Skip to content
2000
Volume 32, Issue 27
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Neurokinin receptors are a family of G protein-coupled receptors that were first identified in the central and peripheral nervous systems. However these receptors were later found in other types of cells, therefore, new perspectives concerning their novel roles were described. Mammalian has three neurokinin receptors, among which neurokinin-1 receptors [NK1R] have been indicated to be involved in most, if not all, intracellular functions, primarily the regulation of cell proliferation. By interacting with its potent agonist, substance P [SP], NK1R can engage a variety of signaling pathways and serve as a platform for cells to proliferate by regulating the expression of the cell cycle-related genes. Furthermore, the activity of SP/NK1R is stimulated by various oncogenes, indicating the involvement of this pathway in human cancers. As a result, numerous NK1R antagonists have been investigated in oncology trials, and the promising anti-cancer effect of these receptors has opened up new possibilities for incorporating these antagonists into cancer treatment. Considering these factors, gaining a deeper understanding of the SP/NK1R pathway could offer significant advantages for cancer patients. The more knowledge we acquire about this pathway, the greater the potential for exploiting it in the development of effective treatment strategies. Here, we present a comprehensive review of the current knowledge pertaining to the biological function of the SP/NK1R, with a specific emphasis on its recently discovered role in the regulation of cell proliferation. Moreover, we provide insights into the impact of this pathway in human cancers, along with an overview of the most significant NK1R antagonists currently utilized in cancer research studies.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673311337240702095139
2024-07-10
2025-09-08
Loading full text...

Full text loading...

References

  1. ShomarA. BarakO. BrennerN. Cancer progression as a learning process.iScience202225310392410.1016/j.isci.2022.10392435265809
    [Google Scholar]
  2. KaragiannisD. RampiasT. Cancer evolution in precision medicine era.Cancer20221441885
    [Google Scholar]
  3. AlbeeA.J. KwanA.L. LinH. GranasD. StormoG.D. DutcherS.K. Identification of cilia genes that affect cell-cycle progression using whole-genome transcriptome analysis in Chlamydomonas reinhardtti.G320133697999110.1534/g3.113.00633823604077
    [Google Scholar]
  4. WuA. ChenJ. BasergaR. Nuclear insulin receptor substrate-1 activates promoters of cell cycle progression genes.Oncogene200827339740310.1038/sj.onc.121063617700539
    [Google Scholar]
  5. HashemianP. JavidH. Tadayyon TabriziA. HashemyS.I. The role of tachykinins in the initiation and progression of gastrointestinal cancers: A review.Int. J. Cancer Manag.202013510.5812/ijcm.100717
    [Google Scholar]
  6. ZahiriE. GhorbaniH. MoradiA. Mehrad-MajdH. MohammadiF. Sharifi SistaniN. HashemyS.I. Prognostic significance of substance P and Neurokinin-1 receptor in bladder cancer.Rep. Biochem. Mol. Biol.202211341142010.52547/rbmb.11.3.41136718293
    [Google Scholar]
  7. SzczerbaK. Stokowa-SoltysK. What is the correlation between preeclampsia and cancer? The important role of tachykinins and transition metal ions.Pharmaceuticals202316336610.3390/ph1603036636986466
    [Google Scholar]
  8. SatakeH. Tachykinin Family.Handbook of Hormones Comparative Endocrinology for Basic and Clinical ResearchCambridge, MassachusettsAcademic Press2016727310.1016/B978‑0‑12‑801028‑0.00009‑X
    [Google Scholar]
  9. NässelD.R. ZandawalaM. KawadaT. SatakeH. Tachykinins: Neuropeptides that are ancient, diverse, widespread and functionally pleiotropic.Front. Neurosci.201913126210.3389/fnins.2019.0126231824255
    [Google Scholar]
  10. SánchezM.L. RodríguezF.D. CoveñasR. Peptidergic systems and cancer: Focus on Tachykinin and calcitonin/calcitonin gene-related peptide families.Cancers2023156169410.3390/cancers1506169436980580
    [Google Scholar]
  11. JavidH. MohammadiF. ZahiriE. HashemyS.I. The emerging role of substance P/neurokinin-1 receptor signaling pathways in growth and development of tumor cells.J. Physiol. Biochem.201975441542110.1007/s13105‑019‑00697‑131372898
    [Google Scholar]
  12. Van LoyT. VandersmissenH.P. PoelsJ. Van HielM.B. VerlindenH. BroeckJ.V. Tachykinin-related peptides and their receptors in invertebrates: A current view.Peptides201031352052410.1016/j.peptides.2009.09.02319781585
    [Google Scholar]
  13. MuñozM. CoveñasR. Involvement of substance P and the NK-1 receptor in cancer progression.Peptides2013481910.1016/j.peptides.2013.07.02423933301
    [Google Scholar]
  14. MuñozM. CoveñasR. Neurokinin-1 receptor: A new promising target in the treatment of cancer.Discov. Med.2010105330531321034671
    [Google Scholar]
  15. AfshariA.R. Motamed-SanayeA. SabriH. SoltaniA. Karkon-ShayanS. RadvarS. JavidH. MollazadehH. SathyapalanT. SahebkarA. Neurokinin-1 receptor (NK-1R) antagonists: Potential targets in the treatment of glioblastoma multiforme.Curr. Med. Chem.202128244877489210.2174/092986732866621011316580533441062
    [Google Scholar]
  16. EbrahimiS. JavidH. AlaeiA. HashemyS.I. New insight into the role of substance P/neurokinin-1 receptor system in breast cancer progression and its crosstalk with microRNAs.Clin. Genet.202098432233010.1111/cge.1375032266968
    [Google Scholar]
  17. Arslan AydemirE. Simsek OzE. Fidan KorcumA. FiskinK. Endostatin enhances radioresponse in breast cancer cells via alteration of substance P levels.Oncol. Lett.20112587988610.3892/ol.2011.33522866144
    [Google Scholar]
  18. MuñozM. RossoM. CoveñasR. The NK-1 receptor: A new target in cancer therapy.Curr. Drug Targets201112690992110.2174/13894501179552879621226668
    [Google Scholar]
  19. MayordomoC. García-RecioS. AmetllerE. Fernández-NogueiraP. Pastor-ArroyoE.M. VinyalsL. CasasI. GascónP. AlmendroV. Targeting of substance P induces cancer cell death and decreases the steady state of EGFR and Her2.J. Cell. Physiol.201222741358136610.1002/jcp.2284821604273
    [Google Scholar]
  20. DouglasS.D. LeemanS.E. Neurokinin-1 receptor: Functional significance in the immune system in reference to selected infections and inflammation.Ann. N. Y. Acad. Sci.201112171839510.1111/j.1749‑6632.2010.05826.x21091716
    [Google Scholar]
  21. ZhouY. ZuoD. WangM. ZhangY. YuM. YangJ. YaoZ. Effect of truncated neurokinin-1 receptor expression changes on the interaction between human breast cancer and bone marrow-derived mesenchymal stem cells.Genes Cells201419967669110.1111/gtc.1216825130457
    [Google Scholar]
  22. FadaeeJ. KhoshkhuiM. EmadzadehM. HashemyS.I. Farid HosseiniR. Jabbari AzadF. AhanchianH. Lavi ArabF. Evaluation of serum substance P level in chronic urticaria and correlation with disease severity.Iran. J. Allergy Asthma Immunol.2020191182610.18502/ijaai.v19i1.241432245317
    [Google Scholar]
  23. KhorasaniS. BoroumandN. Lavi ArabF. HashemyS.I. The immunomodulatory effects of tachykinins and their receptors.J. Cell. Biochem.20201215-63031304110.1002/jcb.2966832115751
    [Google Scholar]
  24. SteinhoffM.S. von MentzerB. GeppettiP. PothoulakisC. BunnettN.W. Tachykinins and their receptors: Contributions to physiological control and the mechanisms of disease.Physiol. Rev.201494126530110.1152/physrev.00031.201324382888
    [Google Scholar]
  25. LorestaniS. GhahremanlooA. JangjooA. AbediM. HashemyS.I. Evaluation of serum level of substance P and tissue distribution of NK-1 receptor in colorectal cancer.Mol. Biol. Rep.20204753469347410.1007/s11033‑020‑05432‑432277443
    [Google Scholar]
  26. Shandiz, S.Z.; Darban, R.A.; Javid, H.; Ghahremanloo, A.; Hashemy, S.I. The effect of SP/NK1R on expression and activity of glutaredoxin and thioredoxin proteins in prostate cancer cells. Naunyn-Schmiedeberg's Arch. Pharmacol., 2024.10.1007/s00210‑024‑02996‑x
  27. DavoodianM. BoroumandN. Mehrabi BaharM. JafarianA.H. AsadiM. HashemyS.I. Evaluation of serum level of substance P and tissue distribution of NK-1 receptor in breast cancer.Mol. Biol. Rep.20194611285129310.1007/s11033‑019‑04599‑930684188
    [Google Scholar]
  28. GharaeeN. PouraliL. JafarianA.H. HashemyS.I. Evaluation of serum level of substance P and tissue distribution of NK-1 receptor in endometrial cancer.Mol. Biol. Rep.20184562257226210.1007/s11033‑018‑4387‑130225581
    [Google Scholar]
  29. LiM ZhangS MaH ZhangY MinP. Prognostic and therapeutic value of NK1R: Correlation between function in immune infiltration and expression in tumor microenvironment.Preprint2022
    [Google Scholar]
  30. GolestanehM. FiroozraiM. JavidH. HashemyS.I. The substance P/ neurokinin-1 receptor signaling pathway mediates metastasis in human colorectal SW480 cancer cells.Mol. Biol. Rep.20224964893490010.1007/s11033‑022‑07348‑735429316
    [Google Scholar]
  31. JavidH. GhahremanlooA. AfshariA.R. SalekR. HashemyS.I. The emerging role of neurokinin-1 receptor blockade using aprepitant in the redox system of esophageal squamous cell carcinoma.Int. J. Pept. Res. Ther.20222838910.1007/s10989‑022‑10399‑w
    [Google Scholar]
  32. AsadiM. MirdoostiS.M. MajidiS. BoroumandN. JafarianA-H. HashemyS.I. Evaluation of serum substance P level and tissue distribution of NK-1 receptor in papillary thyroid cancer.Middle East J. Cancer2021124491498
    [Google Scholar]
  33. Al-KeilaniM.S. ElstatyR.I. AlqudahM.A. AlkhateebA.M. Immunohistochemical expression of substance P in breast cancer and its association with prognostic parameters and Ki-67 index.PLoS One2021166e025261610.1371/journal.pone.025261634086748
    [Google Scholar]
  34. Al-KeilaniM.S. ElstatyR. AlqudahM.A. The prognostic potential of neurokinin 1 receptor in breast cancer and its relationship with Ki-67 index.Int. J. Breast Cancer20222022498791210.1155/2022/4987912
    [Google Scholar]
  35. Al-KeilaniM.S. BdeirR. ElstatyR.I. AlqudahM.A. Expression of substance P, neurokinin 1 receptor, Ki-67 and pyruvate kinase M2 in hormone receptor negative breast cancer and evaluation of impact on overall survival.BMC Cancer202323115810.1186/s12885‑023‑10633‑836797689
    [Google Scholar]
  36. CoveñasR. RodríguezF.D. RobinsonP. MuñozM. The repurposing of non-peptide neurokinin-1 receptor antagonists as antitumor drugs: An urgent challenge for aprepitant.Int. J. Mol. Sci.202324211593610.3390/ijms24211593637958914
    [Google Scholar]
  37. ChenX-Y. RuG-Q. MaY-Y. XieJ. ChenW-Y. WangH-J. WangS.B. LiL. JinK.T. HeX.L. MouX.Z. High expression of substance P and its receptor neurokinin-1 receptor in colorectal cancer is associated with tumor progression and prognosis.OncoTargets Ther.201693595360227366097
    [Google Scholar]
  38. FangW. FuC. ChenX. MouX. LiuF. QianJ. ZhaoP. ZhengY. ZhengY. DengJ. YeP. WangY. ZhengS. Neurokinin-2 receptor polymorphism predicts lymph node metastasis in colorectal cancer patients.Oncol. Lett.2015952003200610.3892/ol.2015.301626137002
    [Google Scholar]
  39. MuñozM. RossoM. CarranzaA. CoveñasR. Increased nuclear localization of substance P in human gastric tumor cells.Acta Histochem.2017119333734210.1016/j.acthis.2017.03.00328325510
    [Google Scholar]
  40. BrenerS. González-MolesM.A. TostesD. EstebanF. Gil-MontoyaJ.A. Ruiz-AvilaI. BravoM. MuñozM. A role for the substance P/NK-1 receptor complex in cell proliferation in oral squamous cell carcinoma.Anticancer Res.20092962323232919528498
    [Google Scholar]
  41. EstebanF. Gonzalez-MolesM.A. CastroD. Del Mar Martin-JaenM. RedondoM. Ruiz-AvilaI. MuñozM. Expression of substance P and neurokinin-1-receptor in laryngeal cancer: Linking chronic inflammation to cancer promotion and progression.Histopathology200954225826010.1111/j.1365‑2559.2008.03193.x19207952
    [Google Scholar]
  42. MuñozM. González-OrtegaA. RossoM. Robles-FriasM.J. CarranzaA. Salinas-MartínM.V. CoveñasR. The substance P/neurokinin-1 receptor system in lung cancer: Focus on the antitumor action of neurokinin-1 receptor antagonists.Peptides201238231832510.1016/j.peptides.2012.09.02423026680
    [Google Scholar]
  43. MuñozM. González-OrtegaA. Salinas-MartínM.V. CarranzaA. Garcia-RecioS. AlmendroV. CoveñasR. The neurokinin-1 receptor antagonist aprepitant is a promising candidate for the treatment of breast cancer.Int. J. Oncol.20144541658167210.3892/ijo.2014.256525175857
    [Google Scholar]
  44. IsornaI. González-MolesM.Á. MuñozM. EstebanF. Substance P and neurokinin-1 receptor system in thyroid cancer: Potential targets for new molecular therapies.J. Clin. Med.20231219640910.3390/jcm1219640937835053
    [Google Scholar]
  45. MuñozM. CoveñasR. Targeting NK-1 receptors to prevent and treat pancreatic cancer: A new therapeutic approach.Cancers2015731215123210.3390/cancers703083226154566
    [Google Scholar]
  46. PalmaC. NardelliF. ManziniS. MaggiC.A. Substance P activates responses correlated with tumour growth in human glioma cell lines bearing tachykinin NK1 receptors.Br. J. Cancer199979223624310.1038/sj.bjc.66900399888463
    [Google Scholar]
  47. YangD. ZhouQ. LabroskaV. QinS. DarbalaeiS. WuY. YuliantieE. XieL. TaoH. ChengJ. LiuQ. ZhaoS. ShuiW. JiangY. WangM.W. G protein-coupled receptors: Structure- and function-based drug discovery.Signal Transduct. Target. Ther.202161710.1038/s41392‑020‑00435‑w33414387
    [Google Scholar]
  48. FrumanD.A. ChiuH. HopkinsB.D. BagrodiaS. CantleyL.C. AbrahamR.T. The PI3K pathway in human disease.Cell2017170460563510.1016/j.cell.2017.07.02928802037
    [Google Scholar]
  49. ChaudharyP.K. KimS. An insight into GPCR and G-proteins as cancer drivers.Cells20211012328810.3390/cells1012328834943797
    [Google Scholar]
  50. GlavianoA. FooA.S.C. LamH.Y. YapK.C.H. JacotW. JonesR.H. EngH. NairM.G. MakvandiP. GeoergerB. KulkeM.H. BairdR.D. PrabhuJ.S. CarboneD. PecoraroC. TehD.B.L. SethiG. CavalieriV. LinK.H. Javidi-SharifiN.R. ToskaE. DavidsM.S. BrownJ.R. DianaP. StebbingJ. FrumanD.A. KumarA.P. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer.Mol. Cancer202322113810.1186/s12943‑023‑01827‑637596643
    [Google Scholar]
  51. LiM. ZhongX. XuW.T. Substance P promotes the progression of bronchial asthma through activating the PI3K/AKT/NF-κB pathway mediated cellular inflammation and pyroptotic cell death in bronchial epithelial cells.Cell Cycle202221202179219110.1080/15384101.2022.209216635726575
    [Google Scholar]
  52. JavidH. AfshariA.R. Zahedi AvvalF. AsadiJ. HashemyS.I. Aprepitant promotes caspase-dependent apoptotic cell death and G2/M arrest through PI3K/Akt/NF-κB axis in cancer stem-like esophageal squamous cell carcinoma spheres.BioMed. Res. Int.2021202120880821412
    [Google Scholar]
  53. DengX.T. TangS.M. WuP.Y. LiQ.P. GeX.X. XuB.M. WangH.S. MiaoL. SP/NK-1R promotes gallbladder cancer cell proliferation and migration.J. Cell. Mol. Med.201923127961797310.1111/jcmm.1423030903649
    [Google Scholar]
  54. BeaulieuJ.M. GainetdinovR.R. CaronM.G. The Akt–GSK-3 signaling cascade in the actions of dopamine.Trends Pharmacol. Sci.200728416617210.1016/j.tips.2007.02.00617349698
    [Google Scholar]
  55. HermidaM.A. Dinesh KumarJ. LeslieN.R. GSK3 and its interactions with the PI3K/AKT/mTOR signalling network.Adv. Biol. Regul.20176551510.1016/j.jbior.2017.06.00328712664
    [Google Scholar]
  56. StahlM. DijkersP.F. KopsG.J.P.L. LensS.M.A. CofferP.J. BurgeringB.M.T. MedemaR.H. The forkhead transcription factor FoxO regulates transcription of p27Kip1 and Bim in response to IL-2.J. Immunol.2002168105024503110.4049/jimmunol.168.10.502411994454
    [Google Scholar]
  57. YouH. MakT.W. Crosstalk between p53 and FOXO transcription factors.Cell Cycle200541373810.4161/cc.4.1.140115611669
    [Google Scholar]
  58. ZhangX. TangN. HaddenT.J. RishiA.K. Akt, FoxO and regulation of apoptosis. Biochimica et Biophysica Acta (BBA)-.Molecular Cell Research.201118131119781986
    [Google Scholar]
  59. BayatiS. BashashD. AhmadianS. Safaroghli-AzarA. AlimoghaddamK. GhavamzadehA. GhaffariS.H. Inhibition of tachykinin NK1 receptor using aprepitant induces apoptotic cell death and G1 arrest through Akt/p53 axis in pre-B acute lymphoblastic leukemia cells.Eur. J. Pharmacol.201679127428310.1016/j.ejphar.2016.09.00627609608
    [Google Scholar]
  60. HongS. ZhaoB. LombardD.B. FingarD.C. InokiK. Cross-talk between sirtuin and mammalian target of rapamycin complex 1 (mTORC1) signaling in the regulation of S6 kinase 1 (S6K1) phosphorylation.J. Biol. Chem.201428919131321314110.1074/jbc.M113.52073424652283
    [Google Scholar]
  61. SharifM. SharifT. DillingM. HosoiH. LawrenceJ. HoughtonP. Rapamycin inhibits substance P-induced protein synthesis and phosphorylation of PHAS-I (4E-BP1) and p70 S6 kinase (p70(S6K)) in human astrocytoma cells.Int. J. Oncol.199711479780510.3892/ijo.11.4.79721528277
    [Google Scholar]
  62. IlmerM. GarnierA. VykoukalJ. AltE. von SchweinitzD. KapplerR. BergerM. Targeting the neurokinin-1 receptor compromises canonical Wnt signaling in hepatoblastoma.Mol. Cancer Ther.201514122712272110.1158/1535‑7163.MCT‑15‑020626516161
    [Google Scholar]
  63. ResendeR.R. AndradeL.M. OliveiraA.G. GuimarãesE.S. GuatimosimS. LeiteM.F. Nucleoplasmic calcium signaling and cell proliferation: Calcium signaling in the nucleus.Cell Commun. Signal.20131111410.1186/1478‑811X‑11‑1423433362
    [Google Scholar]
  64. MoriT. OgataT. OkumuraH. ShibataT. NakamuraY. KataokaK. Substance P regulates the function of rabbit cultured osteoclast; increase of intracellular free calcium concentration and enhancement of bone resorption.Biochem. Biophys. Res. Commun.1999262241842210.1006/bbrc.1999.122010462490
    [Google Scholar]
  65. Villas-BoasG.R. LavoratoS.N. PaesM.M. de CarvalhoP.M.G. ResciaV.C. CunhaM.S. de Magalhães-FilhoM.F. PonsoniL.F. de CarvalhoA.A.V. de LacerdaR.B. da S LeiteL. da S Tavares-HenriquesM. LopesL.A.F. OliveiraL.G.R. Silva-FilhoS.E. da SilveiraA.P.S. CumanR.K.N. de S Silva-ComarF.M. ComarJ.F. do A BrasileiroL. Dos SantosJ.N. de FreitasW.R. LeãoK.V. da SilvaJ.G. KleinR.C. KleinM.H.F. da S RamosB.H. FernandesC.K.C. de L RibasD.G. OesterreichS.A. Modulation of the serotonergic receptosome in the treatment of anxiety and depression: A narrative review of the experimental evidence.Pharmaceuticals202114214810.3390/ph1402014833673205
    [Google Scholar]
  66. FengF. YangJ. TongL. YuanS. TianY. HongL. WangW. ZhangH. Substance P immunoreactive nerve fibres are related to gastric cancer differentiation status and could promote proliferation and migration of gastric cancer cells.Cell Biol. Int.201135662362910.1042/CBI2010022921091434
    [Google Scholar]
  67. MorelliAE SumpterTL Rojas-CanalesDM BandyopadhyayM ChenZ TkachevaO. Neurokinin-1 receptor signaling is required for efficient Ca2+ flux in T-cell-receptor-activated T cells.Cell Reports20203010344865
    [Google Scholar]
  68. WangJ. ZhaoY. KaussM.A. SpindelS. LianH. Akt regulates vitamin D3-induced leukemia cell functional differentiation via Raf/MEK/ERK MAPK signaling.Eur. J. Cell Biol.200988210311510.1016/j.ejcb.2008.05.00319058874
    [Google Scholar]
  69. ParkY.J. YooS.A. KimM. KimW.U. The role of calcium–calcineurin–NFAT signaling pathway in health and autoimmune diseases.Front. Immunol.20201119510.3389/fimmu.2020.0019532210952
    [Google Scholar]
  70. DéliotN. ConstantinB. Plasma membrane calcium channels in cancer: Alterations and consequences for cell proliferation and migration.Biochim. Biophys. Acta Biomembr.20151848102512252210.1016/j.bbamem.2015.06.00926072287
    [Google Scholar]
  71. EbrahimiS. MirzaviF. Aghaee-BakhtiariS.H. HashemyS.I. SP/NK1R system regulates carcinogenesis in prostate cancer: Shedding light on the antitumoral function of aprepitant.Biochim. Biophys. Acta Mol. Cell Res.20221869511922110.1016/j.bbamcr.2022.11922135134443
    [Google Scholar]
  72. AzziM. CharestP.G. AngersS. RousseauG. KohoutT. BouvierM. PiñeyroG. β-Arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors.Proc. Natl. Acad. Sci. USA200310020114061141110.1073/pnas.193666410013679574
    [Google Scholar]
  73. KahsaiA.W. ShahK.S. ShimP.J. LeeM.A. ShreiberB.N. SchwalbA.M. ZhangX. KwonH.Y. HuangL.Y. SoderblomE.J. AhnS. LefkowitzR.J. Signal transduction at GPCRs: Allosteric activation of the ERK MAPK by β-arrestin.Proc. Natl. Acad. Sci. USA202312043e230379412010.1073/pnas.230379412037844230
    [Google Scholar]
  74. DeFeaK.A. VaughnZ.D. O’BryanE.M. NishijimaD. DéryO. BunnettN.W. The proliferative and antiapoptotic effects of substance P are facilitated by formation of a β-arrestin-dependent scaffolding complex.Proc. Natl. Acad. Sci. USA20009720110861109110.1073/pnas.19027669710995467
    [Google Scholar]
  75. Carmona-RosasG. Alcántara-HernándezR. Hernández-EspinosaD.A. Dissecting the signaling features of the multi-protein complex GPCR/β-arrestin/ERK1/2.Eur. J. Cell Biol.201897534935810.1016/j.ejcb.2018.04.00129665971
    [Google Scholar]
  76. DasS.K. LewisB.A. LevensD. MYC: A complex problem.Trends Cell Biol.202333323524610.1016/j.tcb.2022.07.00635963793
    [Google Scholar]
  77. BashashD. SayyadiM. Safaroghli-AzarA. Sheikh-ZeineddiniN. RiyahiN. MomenyM. Small molecule inhibitor of c-Myc 10058-F4 inhibits proliferation and induces apoptosis in acute leukemia cells, irrespective of PTEN status.Int. J. Biochem. Cell Biol.201910871610.1016/j.biocel.2019.01.00530639430
    [Google Scholar]
  78. NakaiT. MochidaJ. SakaiD. Synergistic role of c-Myc and ERK1/2 in the mitogenic response to TGFβ-1 in cultured rat nucleus pulposus cells.Arthritis Res. Ther.2008106R14010.1186/ar256719061498
    [Google Scholar]
  79. DalirsaniZ. PakfetratA. DelavarianZ. HashemyS.I. Vazifeh MostaanL. AbdollahnejadM. Fani PakdelA. BanihashemiE. GhaziA. Comparison of matrix metalloproteinases 2 and 9 levels in saliva and serum of patients with head and neck squamous cell carcinoma and healthy subjects.Int. J. Cancer Manag.2019In PressIn Presse9024910.5812/ijcm.90249
    [Google Scholar]
  80. GhasemiA. HashemyS.I. AghaeiM. PanjehpourM. Leptin induces matrix metalloproteinase 7 expression to promote ovarian cancer cell invasion by activating ERK and JNK pathways.J. Cell. Biochem.201811922333234410.1002/jcb.2639628885729
    [Google Scholar]
  81. VickersN.J. Animal communication: When I’m calling you, will you answer too?Curr. Biol.20172714R713R71510.1016/j.cub.2017.05.06428743020
    [Google Scholar]
  82. Momen RazmgahM. GhahremanlooA. JavidH. AlAlikhanA. AfshariA.R. HashemyS.I. The effect of substance P and its specific antagonist (aprepitant) on the expression of MMP-2, MMP-9, VEGF, and VEGFR in ovarian cancer cells.Mol. Biol. Rep.202249109307931410.1007/s11033‑022‑07771‑w35960409
    [Google Scholar]
  83. MohammadiF. JavidH. AfshariA.R. MashkaniB. HashemyS.I. Substance P accelerates the progression of human esophageal squamous cell carcinoma via MMP-2, MMP-9, VEGF-A, and VEGFR1 overexpression.Mol. Biol. Rep.20204764263427210.1007/s11033‑020‑05532‑132436041
    [Google Scholar]
  84. TokudaM. MiyamotoR. SakutaT. NagaokaS. ToriiM. Substance P activates p38 mitogen-activated protein kinase to promote IL-6 induction in human dental pulp fibroblasts.Connect. Tissue Res.200546315315810.1080/0300820050018249016147857
    [Google Scholar]
  85. VilisaarJ. KawabeK. BraitchM. AramJ. FurtunY. FaheyA.J. ChopraM. TanasescuR. TigheP.J. GranB. PothoulakisC. ConstantinescuC.S. Reciprocal regulation of substance P and IL-12/IL-23 and the associated cytokines, IFNγ/IL-17: A perspective on the relevance of this interaction to multiple sclerosis.J. Neuroimmune Pharmacol.201510345746710.1007/s11481‑015‑9589‑x25690155
    [Google Scholar]
  86. NakamuraM. ChikamaT. NishidaT. Up-regulation of integrin α 5 expression by combination of substance P and insulin-like growth factor-1 in rabbit corneal epithelial cells.Biochem. Biophys. Res. Commun.1998246377778210.1006/bbrc.1998.87049618288
    [Google Scholar]
  87. AkazawaT. KwatraS.G. GoldsmithL.E. RichardsonM.D. CoxE.A. SampsonJ.H. KwatraM.M. A constitutively active form of neurokinin 1 receptor and neurokinin 1 receptor-mediated apoptosis in glioblastomas.J. Neurochem.200910941079108610.1111/j.1471‑4159.2009.06032.x19519779
    [Google Scholar]
  88. GhahremanlooA. JavidH. AfshariA.R. HashemyS.I. Investigation of the role of neurokinin-1 receptor inhibition using aprepitant in the apoptotic cell death through PI3K/Akt/NF-κB signal transduction pathways in colon cancer cells.BioMed. Res. Int.2021202141383878
    [Google Scholar]
  89. ZhengY. SangM. LiuF. GuL. LiJ. WuY. ShanB. Aprepitant inhibits the progression of esophageal squamous cancer by blocking the truncated neurokinin-1 receptor.Oncol. Rep.202350113110.3892/or.2023.856837203393
    [Google Scholar]
  90. XuP. LinX. DongX. LiuY. WangZ. WangS. Trigeminal nerve-derived substance P regulates limbal stem cells by the PI3K-AKT pathway.iScience202326510668810.1016/j.isci.2023.10668837187698
    [Google Scholar]
  91. Castro-ObregónS. RaoR.V. del RioG. ChenS.F. PoksayK.S. RabizadehS. VesceS. ZhangX. SwansonR.A. BredesenD.E. Alternative, nonapoptotic programmed cell death: Mediation by arrestin 2, ERK2, and Nur77.J. Biol. Chem.200427917175431755310.1074/jbc.M31236320014769794
    [Google Scholar]
  92. KohY.H. MoochhalaS. BhatiaM. Activation of neurokinin-1 receptors up-regulates substance P and neurokinin-1 receptor expression in murine pancreatic acinar cells.J. Cell. Mol. Med.20121671582159210.1111/j.1582‑4934.2011.01475.x22040127
    [Google Scholar]
  93. YamaguchiK. KumakuraS. MurakamiT. SomeyaA. InadaE. NagaokaI. Ketamine suppresses the substance P-induced production of IL-6 and IL-8 by human U373MG glioblastoma/astrocytoma cells.Int. J. Mol. Med.201739368769210.3892/ijmm.2017.287528204809
    [Google Scholar]
  94. GarnierA. VykoukalJ. HubertusJ. AltE. Von SchweinitzD. KapplerR. BergerM. IlmerM. Targeting the neurokinin-1 receptor inhibits growth of human colon cancer cells.Int. J. Oncol.201547115116010.3892/ijo.2015.301625998227
    [Google Scholar]
  95. NiuX.L. HouJ.F. LiJ.X. The NK1 receptor antagonist NKP608 inhibits proliferation of human colorectal cancer cells via Wnt signaling pathway.Biol. Res.20185111410.1186/s40659‑018‑0163‑x29843798
    [Google Scholar]
  96. Lasagni VitarR. TrianiF. BarbarigaM. FonteyneP. RamaP. FerrariG. Substance P/neurokinin-1 receptor pathway blockade ameliorates limbal stem cell deficiency by modulating mTOR pathway and preventing cell senescence.Stem Cell Reports202217484986310.1016/j.stemcr.2022.02.01235334220
    [Google Scholar]
  97. WeinstockJ.V. BlumA. MetwaliA. ElliottD. ArsenescuR. IL-18 and IL-12 signal through the NF-κ B pathway to induce NK-1R expression on T cells.J. Immunol.2003170105003500710.4049/jimmunol.170.10.500312734344
    [Google Scholar]
  98. KohY.H. TamizhselviR. BhatiaM. Extracellular signal-regulated kinase 1/2 and c-Jun NH2-terminal kinase, through nuclear factor-kappaB and activator protein-1, contribute to caerulein-induced expression of substance P and neurokinin-1 receptors in pancreatic acinar cells.J. Pharmacol. Exp. Ther.2010332394094810.1124/jpet.109.16041620007404
    [Google Scholar]
  99. SioS.W.S. AngS.F. LuJ. MoochhalaS. BhatiaM. Substance P upregulates cyclooxygenase-2 and prostaglandin E metabolite by activating ERK1/2 and NF-kappaB in a mouse model of burn-induced remote acute lung injury.J. Immunol.2010185106265627610.4049/jimmunol.100173920926798
    [Google Scholar]
  100. BashashD. Safaroghli-AzarA. BayatiS. RazaniE. Pourbagheri-SigaroodiA. GharehbaghianA. MomenyM. SanjadiM. Rezaie-TaviraniM. GhaffariS.H. Neurokinin-1 receptor (NK1R) inhibition sensitizes APL cells to anti-tumor effect of arsenic trioxide via restriction of NF-κB axis: Shedding new light on resistance to Aprepitant.Int. J. Biochem. Cell Biol.201810310511410.1016/j.biocel.2018.08.01030145367
    [Google Scholar]
  101. EbrahimiS. ErfaniB. AlalikhanA. GhorbaniH. FarzadniaM. AfshariA.R. MashkaniB. HashemyS.I. The in vitro pro-inflammatory functions of the SP/NK1R system in prostate cancer: A focus on nuclear factor-kappa B (NF-κB) and its pro-inflammatory target genes.Appl. Biochem. Biotechnol.2023195127796780710.1007/s12010‑023‑04495‑w37093533
    [Google Scholar]
  102. ZhengY. WangN. ChenZ. ShiL. XuX. Blocking SP/NK1R signaling improves spinal cord hemisection by inhibiting the release of pro-inflammatory cytokines in rabbits.J. Spinal Cord Med.202346584885810.1080/10790268.2021.202402935776091
    [Google Scholar]
  103. ZhangX.W. LiL. HuW.Q. HuM.N. TaoY. HuH. MiaoX.K. YangW.L. ZhuQ. MouL.Y. Neurokinin-1 receptor promotes non-small cell lung cancer progression through transactivation of EGFR.Cell Death Dis.20221314110.1038/s41419‑021‑04485‑y35013118
    [Google Scholar]
  104. QuartaraL. MaggiC.A. The tachykinin NK1 receptor. Part I: Ligands and mechanisms of cellular activation.Neuropeptides199731653756310.1016/S0143‑4179(97)90001‑99574822
    [Google Scholar]
  105. Majkowska-PilipA. HalikP.K. GniazdowskaE. The significance of NK1 receptor ligands and their application in targeted radionuclide tumour therapy.Pharmaceutics201911944310.3390/pharmaceutics1109044331480582
    [Google Scholar]
  106. MunozM. CovenasR. EstebanF. The substance P/NK-1 receptor system: NK-1 receptor antagonists as anti-cancer drugs.J. Biosci.201540244163
    [Google Scholar]
  107. MuñozM. CoveñasR. Involvement of substance P and the NK-1 receptor in human pathology.Amino Acids20144671727175010.1007/s00726‑014‑1736‑924705689
    [Google Scholar]
  108. LiuL. DanaR. YinJ. Sensory neurons directly promote angiogenesis in response to inflammation via substance P signaling.FASEB J.20203456229624310.1096/fj.201903236R32162744
    [Google Scholar]
  109. MuñozM. RossoM. PérezA. CoveñasR. RossoR. ZamarriegoC. PiruatJ.I. The NK1 receptor is involved in the antitumoural action of L-733,060 and in the mitogenic action of substance P on neuroblastoma and glioma cell lines.Neuropeptides200539442743210.1016/j.npep.2005.03.00415939468
    [Google Scholar]
  110. MuñozM. RossoM. CoveñasR. The NK-1 receptor is involved in the antitumoural action of L-733,060 and in the mitogenic action of substance P on human pancreatic cancer cell lines.Lett. Drug Des. Discov.20063532332910.2174/157018006777574168
    [Google Scholar]
  111. MuñozM. RossoM. AguilarF.J. González-MolesM.A. RedondoM. EstebanF. NK-1 receptor antagonists induce apoptosis and counteract substance P-related mitogenesis in human laryngeal cancer cell line HEp-2.Invest. New Drugs200826211111810.1007/s10637‑007‑9087‑y17906845
    [Google Scholar]
  112. MuñozM. RossoM. CoveñasR. A new frontier in the treatment of cancer: NK-1 receptor antagonists.Curr. Med. Chem.201017650451610.2174/09298671079041630820015033
    [Google Scholar]
  113. RossoM. Robles-FríasM.J. CoveñasR. Salinas- MartínM.V. MuñozM. The NK-1 receptor is expressed in human primary gastric and colon adenocarcinomas and is involved in the antitumor action of L-733,060 and the mitogenic action of substance P on human gastrointestinal cancer cell lines.Tumour Biol.200829424525410.1159/00015294218781096
    [Google Scholar]
  114. HenssenA.G. OderskyA. SzymanskyA. SeilerM. AlthoffK. BeckersA. SpelemanF. SchäfersS. De PreterK. AstrahanseffK. StruckJ. SchrammA. EggertA. BergmannA. SchulteJ.H. Targeting tachykinin receptors in neuroblastoma.Oncotarget20178143044310.18632/oncotarget.1344027888795
    [Google Scholar]
  115. BergerM. NethO. IlmerM. GarnierA. Salinas- MartínM.V. de Agustín AsencioJ.C. von SchweinitzD. KapplerR. MuñozM. Hepatoblastoma cells express truncated neurokinin-1 receptor and can be growth inhibited by aprepitant in vitro and in vivo.J. Hepatol.201460598599410.1016/j.jhep.2013.12.02424412605
    [Google Scholar]
  116. RazaniE. Safaroghli-AzarA. BashashD. Induction of apoptotic and anti-proliferative effects in REH cells upon neurokinin-1 receptor inhibition using Aprepitant.Koomesh2018204748755
    [Google Scholar]
  117. RazaniE. BashashD. Cytotoxic and apoptotic effects of neurokinin-1 receptor (NK1R) antagonist on multiple myeloma cells.Majallah-i Ilmi-i Danishgah-i Ulum-i Pizishki-i Kurdistan201924511110.29252/sjku.24.5.1
    [Google Scholar]
  118. CaoX. YangY. ZhouW. WangY. WangX. GeX. WangF. ZhouF. DengX. MiaoL. Aprepitant inhibits the development and metastasis of gallbladder cancer via ROS and MAPK activation.BMC Cancer202323147110.1186/s12885‑023‑10954‑837221457
    [Google Scholar]
  119. AkbariS. Assaran DarbanR. JavidH. EsparhamA. HashemyS.I. The anti-tumoral role of Hesperidin and Aprepitant on prostate cancer cells through redox modifications.Naunyn Schmiedebergs Arch. Pharmacol.2023396123559356710.1007/s00210‑023‑02551‑037249616
    [Google Scholar]
  120. HuangW.Q. WangJ.G. ChenL. WeiH.J. ChenH. SR140333 counteracts NK-1 mediated cell proliferation in human breast cancer cell line T47D.J. Exp. Clin. Cancer Res.20102915510.1186/1756‑9966‑29‑5520497542
    [Google Scholar]
  121. Oury-DonatF. LefevreI.A. ThurneyssenO. GauthierT. BordeyA. FeltzP. Emonds-AltX. FurG.L. SoubrieP. SR 140333, a novel, selective, and potent nonpeptide antagonist of the NK1 tachykinin receptor: Characterization on the U373MG cell line.J. Neurochem.19946241399140710.1046/j.1471‑4159.1994.62041399.x7510780
    [Google Scholar]
  122. PagánB. IsidroA.A. CoppolaD. ChenZ. RenY. WuJ. AppleyardC.B. Effect of a neurokinin-1 receptor antagonist in a rat model of colitis-associated colon cancer.Anticancer Res.20103093345335320944107
    [Google Scholar]
  123. ZhaoY.L. TaoY. FuC.Y. KongZ.Q. ChenQ. WangR. Human hemokinin-1 and human hemokinin-1(4–11), mammalian tachykinin peptides, suppress proliferation and induce differentiation in HL-60 cells.Peptides20093081514152210.1016/j.peptides.2009.04.02419433125
    [Google Scholar]
  124. LiQ. WuX. YangY. ZhangY. HeF. XuX. ZhangZ. TaoL. LuoC. Tachykinin NK1 receptor antagonist L-733,060 and substance P deletion exert neuroprotection through inhibiting oxidative stress and cell death after traumatic brain injury in mice.Int. J. Biochem. Cell Biol.201910715416510.1016/j.biocel.2018.12.01830593954
    [Google Scholar]
  125. GitterB.D. WatersD.C. ThrelkeldP.G. LovelaceA.M. MatsumotoK. BrunsR.F. Cyclosporin A is a substance P (tachykinin NK1) receptor antagonist.Eur. J. Pharmacol.1995289343944610.1016/0922‑4106(95)90152‑37556412
    [Google Scholar]
  126. MuñozM. RossoM. GonzálezA. SaenzJ. CoveñasR. The broad-spectrum antitumor action of cyclosporin A is due to its tachykinin receptor antagonist pharmacological profile.Peptides20103191643164810.1016/j.peptides.2010.06.00220542069
    [Google Scholar]
  127. González-OrtegaA. Sánchez-VaderrábanosE. Ramiro- FuentesS. Salinas-MartínM.V. CarranzaA. CoveñasR. MuñozM. Uveal melanoma expresses NK-1 receptors and cyclosporin A induces apoptosis in human melanoma cell lines overexpressing the NK-1 receptor.Peptides20145511210.1016/j.peptides.2014.01.03024548567
    [Google Scholar]
  128. GentschC. CutlerM. VassoutA. VeenstraS. BruggerF. Anxiolytic effect of NKP608, a NK1-receptor antagonist, in the social investigation test in gerbils.Behav. Brain Res.2002133236336810.1016/S0166‑4328(02)00024‑412110470
    [Google Scholar]
  129. StänderS. SiepmannD. HerrgottI. SunderkötterC. LugerT.A. Targeting the neurokinin receptor 1 with aprepitant: A novel antipruritic strategy.PLoS One201056e1096810.1371/journal.pone.001096820532044
    [Google Scholar]
  130. PaulB. TrovatoJ.A. ThompsonJ. BadrosA.Z. GoloubevaO. Efficacy of aprepitant in patients receiving high-dose chemotherapy with hematopoietic stem cell support.J. Oncol. Pharm. Pract.2010161455110.1177/107815520910539919525301
    [Google Scholar]
  131. MoharitaA. HarrisonJ. RameshwarP. Neurokinin receptors and subtypes as potential targets in breast cancer: Relevance to bone marrow metastasis.Drug Des. Rev. Online20041429730210.2174/1567269043390771
    [Google Scholar]
  132. RameshwarP. ReddyB. TrzaskaK. MurthyR. NavarroP. Neurokinin receptors as potential targets in breast cancer treatment.Curr. Drug Discov. Technol.200851151910.2174/15701630878376945018537563
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673311337240702095139
Loading
/content/journals/cmc/10.2174/0109298673311337240702095139
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test