Skip to content
2000
Volume 32, Issue 27
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Exosomes, small extracellular vesicles (sEVs) secreted by various cell types, play crucial roles in intercellular communication and are increasingly recognized as valuable biomarkers for disease diagnosis and therapeutic targets. Meanwhile, machine learning (ML) techniques have revolutionized biomedical research by enabling the analysis of complex datasets and highly accurate prediction of disease outcomes. Exosomes, with their diverse cargo of proteins, nucleic acids, and lipids, offer a rich source of molecular information reflecting the physiological state of cells. Integrating exosome analysis with ML algorithms, including supervised and unsupervised learning techniques, allows for identifying disease-specific biomarkers and predicting disease outcomes based on exosome profiles. Integrating exosome biology with ML presents a promising avenue for advancing biomedical research and clinical practice. This review explores the intersection of exosome biology and ML in biomedicine, highlighting the importance of integrating these disciplines to advance our understanding of disease mechanisms and biomarker discovery.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673319827240812052102
2024-08-20
2025-09-08
Loading full text...

Full text loading...

References

  1. Ayala-MarS. Rodríguez-MoralesB. Chacón-PonceP. González-ValdezJ. Potential applications and functional roles of exosomes in cardiometabolic disease.Pharmaceutics.20211312205610.3390/pharmaceutics13122056.
    [Google Scholar]
  2. Di BellaM.A. Overview and update on extracellular vesicles: Considerations on exosomes and their application in modern medicine.Biology (Basel)202211680410.3390/biology1106080435741325
    [Google Scholar]
  3. LiS. ZhangR. A novel interactive deep cascade spectral graph convolutional network with multi-relational graphs for disease prediction.Neural Netw.202417510628510.1016/j.neunet.2024.10628538593556
    [Google Scholar]
  4. Khodabandeh YalabadiA. Yazdani-JahromiM. YousefiN. TayebiA. AbdidizajiS. GaribayO.O. FragXsiteDTI: Revealing responsible segments in drug-target interaction with transformer-driven interpretation.RECOMB2024688510.1007/978‑1‑0716‑3989‑4_5.
    [Google Scholar]
  5. AhadianP. BabaeiM. ParandK. Using singular value decomposition in a convolutional neural network to improve brain tumor segmentation accuracy.11th International Conference on Signal & Image Processing202210.5121/csit.2022.121717
    [Google Scholar]
  6. FaghihinejadF. ZoghifardM. AmiriA.M. MonajemS. Evaluating social and spatial equity in public transport: A case study.Transp. Lett.202315101420142910.1080/19427867.2022.2158541
    [Google Scholar]
  7. LenartC. AhadianP. YangY. SuoS. CorselloA. KoskoK. GuanQ. Gaze analysis system for immersive 360° video for preservice teacher education.Proceedings of the 31st ACM International Conference on MultimediaNew York, NY, USA20238608861610.1145/3581783.3613908
    [Google Scholar]
  8. SanaeiM. GilbertS.B. JavadpourN. SabouniH. DorneichM.C. KellyJ.W. The correlations of scene complexity, workload, presence, and cybersickness in a task-based VR game.16th International Conference, VAMR 2024, Held as Part of the 26th HCI International Conference, HCII 2024Washington, DC, USA2024June 29 – July 4, 202427728910.1007/978‑3‑031‑61041‑7_18
    [Google Scholar]
  9. AlimirzaeiF. KieslichC.A. Machine learning models for predicting membranolytic anticancer peptides.Computer Aided Chemical EngineeringElsevier2023522691269610.1016/B978‑0‑443‑15274‑0.50428‑5
    [Google Scholar]
  10. RahimF. Zaki ZadehA. JavanmardiP. Emmanuel KomolafeT. KhalafiM. ArjomandiA. GhofraniH.A. ShirbandiK. Machine learning algorithms for diagnosis of hip bone osteoporosis: A systematic review and meta-analysis study.Biomed. Eng. Online20232216810.1186/s12938‑023‑01132‑937430259
    [Google Scholar]
  11. SalehiM. JavadpourN. BeisnerB. SanaeiM. GilbertS.B. Cybersickness detection through head movement patterns: A promising approach.Artificial Intelligence in HCI.20241473523925410.1007/978‑3‑031‑60611‑3_18
    [Google Scholar]
  12. NaeiniA.B. MahdipourA.G. DorriR. Using eye tracking to measure overall usability of online grocery shopping websites.IJMCMC202314110.4018/IJMCMC.326129.
    [Google Scholar]
  13. SinghS. KumarR. PayraS. SinghS.K. Artificial intelligence and machine learning in pharmacological research: Bridging the gap between data and drug discovery.Cureus2023158e4435910.7759/cureus.4435937779744
    [Google Scholar]
  14. ZhouH. XuL. RenZ. ZhuJ. LeeC. Machine learning-augmented surface-enhanced spectroscopy toward next-generation molecular diagnostics.Nanoscale Adv.20235353857010.1039/D2NA00608A36756499
    [Google Scholar]
  15. DeCastroJ. LittigJ. ChouP.P. Mack-OnyeikeJ. SrinivasanA. ConboyM.J. ConboyI.M. AranK. The microfluidic toolbox for analyzing exosome biomarkers of aging.Molecules.202126353510.3390/molecules26030535.
    [Google Scholar]
  16. BamfordS.E. VassileffN. SpiersJ.G. GardnerW. WinklerD.A. MuirB.W. HillA.F. PigramP.J. High resolution imaging and analysis of extracellular vesicles using mass spectral imaging and machine learning.J. Extracell. Biol.202329e11010.1002/jex2.11038938371
    [Google Scholar]
  17. BabstM. MVB vesicle formation: ESCRT-dependent, ESCRT-independent and everything in between.Curr. Opin. Cell Biol.201123445245710.1016/j.ceb.2011.04.00821570275
    [Google Scholar]
  18. SchmidtO. TeisD. The ESCRT machinery.Curr. Biol.2012224R116R12010.1016/j.cub.2012.01.02822361144
    [Google Scholar]
  19. AndreuZ. Yáñez-MóM. Tetraspanins in extracellular vesicle formation and function.Front. Immunol.2014544210.3389/fimmu.2014.00442.
    [Google Scholar]
  20. ZhangW. LiuR. ChenY. WangM. DuJ. Crosstalk between oxidative stress and exosomes.Oxid. Med. Cell. Longev.20222022355361736082080
    [Google Scholar]
  21. JurjA. ZanoagaO. BraicuC. LazarV. TomuleasaC. IrimieA. Berindan-NeagoeI. A Comprehensive picture of extracellular vesicles and their contents. Molecular transfer to cancer cells.Cancers (Basel)202012229810.3390/cancers1202029832012717
    [Google Scholar]
  22. KwonY. ParkJ. Methods to analyze extracellular vesicles at single particle level.Micro. Nano. Syst. Lett.20221011410.1186/s40486‑022‑00156‑5
    [Google Scholar]
  23. NobleJ.M. RobertsL.M. VidavskyN. ChiouA.E. FischbachC. PaszekM.J. EstroffL.A. KourkoutisL.F. Direct comparison of optical and electron microscopy methods for structural characterization of extracellular vesicles.J. Struct. Biol.2020210110747410.1016/j.jsb.2020.10747432032755
    [Google Scholar]
  24. MahmoudiM. AkhavanO. GhavamiM. RezaeeF. GhiasiS.M.A. Graphene oxide strongly inhibits amyloid beta fibrillation.Nanoscale20124237322732510.1039/c2nr31657a23079862
    [Google Scholar]
  25. NeaguA.N. JayathirthaM. BaxterE. DonnellyM. PetreB.A. DarieC.C. Applications of tandem mass spectrometry (MS/MS) in protein analysis for biomedical research.Molecules.2022278241110.3390/molecules27082411.
    [Google Scholar]
  26. LiX.X. YangL.X. WangC. LiH. ShiD.S. WangJ. The roles of exosomal proteins: classification, function, and applications.Int. J. Mol. Sci.2023244306110.3390/ijms2404306136834471
    [Google Scholar]
  27. IliescuF. VrtačnikD. NeuzilP. IliescuC. Microfluidic technology for clinical applications of exosomes.Micromachines (Basel).201916639210.3390/mi10060392.
    [Google Scholar]
  28. MalmirK. OkellW. TrichetA.A.P. SmithJ.M. Characterization of nanoparticle size distributions using a microfluidic device with integrated optical microcavities.Lab Chip202222183499350710.1039/D2LC00180B35968777
    [Google Scholar]
  29. MalmirK. Characterization of nanoparticles with optical fluidic cavity.PhD Diss. Uni. Oxford202210.13140/RG.2.2.12878.68169.
    [Google Scholar]
  30. MalmirN. FasihiK. A highly-sensitive label-free biosensor based on two dimensional photonic crystals with negative refraction.J. Mod. Opt.201764202195220010.1080/09500340.2017.1346828
    [Google Scholar]
  31. LinS. YuZ. ChenD. WangZ. MiaoJ. LiQ. ZhangD. SongJ. CuiD. Progress in microfluidics-based exosome separation and detection technologies for diagnostic applications.Small2020169190391610.1002/smll.20190391631663295
    [Google Scholar]
  32. Garcia-CorderoJ.L. MaerklS.J. Microfluidic systems for cancer diagnostics.Curr. Opin. Biotechnol.202065374410.1016/j.copbio.2019.11.02231891869
    [Google Scholar]
  33. AlnuaimiA.F.A.H. AlbaldawiT.H.K. An overview of machine learning classification techniques.BIO Web Conf97420240013310.1051/bioconf/20249700133
    [Google Scholar]
  34. SarkerI.H. Machine learning: Algorithms, real-world applications and research directions.SN Comput. Sci.20212316010.1007/s42979‑021‑00592‑x33778771
    [Google Scholar]
  35. BudisteanuE.-A. MocanuI.G. Combining supervised and unsupervised learning algorithms for human activity recognition.Sensors2021218630910.3390/s21186309.
    [Google Scholar]
  36. JovelJ. GreinerR. An introduction to machine learning approaches for biomedical research.Front Med (Lausanne).2021877160710.3389/fmed.2021.771607.
    [Google Scholar]
  37. TabakhiS. SuvonM.N.I. AhadianP. LuH. Multimodal learning for multi-omics: A survey.World Sci. Annu. Rev. Artif. Intell.20231225000410.1142/S2811032322500047.
    [Google Scholar]
  38. StatnikovA. WangL. AliferisC.F. A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification.BMC Bioinformatics20089131910.1186/1471‑2105‑9‑31918647401
    [Google Scholar]
  39. WeiW. YangX. Comparison of diagnosis accuracy between a backpropagation artificial neural network model and linear regression in digestive disease patients: An empirical research.Comput. Math. Methods Med.2021202111010.1155/2021/666277933727951
    [Google Scholar]
  40. RodriguezM.Z. CominC.H. CasanovaD. BrunoO.M. AmancioD.R. CostaL.F. RodriguesF.A. Clustering algorithms: A comparative approach.PLoS One2019141e021023610.1371/journal.pone.021023630645617
    [Google Scholar]
  41. LiuH. YangJ. YeM. JamesS.C. TangZ. DongJ. XingT. Using t-distributed stochastic neighbor embedding (t-SNE) for cluster analysis and spatial zone delineation of groundwater geochemistry data.J. Hydrol. (Amst.)202159712614610.1016/j.jhydrol.2021.126146
    [Google Scholar]
  42. GaoC.X. DwyerD. ZhuY. SmithC.L. DuL. FiliaK.M. BayerJ. MenssinkJ.M. WangT. BergmeirC. WoodS. CottonS.M. An overview of clustering methods with guidelines for application in mental health research.Psychiatry Res.202332711526510.1016/j.psychres.2023.11526537348404
    [Google Scholar]
  43. Hajian-TilakiK. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation.Caspian J. Intern. Med.20134262763524009950
    [Google Scholar]
  44. MaghsoudiS. Taghavi ShahrakiB. RamehF. NazarabiM. FatahiY. AkhavanO. RabieeM. MostafaviE. LimaE.C. SaebM.R. RabieeN. A review on computer-aided chemogenomics and drug repositioning for rational COVID -19 drug discovery.Chem. Biol. Drug Des.2022100569972110.1111/cbdd.1413636002440
    [Google Scholar]
  45. UddinS. KhanA. HossainM.E. MoniM.A. Comparing different supervised machine learning algorithms for disease prediction.BMC Med. Inform. Decis. Mak.201919128110.1186/s12911‑019‑1004‑831864346
    [Google Scholar]
  46. ZhiJ. SunJ. WangZ. DingW. Support vector machine classifier for prediction of the metastasis of colorectal cancer.Int. J. Mol. Med.20184131419142610.3892/ijmm.2018.335929328363
    [Google Scholar]
  47. KavithaC. ManiV. SrividhyaS.R. KhalafO.I. Tavera RomeroC.A. Early-stage Alzheimer's disease prediction using machine learning models.Front Public Health.20221085329410.3389/fpubh.2022.853294.
    [Google Scholar]
  48. LopezC. TuckerS. SalamehT. TuckerC. An unsupervised machine learning method for discovering patient clusters based on genetic signatures.J. Biomed. Inform.201885303910.1016/j.jbi.2018.07.00430016722
    [Google Scholar]
  49. HsuY-L. HuangP-Y. ChenD-T. Sparse principal component analysis in cancer research.Transl. Cancer Res.20143318219026719835
    [Google Scholar]
  50. MullinS. ZolaJ. LeeR. HuJ. MacKenzieB. BrickmanA. AnayaG. SinhaS. LiA. ElkinP.L. Longitudinal K-means approaches to clustering and analyzing EHR opioid use trajectories for clinical subtypes.J. Biomed. Inform.202112210388910.1016/j.jbi.2021.10388934411708
    [Google Scholar]
  51. MouchlisV.D. AfantitisA. SerraA. FratelloM. PapadiamantisA.G. AidinisV. LynchI. GrecoD. MelagrakiG. Advances in de novo drug design: From conventional to machine learning methods.Int. J. Mol. Sci.2021224167610.3390/ijms2204167633562347
    [Google Scholar]
  52. RanaM. BhushanM. Machine learning and deep learning approach for medical image analysis: Diagnosis to detection.Multimedia Tools Appl.20238217267312676910.1007/s11042‑022‑14305‑w
    [Google Scholar]
  53. SarvamangalaD.R. KulkarniR.V. Convolutional neural networks in medical image understanding: A survey.Evol. Intell.202215112210.1007/s12065‑020‑00540‑333425040
    [Google Scholar]
  54. AbdelrahmanL. Al GhamdiM. Collado-MesaF. Abdel-MottalebM. Convolutional neural networks for breast cancer detection in mammography: A survey.Comput. Biol. Med.202113110424810.1016/j.compbiomed.2021.10424833631497
    [Google Scholar]
  55. VelazquezM. LeeY. Random forest model for feature-based Alzheimer’s disease conversion prediction from early mild cognitive impairment subjects.PLoS One2021164e024477310.1371/journal.pone.024477333914757
    [Google Scholar]
  56. IlbeigipourS. AlbadviA. Akhondzadeh NoughabiE. Cluster-based analysis of COVID-19 cases using self-organizing map neural network and K-means methods to improve medical decision-making.Inform. Med. Unlocked.20223210100510.1016/j.imu.2022.10100535813016
    [Google Scholar]
  57. BongiorniL. BalbinotA. Evaluation of recurrent neural networks as epileptic seizure predictor.Array2020810003810.1016/j.array.2020.100038
    [Google Scholar]
  58. MaheswariS. PitchaiR. Heart disease prediction system using decision tree and naive bayes algorithm.Curr. Med. Imaging Rev.201915871271710.2174/1573405614666180322141259.
    [Google Scholar]
  59. AmbrosenK.S. FredrikssonF. AnhøjS. BakN. van DellenE. DominicusL. LemvighC.K. SørensenM.E. NielsenM.Ø. BojesenK.B. FagerlundB. GlenthøjB.Y. OranjeB. HansenL.K. EbdrupB.H. Clustering of antipsychotic-naïve patients with schizophrenia based on functional connectivity from resting-state electroencephalography.Eur. Arch. Psychiatry Clin. Neurosci.202327381785179610.1007/s00406‑023‑01550‑936729135
    [Google Scholar]
  60. AnnasS. AswiA. AbdyM. PoerwantoB. Stroke classification model using logistic regression.J. Phys. Conf. Ser.20212123101201610.1088/1742‑6596/2123/1/012016
    [Google Scholar]
  61. YoonS. KimM. LeeW.W. Long short-term memory-based deep learning models for screening parkinson’s disease using sequential diagnostic codes.J. Clin. Neurol.202319327027910.3988/jcn.2022.016036647230
    [Google Scholar]
  62. CL. SP. KashyapA.H. RahamanA. NiranjanS. NiranjanV. Novel biomarker prediction for lung cancer using random forest classifiers.Cancer Inform.20232210.1177/11769351231167992
    [Google Scholar]
  63. LiB. LiM. SongY. LuX. LiuD. HeC. ZhangR. WanX. ZhangR. SunM. KuangY.Q. LiY. Construction of machine learning models to predict changes in immune function using clinical monitoring indices in HIV/AIDS patients after 9.9-years of antiretroviral therapy in Yunnan, China.Front. Cell. Infect. Microbiol.20221286773710.3389/fcimb.2022.867737
    [Google Scholar]
  64. ZhangJ. XuB. YinH. Depression screening using hybrid neural network.Multimedia Tools Appl.20238211637362740
    [Google Scholar]
  65. D’AmatoM. AmbrosinoP. SimioliF. AdamoS. StanziolaA.A. D’AddioG. MolinoA. ManiscalcoM. A machine learning approach to characterize patients with asthma exacerbation attending an acute care setting.Eur. J. Intern. Med.2022104667210.1016/j.ejim.2022.07.01935922367
    [Google Scholar]
  66. ChoiE.S. SimJ.A. NaY.G. SeonJ.K. ShinH.D. Machine-learning algorithm that can improve the diagnostic accuracy of septic arthritis of the knee.Knee Surg. Sports Traumatol. Arthrosc.202129103142314810.1007/s00167‑020‑06418‑233452576
    [Google Scholar]
  67. KurniawanY.I. HanifaA. AfuanL. FadliA. AliimM.S. Comparison of tuberculosis disease classification using support vector machine and Naive Bayes algorithm.AIP Conference Proceedings20232482103000210.1063/5.0110987
    [Google Scholar]
  68. ZhangB. ShiH. WangH. Machine learning and AI in cancer prognosis, prediction, and treatment selection: A critical approach.J. Multidiscip. Healthc.2023161779179110.2147/JMDH.S41030137398894
    [Google Scholar]
  69. Cansever MutluE. KayaM. KüçükI. Ben-NissanB. StamboulisA. Exosome structures supported by machine learning can be used as a promising diagnostic tool.Materials (Basel)20221522796710.3390/ma1522796736431454
    [Google Scholar]
  70. LiB. KugeratskiF.G. KalluriR. A novel machine learning algorithm selects proteome signature to specifically identify cancer exosomes.BioRxiv202310.1101/2023.07.18.549557
    [Google Scholar]
  71. LiuC. LiB. LinH. YangC. GuoJ. CuiB. PanW. FengJ. LuoT. ChuF. XuX. ZhengL. YaoS. Multiplexed analysis of small extracellular vesicle-derived mRNAs by droplet digital PCR and machine learning improves breast cancer diagnosis.Biosens. Bioelectron.202119411361510.1016/j.bios.2021.11361534507095
    [Google Scholar]
  72. ZhuK. TaoQ. YanJ. LangZ. LiX. LiY. FanC. YuZ. Machine learning identifies exosome features related to hepatocellular carcinoma.Front. Cell Dev. Biol.202210102041510.3389/fcell.2022.102041536200042
    [Google Scholar]
  73. YapJ.Y.Y. GohL.S.H. LimA.J.W. ChongS.S. LimL.J. LeeC.G. Machine learning identifies a signature of nine exosomal RNAs that predicts hepatocellular carcinoma.Cancers (Basel)20231514374910.3390/cancers1514374937509410
    [Google Scholar]
  74. ShinH. OhS. HongS. KangM. KangD. JiY. ChoiB.H. KangK.W. JeongH. ParkY. HongS. KimH.K. ChoiY. Early-stage lung cancer diagnosis by deep learning-based spectroscopic analysis of circulating exosomes.ACS Nano20201455435544410.1021/acsnano.9b0911932286793
    [Google Scholar]
  75. ZhangK. ZhangC. WangK. TengX. ChenM. Identifying diagnostic markers and constructing a prognostic model for small-cell lung cancer based on blood exosome-related genes and machine-learning methods.Front. Oncol.202212107711810.3389/fonc.2022.107711836620585
    [Google Scholar]
  76. ShinH. KangY. ChoiK.W. KimS. HamB.J. ChoiY. Artificial intelligence-based major depressive disorder (MDD) diagnosis using raman spectroscopic features of plasma exosomes.Anal. Chem.202395156410641610.1021/acs.analchem.3c0021537005738
    [Google Scholar]
  77. LapitzA. AzkargortaM. MilkiewiczP. OlaizolaP. ZhuravlevaE. GrimsrudM.M. SchrammC. ArbelaizA. O’RourkeC.J. La CastaA. MilkiewiczM. PastorT. VesterhusM. Jimenez-AgüeroR. DillM.T. LamarcaA. ValleJ.W. MaciasR.I.R. Izquierdo-SanchezL. Pérez CastañoY. Caballero-CaminoF.J. RiañoI. KrawczykM. IbarraC. BustamanteJ. Nova-CamachoL.M. Falcon-PerezJ.M. ElortzaF. PerugorriaM.J. AndersenJ.B. BujandaL. KarlsenT.H. FolseraasT. RodriguesP.M. BanalesJ.M. Liquid biopsy-based protein biomarkers for risk prediction, early diagnosis, and prognostication of cholangiocarcinoma.J. Hepatol.20237919310810.1016/j.jhep.2023.02.02736868481
    [Google Scholar]
  78. GeS. ChenG. CaoD. LinH. LiuZ. YuM. WangS. WangZ. ZhouM. Au/SiNCA-based SERS analysis coupled with machine learning for the early-stage diagnosis of cisplatin-induced liver injury.Anal. Chim. Acta2023125434111310.1016/j.aca.2023.34111337005023
    [Google Scholar]
  79. LugliG. CohenA.M. BennettD.A. ShahR.C. FieldsC.J. HernandezA.G. SmalheiserN.R. Plasma exosomal miRNAs in persons with and without Alzheimer disease: Altered expression and prospects for biomarkers.PLoS One20151010e013923310.1371/journal.pone.013923326426747
    [Google Scholar]
  80. CuiY. ZhangW. LuW. FengY. WuX. ZhuoZ. ZhangD. ZhangY. An exosome-derived lncRNA signature identified by machine learning associated with prognosis and biomarkers for immunotherapy in ovarian cancer.Front. Immunol.202415122823510.3389/fimmu.2024.122823538404588
    [Google Scholar]
  81. BodaghiA. FattahiN. RamazaniA. Biomarkers: Promising and valuable tools towards diagnosis, prognosis and treatment of COVID-19 and other diseases.Heliyon202392e1332310.1016/j.heliyon.2023.e1332336744065
    [Google Scholar]
  82. KohH.B. KimH.J. KangS.W. YooT.H. Exosome-based drug delivery: Translation from bench to clinic.Pharmaceutics2023158204210.3390/pharmaceutics1508204237631256
    [Google Scholar]
  83. Mosquera-HerediaM.I. MoralesL.C. VidalO.M. BarcelóE. Silvera-RedondoC. VélezJ.I. Garavito- GalofreP. Exosomes: Potential disease biomarkers and new therapeutic targets.Biomedicines202198106110.3390/biomedicines908106134440265
    [Google Scholar]
  84. LatapiatV. SaezM. PedrosoI. MartinA.J.M. Unraveling patient heterogeneity in complex diseases through individualized co-expression networks: A perspective.Front. Genet.202314120941610.3389/fgene.2023.1209416.
    [Google Scholar]
  85. BruschiM. La PortaE. PanfoliI. CandianoG. PetrettoA. VidalE. KajanaX. BartolucciM. GranataS. GhiggeriG.M. ZazaG. VerrinaE. Proteomic profile of mesothelial exosomes isolated from peritoneal dialysis effluent of children with focal segmental glomerulosclerosis.Sci. Rep.20211112080710.1038/s41598‑021‑00324‑434675284
    [Google Scholar]
  86. GiangrecoN. LebretonG. RestainoS. FarrM. ColomboP.C. ZornE. TatonettiN. LeprinceP. KobashigawaJ. FineB. Exosome proteomics and machine learning identify novel biomarkers of primary graft dysfunction.J. Heart. Lung. Transplant2019384S13710.1016/j.healun.2019.01.325.
    [Google Scholar]
  87. ZhangZ. MaX. EkiertJ. SimonsY. ColemanL. TruicaC.I. BlaesA.H. RanaJ. TandraP. GreenL. YuM. ToppmeyerD. O’ReganR. WisinskiK.B. DanciuO.C. MohapatraG. HoskinsK. GaoY. Identification of exosome protein biomarkers in patients with advanced hormone receptor-positive breast cancer treated with palbociclib and tamoxifen.J. Clin. Oncol.20224016_supple13014e1301410.1200/JCO.2022.40.16_suppl.e13014
    [Google Scholar]
  88. HoshinoA. KimH.S. BojmarL. GyanK.E. CioffiM. HernandezJ. ZambirinisC.P. RodriguesG. MolinaH. HeisselS. MarkM.T. SteinerL. Benito-MartinA. LucottiS. Di GiannataleA. OfferK. NakajimaM. WilliamsC. NoguésL. Pelissier VatterF.A. HashimotoA. DaviesA.E. FreitasD. KenificC.M. ArarsoY. BuehringW. LauritzenP. OgitaniY. SugiuraK. TakahashiN. AlečkovićM. BaileyK.A. JolissantJ.S. WangH. HarrisA. SchaefferL.M. García-SantosG. PosnerZ. BalachandranV.P. KhakooY. RajuG.P. ScherzA. SagiI. Scherz-ShouvalR. YardenY. OrenM. MalladiM. PetriccioneM. De BragancaK.C. DonzelliM. FischerC. VitolanoS. WrightG.P. GanshawL. MarranoM. AhmedA. DeStefanoJ. DanzerE. RoehrlM.H.A. LacayoN.J. VincentT.C. WeiserM.R. BradyM.S. MeyersP.A. WexlerL.H. AmbatiS.R. ChouA.J. SlotkinE.K. ModakS. RobertsS.S. BasuE.M. DiolaitiD. KrantzB.A. CardosoF. SimpsonA.L. BergerM. RudinC.M. SimeoneD.M. JainM. GhajarC.M. BatraS.K. StangerB.Z. BuiJ. BrownK.A. RajasekharV.K. HealeyJ.H. de SousaM. KramerK. ShethS. BaischJ. PascualV. HeatonT.E. La QuagliaM.P. PisapiaD.J. SchwartzR. ZhangH. LiuY. ShuklaA. BlavierL. DeClerckY.A. LaBargeM. BissellM.J. CaffreyT.C. GrandgenettP.M. HollingsworthM.A. BrombergJ. Costa-SilvaB. PeinadoH. KangY. GarciaB.A. O’ReillyE.M. KelsenD. TrippettT.M. JonesD.R. MateiI.R. JarnaginW.R. LydenD. Extracellular vesicle and particle biomarkers define multiple human cancers.Cell2020182410441061.e1810.1016/j.cell.2020.07.00932795414
    [Google Scholar]
  89. CondratC.E. ThompsonD.C. BarbuM.G. BugnarO.L. BobocA. CretoiuD. SuciuN. CretoiuS.M. VoineaS.C. miRNAs as biomarkers in disease: Latest findings regarding their role in diagnosis and prognosis.Cells20209227610.3390/cells902027631979244
    [Google Scholar]
  90. PawelkaD. LaczmanskaI. KarpinskiP. SupplittS. WitkiewiczW. KnychalskiB. PelakJ. ZebrowskaP. LaczmanskiL. Machine-learning-based analysis identifies miRNA expression profile for diagnosis and prediction of colorectal cancer: A preliminary study.Cancer Genomics Proteomics202219450351110.21873/cgp.2033635732322
    [Google Scholar]
  91. FarrR.J. GoddeN. CowledC. SundaramoorthyV. GreenD. StewartC. BinghamJ. O’BrienC.M. DearnleyM. Machine learning identifies cellular and exosomal MicroRNA signatures of lyssavirus infection in human stem cell-derived neurons.Front. Cell. Infect. Microbiol.20211178314010.3389/fcimb.2021.78314035004351
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673319827240812052102
Loading
/content/journals/cmc/10.2174/0109298673319827240812052102
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test