenic therapy in cancers.Int. J. Mol. Sci.20202116584010.3390/ijms2116584032823989
    [Google Scholar]
  93. WangZ. YuanY. JiX. XiaoX. LiZ. YiX. ZhuY. GuoT. WangY. ChenL. LiuY. The Hippo-TAZ axis mediates vascular endothelial growth factor C in glioblastoma-derived exosomes to promote angiogenesis.Cancer Lett.202151311310.1016/j.canlet.2021.05.00234010715
    [Google Scholar]
  94. MonteforteA. LamB. ShermanM.B. HendersonK. SligarA.D. SpencerA. TangB. DunnA.K. BakerA.B. Glioblastoma exosomes for therapeutic angiogenesis in peripheral ischemia.Tissue Eng. Part A20172321-221251126110.1089/ten.tea.2016.050828699397
    [Google Scholar]
  95. WangM. ZhaoY. YuZ.Y. ZhangR.D. LiS.A. ZhangP. ShanT.K. LiuX.Y. WangZ.M. ZhaoP.C. SunH.W. Glioma exosomal microRNA-148a-3p promotes tumor angiogenesis through activating the EGFR/MAPK signaling pathway via inhibiting ERRFI1.Cancer Cell Int.202020151810.1186/s12935‑020‑01566‑433117083
    [Google Scholar]
  96. DaiD. HuangW. LuQ. ChenH. LiuJ. HongB. miR-24 regulates angiogenesis in gliomas.Mol. Med. Rep.201818135836810.3892/mmr.2018.897829749450
    [Google Scholar]
  97. WangZ.F. LiaoF. WuH. DaiJ. Glioma stem cells-derived exosomal miR-26a promotes angiogenesis of microvessel endothelial cells in glioma.J. Exp. Clin. Cancer Res.201938120110.1186/s13046‑019‑1181‑431101062
    [Google Scholar]
  98. SunX. MaX. WangJ. ZhaoY. WangY. BihlJ.C. ChenY. JiangC. Glioma stem cells-derived exosomes promote the angiogenic ability of endothelial cells through miR-21/VEGF signal.Oncotarget2017822361373614810.18632/oncotarget.1666128410224
    [Google Scholar]
  99. TakedaY. KobayashiS. KitakazeM. YamadaD. AkitaH. AsaiA. KonnoM. AraiT. KitagawaT. OfusaK. YabumotoM. HirotsuT. VecchioneA. TaniguchiM. DokiY. EguchiH. IshiiH. Immuno-surgical management of pancreatic cancer with analysis of cancer exosomes.Cells202097164510.3390/cells907164532659892
    [Google Scholar]
  100. StepanenkoA.A. SosnovtsevaA.O. ValikhovM.P. ChernyshevaA.A. AbramovaO.V. PavlovK.A. ChekhoninV.P. Systemic and local immunosuppression in glioblastoma and its prognostic significance.Front. Immunol.202415132675310.3389/fimmu.2024.132675338481999
    [Google Scholar]
  101. PreusserM. LimM. HaflerD.A. ReardonD.A. SampsonJ.H. Prospects of immune checkpoint modulators in the treatment of glioblastoma.Nat. Rev. Neurol.201511950451410.1038/nrneurol.2015.13926260659
    [Google Scholar]
  102. LitakJ. MazurekM. GrochowskiC. KamieniakP. RolińskiJ. PD-L1/PD-1 axis in glioblastoma multiforme.Int. J. Mol. Sci.20192021534710.3390/ijms2021534731661771
    [Google Scholar]
  103. SzopaW. CzekajP. MalarzK. Mrozek-WilczkiewiczA. PlewkaD. NiedbałaM. de MezerM. Kramer-marekG. KasperaW. Molecular EGFR/PD-L1 profile of glioblastoma: Hints for therapeutic strategies.Ann. Oncol.201930v15610.1093/annonc/mdz243.041
    [Google Scholar]
  104. WangJ. ZengH. ZhangH. HanY. The role of exosomal PD-L1 in tumor immunotherapy.Transl. Oncol.202114510104710.1016/j.tranon.2021.10104733647542
    [Google Scholar]
  105. GabrusiewiczK. LiX. WeiJ. HashimotoY. MarisettyA.L. OttM. WangF. HawkeD. YuJ. HealyL.M. HossainA. AkersJ.C. MaitiS.N. YamashitaS. ShimizuY. DunnerK. ZalM.A. BurksJ.K. GuminJ. NwajeiF. RezavanianA. ZhouS. RaoG. SawayaR. FullerG.N. HuseJ.T. AntelJ.P. LiS. CooperL. SulmanE.P. ChenC. GeulaC. KalluriR. ZalT. HeimbergerA.B. Glioblastoma stem cell-derived exosomes induce M2 macrophages and PD-L1 expression on human monocytes.OncoImmunology201874e141290910.1080/2162402X.2017.141290929632728
    [Google Scholar]
  106. GrimaldiA. SerpeC. CheceG. NigroV. SarraA. RuzickaB. RelucentiM. FamiliariG. RuoccoG. PascucciG.R. GuerrieriF. LimatolaC. CatalanoM. Microglia-derived microvesicles affect microglia phenotype in glioma.Front. Cell. Neurosci.2019134110.3389/fncel.2019.0004130853898
    [Google Scholar]
  107. LawlerS.E. NowickiM.O. RicklefsF.L. ChioccaE.A. Immune escape mediated by exosomal PD-L1 in cancer.Adv. Biosyst.2020412200001710.1002/adbi.20200001732383351
    [Google Scholar]
  108. PoggioM. HuT. PaiC.C. ChuB. BelairC.D. ChangA. MontabanaE. LangU.E. FuQ. FongL. BlellochR. Suppression of exosomal PD-L1 induces systemic anti-tumor immunity and memory.Cell20191772414427.e1310.1016/j.cell.2019.02.01630951669
    [Google Scholar]
  109. DanbaranG.R. AslaniS. SharafkandiN. HemmatzadehM. HosseinzadehR. AziziG. Jadidi-NiaraghF. BabaieF. MohammadiH. How microRNAs affect the PD-L1 and its synthetic pathway in cancer.Int. Immunopharmacol.20208410659410.1016/j.intimp.2020.10659432416456
    [Google Scholar]
  110. ZengJ. SeeA.P. PhallenJ. JacksonC.M. BelcaidZ. RuzevickJ. DurhamN. MeyerC. HarrisT.J. AlbesianoE. PradillaG. FordE. WongJ. HammersH.J. MathiosD. TylerB. BremH. TranP.T. PardollD. DrakeC.G. LimM. Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas.Int. J. Radiat. Oncol. Biol. Phys.201386234334910.1016/j.ijrobp.2012.12.02523462419
    [Google Scholar]
  111. HuangB.Y. ZhanY.P. ZongW.J. YuC.J. LiJ.F. QuY.M. HanS. The PD-1/B7-H1 pathway modulates the natural killer cells versus mouse glioma stem cells.PLoS One2015108e013471510.1371/journal.pone.013471526266810
    [Google Scholar]
  112. ReardonD.A. BrandesA.A. OmuroA. MulhollandP. LimM. WickA. BaehringJ. AhluwaliaM.S. RothP. BährO. PhuphanichS. SepulvedaJ.M. De SouzaP. SahebjamS. CarletonM. TatsuokaK. TaittC. ZwirtesR. SampsonJ. WellerM. Effect of nivolumab vs. bevacizumab in patients with recurrent glioblastoma.JAMA Oncol.2020671003101010.1001/jamaoncol.2020.102432437507
    [Google Scholar]
  113. YokoyamaE. HashimotoD. HayaseE. AraT. OgasawaraR. TakahashiS. OhigashiH. TatenoT. HasegawaY. ChenX. TeshimaT. Short-term KRP203 and posttransplant cyclophosphamide for graft-versus-host disease prophylaxis.Bone Marrow Transplant.202055478779510.1038/s41409‑019‑0733‑831685933
    [Google Scholar]
  114. TianT. LiangR. Erel-AkbabaG. SaadL. ObeidP.J. GaoJ. ChioccaE.A. WeisslederR. TannousB.A. Immune checkpoint inhibition in GBM primed with radiation by engineered extracellular vesicles.ACS Nano20221621940195310.1021/acsnano.1c0550535099172
    [Google Scholar]
  115. AzambujaJ.H. LudwigN. YerneniS. RaoA. BraganholE. WhitesideT.L. Molecular profiles and immunomodulatory activities of glioblastoma-derived exosomes.Neurooncol. Adv.202021vdaa05610.1093/noajnl/vdaa05632642708
    [Google Scholar]
  116. ZhangH. DaiZ. WuW. WangZ. ZhangN. ZhangL. ZengW.J. LiuZ. ChengQ. Regulatory mechanisms of immune checkpoints PD-L1 and CTLA-4 in cancer.J. Exp. Clin. Cancer Res.202140118410.1186/s13046‑021‑01987‑734088360
    [Google Scholar]
  117. SkafiN. Fayyad-KazanM. BadranB. Immunomodulatory role for MicroRNAs: Regulation of PD-1/PD-L1 and CTLA-4 immune checkpoints expression.Gene202075414488810.1016/j.gene.2020.14488832544493
    [Google Scholar]
  118. PreddyI. NandoliyaK. MiskaJ. AhmedA.U. Checkpoint: Inspecting the barriers in glioblastoma immunotherapies.Semin. Cancer Biol.202286Pt 347348110.1016/j.semcancer.2022.02.01235150865
    [Google Scholar]
  119. WangM. JiaJ. CuiY. PengY. JiangY. CD73-positive extracellular vesicles promote glioblastoma immunosuppression by inhibiting T-cell clonal expansion.Cell Death Dis.20211211106510.1038/s41419‑021‑04359‑334753903
    [Google Scholar]
  120. LoustauM. AnnaF. DréanR. LecomteM. Langlade-DemoyenP. CaumartinJ. HLA-G neo-expression on tumors.Front. Immunol.202011168510.3389/fimmu.2020.0168532922387
    [Google Scholar]
  121. DumontC. JacquierA. VerineJ. NoelF. GoujonA. WuC.L. HungT.M. DesgrandchampsF. CulineS. CarosellaE.D. Rouas-FreissN. LeMaoultJ. CD8+PD-1–ILT2+ T cells are an intratumoral cytotoxic population selectively inhibited by the immune-checkpoint HLA-G.Cancer Immunol. Res.20197101619163210.1158/2326‑6066.CIR‑18‑076431451484
    [Google Scholar]
  122. Martín-VillaJ.M. Vaquero-YusteC. Molina-AlejandreM. JuarezI. Suárez-TrujilloF. López-NaresA. Palacio-GruberJ. Barrera-GutiérrezL. Fernández-CruzE. Rodríguez-SainzC. Arnaiz-VillenaA. HLA-G: Too much or too little? role in cancer and autoimmune disease.Front. Immunol.20221379605410.3389/fimmu.2022.79605435154112
    [Google Scholar]
  123. KaminskiV. EllwangerJ.H. ChiesJ.A.B. Down-regulation of HLA-G gene expression as an immunogenetic contraceptive therapy.Med. Hypotheses201710214614910.1016/j.mehy.2017.03.03028478820
    [Google Scholar]
  124. AmodioG. Sales de AlbuquerqueR. GregoriS. New insights into HLA-G mediated tolerance.Tissue Antigens201484325526310.1111/tan.1242725132109
    [Google Scholar]
  125. FengE. LiangT. WangX. DuJ. TangK. WangX. WangF. YouG. Correlation of alteration of HLA-F expression and clinical characterization in 593 brain glioma samples.J. Neuroinflammation20191613310.1186/s12974‑019‑1418‑330755240
    [Google Scholar]
  126. ZhaiL. LadomerskyE. LauingK.L. WuM. GenetM. GritsinaG. GyőrffyB. BrastianosP.K. BinderD.C. SosmanJ.A. GilesF.J. JamesC.D. HorbinskiC. StuppR. WainwrightD.A. InfiltratingT. Infiltrating T cells increase IDO1 expression in glioblastoma and contribute to decreased patient survival.Clin. Cancer Res.201723216650666010.1158/1078‑0432.CCR‑17‑012028751450
    [Google Scholar]
  127. HosseiniR. Asef-KabiriL. YousefiH. SarvnazH. SalehiM. AkbariM.E. EskandariN. The roles of tumor-derived exosomes in altered differentiation, maturation and function of dendritic cells.Mol. Cancer20212018310.1186/s12943‑021‑01376‑w34078376
    [Google Scholar]
  128. TangK. WuY.H. SongY. YuB. Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors in clinical trials for cancer immunotherapy.J. Hematol. Oncol.20211416810.1186/s13045‑021‑01080‑833883013
    [Google Scholar]
  129. XingC. LiH. LiR.J. YinL. ZhangH.F. HuangZ.N. ChengZ. LiJ. WangZ.H. PengH.L. The roles of exosomal immune checkpoint proteins in tumors.Mil. Med. Res.2021815610.1186/s40779‑021‑00350‑334743730
    [Google Scholar]
  130. WangM. CaiY. PengY. XuB. HuiW. JiangY. Exosomal LGALS9 in the cerebrospinal fluid of glioblastoma patients suppressed dendritic cell antigen presentation and cytotoxic T-cell immunity.Cell Death Dis.2020111089610.1038/s41419‑020‑03042‑333093453
    [Google Scholar]
  131. PanditR. ChenL. GötzJ. The blood-brain barrier: Physiology and strategies for drug delivery.Adv. Drug Deliv. Rev.2020165-16611410.1016/j.addr.2019.11.00931790711
    [Google Scholar]
  132. SinghN. MinerA. HennisL. MittalS. Mechanisms of temozolomide resistance in glioblastoma - a comprehensive review.Cancer Drug Resist.202041174310.20517/cdr.2020.7934337348
    [Google Scholar]
  133. YueX. LanF. XiaT. Hypoxic glioma cell-secreted exosomal miR-301a activates Wnt/β-catenin signaling and promotes radiation resistance by targeting TCEAL7.Mol. Ther.201927111939194910.1016/j.ymthe.2019.07.01131402274
    [Google Scholar]
  134. ThakurA. XuC. LiW.K. QiuG. HeB. NgS.P. WuC.M.L. LeeY. In vivo liquid biopsy for glioblastoma malignancy by the AFM and LSPR based sensing of exosomal CD44 and CD133 in a mouse model.Biosens. Bioelectron.202119111347610.1016/j.bios.2021.11347634246124
    [Google Scholar]
  135. BaoS. WuQ. McLendonR.E. HaoY. ShiQ. HjelmelandA.B. DewhirstM.W. BignerD.D. RichJ.N. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response.Nature2006444712075676010.1038/nature0523617051156
    [Google Scholar]
  136. ZhengY. LiuL. WangY. XiaoS. MaiR. ZhuZ. CaoY. Glioblastoma stem cell (GSC)-derived PD-L1-containing exosomes activates AMPK/ULK1 pathway mediated autophagy to increase temozolomide-resistance in glioblastoma.Cell Biosci.20211116310.1186/s13578‑021‑00575‑833789726
    [Google Scholar]
  137. WangR. LiangQ. ZhangX. DiZ. WangX. DiL. Tumor-derived exosomes reversing TMZ resistance by synergistic drug delivery for glioma-targeting treatment.Colloids Surf. B Biointerfaces202221511250510.1016/j.colsurfb.2022.11250535487070
    [Google Scholar]
  138. GareevI. BeylerliO. LiangY. XiangH. LiuC. XuX. YuanC. AhmadA. YangG. The role of micrornas in therapeutic resistance of malignant primary brain tumors.Front. Cell Dev. Biol.2021974030310.3389/fcell.2021.74030334692698
    [Google Scholar]
  139. YangW.B. HsuC.C. HsuT.I. LiouJ.P. ChangK.Y. ChenP.Y. LiuJ.J. YangS.T. WangJ.Y. YehS.H. ChenR.M. ChangW.C. ChuangJ.Y. Increased activation of HDAC1/2/6 and Sp1 underlies therapeutic resistance and tumor growth in glioblastoma.Neuro-oncol.202022101439145110.1093/neuonc/noaa10332328646
    [Google Scholar]
  140. QiuX. XiaoX. LiN. LiY. Histone deacetylases inhibitors (HDACis) as novel therapeutic application in various clinical diseases.Prog. Neuropsychopharmacol. Biol. Psychiatry201772607210.1016/j.pnpbp.2016.09.00227614213
    [Google Scholar]
  141. TomarM.S. KumarA. SrivastavaC. ShrivastavaA. Elucidating the mechanisms of Temozolomide resistance in gliomas and the strategies to overcome the resistance.Biochim. Biophys. Acta Rev. Cancer20211876218861610.1016/j.bbcan.2021.18861634419533
    [Google Scholar]
  142. ShenJ. ZhangT. ChengZ. ZhuN. WangH. LinL. WangZ. YiH. HuM. Lycorine inhibits glioblastoma multiforme growth through EGFR suppression.J. Exp. Clin. Cancer Res.201837115710.1186/s13046‑018‑0785‑430016965
    [Google Scholar]
  143. ZhangZ. HuY. ChenY. ChenZ. ZhuY. ChenM. XiaJ. SunY. XuW. Immunometabolism in the tumor microenvironment and its related research progress.Front. Oncol.202212102478910.3389/fonc.2022.102478936387147
    [Google Scholar]
  144. GaoX. BuH. GeJ. GaoX. WangY. ZhangZ. WangL. A comprehensive analysis of the prognostic, immunological and diagnostic role of CCNF in pan-cancer.J. Cancer202314132431244210.7150/jca.8659737670965
    [Google Scholar]
  145. WeiY. LiY. ChenY. LiuP. HuangS. ZhangY. SunY. WuZ. HuM. WuQ. WuH. LiuF. SheT. NingZ. ALDH1: A potential therapeutic target for cancer stem cells in solid tumors.Front. Oncol.202212102627810.3389/fonc.2022.102627836387165
    [Google Scholar]
  146. ZhangC. MeiW. ZengC. Oncogenic neuregulin 1 gene (NRG1) fusions in cancer: A potential new therapeutic opportunities.Biochim. Biophys. Acta Rev. Cancer20221877318870710.1016/j.bbcan.2022.18870735247506
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673344390241017065119
Loading
/content/journals/cmc/10.2174/0109298673344390241017065119
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): angiogenesis; cell proliferation; drug resistance; exosomes; Glioblastoma; immune evasion
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test