Skip to content
2000
Volume 32, Issue 35
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Chagas disease (CD), a life-threatening disease caused by , remains a significant global public health concern. The limited efficacy of the available drugs (nifurtimox and benznidazole), their severe adverse events, and the unsatisfactory outcomes of clinical trials drive the search for new, effective, and safe drugs.

Objective

This study describes the synthesis, structural characterization, and antiparasitic activity of novel pyrazole-benzimidazole derivatives against mammalian developmental stages of .

Methods

Phenotypic screening was used to assess the effect of pyrazole-benzimidazole derivatives against . Three-dimensional cardiac spheroids were employed to evaluate the toxic effect and drug efficacy. Molecular docking and cysteine protease activity were also performed.

Results

Pyrazole-benzimidazole derivatives showed activity against both trypomastigotes and intracellular amastigotes. Compounds (IC = 6.6 µM) and (IC = 9.4 µM) demonstrated the most potent activity with a high selectivity index (SI > 45) against intracellular amastigotes. Both compounds exhibited high efficacy on 3D cardiac spheroids, effectively reducing the parasite load by over 80%. Molecular docking analysis revealed that both compounds target the catalytic domain of cruzain through pi-stacking and hydrogen bonding interactions and inhibit cysteine protease. These derivatives also showed an additive effect in combination with the reference drug (Bz).

Conclusion

Our findings emphasize the significance of pyrazole-benzimidazole hybrids in the search for new anti- agents.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673342932241016032905
2025-05-05
2025-11-03
Loading full text...

Full text loading...

References

  1. World Health OrganizationChagas disease (American trypanosomiasis).2024Available From: https://www.who.int/health-topics/chagas-disease#tab=tab_1
  2. GuhlF. RamírezJ.D. Poverty, Migration, and Chagas Disease.Curr. Trop. Med. Rep.202181525810.1007/s40475‑020‑00225‑y
    [Google Scholar]
  3. Pan American Health Organization (PAHO)Chagas disease.2024Available From: https://www.paho.org/en/topics/chagas-disease#5
  4. Gómez-OchoaS.A. RojasL.Z. EcheverríaL.E. MukaT. FrancoO.H. Global, regional, and national trends of chagas disease from 1990 to 2019: Comprehensive analysis of the global burden of disease study.Glob. Heart20221715910.5334/gh.115036051318
    [Google Scholar]
  5. RassiA.Jr RassiA. Marin-NetoJ.A. Chagas diseaseLancet201037597231388140210.1016/S0140‑6736(10)60061‑X20399979
    [Google Scholar]
  6. LidaniK.C.F. AndradeF.A. BaviaL. DamascenoF.S. BeltrameM.H. Messias-ReasonI.J. SandriT.L. Chagas Disease: From discovery to a worldwide health problem.Front. Public Health2019716610.3389/fpubh.2019.0016631312626
    [Google Scholar]
  7. Pérez-MolinaJ.A. MolinaI. Chagas diseaseLancet201839110115829410.1016/S0140‑6736(17)31612‑428673423
    [Google Scholar]
  8. de SousaA.S. VermeijD. RamosA.N.Jr LuquettiA.O. Chagas diseaseLancet20244031042220321810.1016/S0140‑6736(23)01787‑738071985
    [Google Scholar]
  9. BocchiE.A. Heart failure in South America.Curr. Cardiol. Rev.20139214715610.2174/1573403X1130902000723597301
    [Google Scholar]
  10. RamosL.G. de SouzaK.R. JúniorP.A.S. CâmaraC.C. Castelo-BrancoF.S. BoechatN. CarvalhoS.A. Tackling the challenges of human Chagas disease: A comprehensive review of treatment strategies in the chronic phase and emerging therapeutic approaches.Acta Trop.202425610726410.1016/j.actatropica.2024.10726438806090
    [Google Scholar]
  11. MorilloC.A. Marin-NetoJ.A. AvezumA. Sosa-EstaniS. RassiA.Jr RosasF. VillenaE. QuirozR. BonillaR. BrittoC. GuhlF. VelazquezE. BonillaL. MeeksB. Rao-MelaciniP. PogueJ. MattosA. LazdinsJ. RassiA. ConnollyS.J. YusufS. Randomized trial of benznidazole for chronic chagas’ cardiomyopathy.N. Engl. J. Med.2015373141295130610.1056/NEJMoa150757426323937
    [Google Scholar]
  12. Pan American Health OrganizationGuidelines for the diagnosis and treatment of Chagas disease.2024Available From: https://iris.paho.org/bitstream/handle/10665.2/49653/9789275120439_eng.pdf
  13. TorricoF. GascónJ. BarreiraF. BlumB. AlmeidaI.C. Alonso-VegaC. BarbozaT. BilbeG. CorreiaE. GarciaW. OrtizL. ParradoR. RamirezJ.C. RibeiroI. Strub-WourgaftN. VaillantM. Sosa-EstaniS. ArteagaR. de la BarraA. Camacho BorjaJ. MartinezI. FernandesJ. GarciaL. LozanoD. PalaciosA. SchijmanA. PinazoM.J. PintoJ. RojasG. EstevaoI. Ortega-RodriguezU. MendesM.T. SchuckE. HataK. MakiN. AsadaM. New regimens of benznidazole monotherapy and in combination with fosravuconazole for treatment of Chagas disease (BENDITA): A phase 2, double-blind, randomised trial.Lancet Infect. Dis.20212181129114010.1016/S1473‑3099(20)30844‑633836161
    [Google Scholar]
  14. Bosch-NicolauP. FernándezM.L. SulleiroE. VillarJ.C. Perez-MolinaJ.A. Correa-OliveiraR. Sosa-EstaniS. Sánchez-MontalváA. del Carmen BangherM. MoreiraO.C. SalvadorF. Mota FerreiraA. Eloi-SantosS.M. Serre-DelcorN. RamírezJ.C. SilgadoA. OliveiraI. MartínO. AznarM.L. RibeiroA.L.P. AlmeidaP.E.C. Chamorro-TojeiroS. Espinosa-PereiroJ. de PaulaA.M.B. Váquiro-HerreraE. TurC. MolinaI. Efficacy of three benznidazole dosing strategies for adults living with chronic Chagas disease (MULTIBENZ): An international, randomised, double-blind, phase 2b trial.Lancet Infect. Dis.202424438639410.1016/S1473‑3099(23)00629‑138218195
    [Google Scholar]
  15. Gabaldón-FigueiraJ.C. Martinez-PeinadoN. EscabiaE. Ros-LucasA. ChatelainE. ScandaleI. GasconJ. PinazoM.J. Alonso-PadillaJ. State-of-the-art in the drug discovery pathway for chagas disease: A framework for drug development and target validation.Res. Rep. Trop. Med.20231411910.2147/RRTM.S41527337337597
    [Google Scholar]
  16. LiG. ChengY. HanC. SongC. HuangN. DuY. Pyrazole-containing pharmaceuticals: Target, pharmacological activity, and their SAR studies.RSC Med. Chem.202213111300132110.1039/D2MD00206J36439976
    [Google Scholar]
  17. LevyM. Zylber-KatzE. RosenkranzB. Clinical pharmacokinetics of dipyrone and its metabolites.Clin. Pharmacokinet.199528321623410.2165/00003088‑199528030‑000047758252
    [Google Scholar]
  18. ZalewskiP. SkibińskiR. TalaczyńskaA. PaczkowskaM. GarbackiP. Cielecka-PiontekJ. Stability studies of cefoselis sulfate in the solid state.J. Pharm. Biomed. Anal.201511422222610.1016/j.jpba.2015.05.03326073113
    [Google Scholar]
  19. TsutomuK. ToshitakaN. Effects of 1,3-diphenyl-5-(2-dimethylaminopropionamide)-pyrazole[difenamizole] on a conditioned avoidance response.Neuropharmacology1978174-524925610.1016/0028‑3908(78)90108‑9652137
    [Google Scholar]
  20. SteinbachG. LynchP.M. PhillipsR.K.S. WallaceM.H. HawkE. GordonG.B. WakabayashiN. SaundersB. ShenY. FujimuraT. SuL.K. LevinB. GodioL. PattersonS. Rodriguez-BigasM.A. JesterS.L. KingK.L. SchumacherM. AbbruzzeseJ. DuBoisR.N. HittelmanW.N. ZimmermanS. ShermanJ.W. KelloffG. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis.N. Engl. J. Med.2000342261946195210.1056/NEJM20000629342260310874062
    [Google Scholar]
  21. MillisD.L. WeigelJ.P. MoyersT. BuonomoF.C. Effect of deracoxib, a new COX-2 inhibitor, on the prevention of lameness induced by chemical synovitis in dogs.Vet. Ther.20023445346412584683
    [Google Scholar]
  22. ShawA.T. YasothanU. KirkpatrickP. Crizotinib.Nat. Rev. Drug Discov.2011101289789810.1038/nrd360022129984
    [Google Scholar]
  23. DummerR. AsciertoP.A. GogasH.J. AranceA. MandalaM. LiszkayG. GarbeC. SchadendorfD. KrajsovaI. GutzmerR. Chiarion-SileniV. DutriauxC. de GrootJ.W.B. YamazakiN. LoquaiC. Moutouh-de ParsevalL.A. PickardM.D. SandorV. RobertC. FlahertyK.T. Encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF -mutant melanoma (COLUMBUS): A multicentre, open-label, randomised phase 3 trial.Lancet Oncol.201819560361510.1016/S1470‑2045(18)30142‑629573941
    [Google Scholar]
  24. RavindarL. HasbullahS.A. RakeshK.P. HassanN.I. Pyrazole and pyrazoline derivatives as antimalarial agents: A key review.Eur. J. Pharm. Sci.202318310636510.1016/j.ejps.2022.10636536563914
    [Google Scholar]
  25. KavourisJ.A. McCallL.I. GiardiniM.A. De MuylderG. ThomasD. Garcia-PérezA. CantizaniJ. CotilloI. FiandorJ.M. McKerrowJ.H. De OliveiraC.I. Siqueira-NetoJ.L. GonzálezS. BrownL.E. SchausS.E. Discovery of pyrazolopyrrolidinones as potent, broad-spectrum inhibitors of Leishmania infection.Front. Trop. Dis.20233101112410.3389/fitd.2022.101112436818551
    [Google Scholar]
  26. Barreiro-CostaO. Quiroga LozanoC. MuñozE. Rojas-SilvaP. MedeirosA. CominiM.A. Heredia-MoyaJ. Evaluation of the anti-leishmania mexicana and -trypanosoma brucei activity and mode of action of 4,4′-(arylmethylene)bis(3-methyl-1-phenyl-1H-pyrazol-5-ol).Biomedicines2022108191310.3390/biomedicines1008191336009460
    [Google Scholar]
  27. LaraL.S. LechugaG.C. OrlandoL.M.R. FerreiraB.S. SoutoB.A. dos SantosM.S. PereiraM.C.S. Bioactivity of novel pyrazole-thiazolines scaffolds against Trypanosoma cruzi: Computational approaches and 3D Spheroid model on drug discovery for chagas disease.Pharmaceutics202214599510.3390/pharmaceutics1405099535631581
    [Google Scholar]
  28. ReviriegoF. OlmoF. NavarroP. MarínC. Ramírez- MacíasI. García-EspañaE. AlbeldaM.T. Gutiérrez-SánchezR. Sánchez-MorenoM. AránV.J. Simple dialkyl pyrazole-3,5-dicarboxylates show in vitro and in vivo activity against disease-causing trypanosomatids.Parasitology201714491133114310.1017/S003118201700041528367781
    [Google Scholar]
  29. Sánchez-MorenoM. Gómez-ContrerasF. NavarroP. MarínC. OlmoF. YuntaM.J.R. SanzA.M. RosalesM.J. CanoC. CampayoL. Phthalazine derivatives containing imidazole rings behave as Fe-SOD inhibitors and show remarkable anti-T. cruzi activity in immunodeficient- mouse mode of infection.J. Med. Chem.201255229900991310.1021/jm301100423043291
    [Google Scholar]
  30. MonteiroM.E. LechugaG. LaraL.S. SoutoB.A. ViganóM.G. BourguignonS.C. CalvetC.M. OliveiraF.O.R.Jr AlvesC.R. Souza-SilvaF. SantosM.S. PereiraM.C.S. Synthesis, structure-activity relationship and trypanocidal activity of pyrazole-imidazoline and new pyrazole-tetrahydropyrimidine hybrids as promising chemotherapeutic agents for Chagas disease.Eur. J. Med. Chem.201918211161010.1016/j.ejmech.2019.11161031434040
    [Google Scholar]
  31. Ferreira de Almeida FiuzaL. PeresR.B. Simões-SilvaM.R. da SilvaP.B. BatistaD.G.J. da SilvaC.F. Nefertiti Silva da GamaA. Krishna ReddyT.R. SoeiroM.N.C. Identification of Pyrazolo[3,4-e][1,4]thiazepin based CYP51 inhibitors as potential Chagas disease therapeutic alternative: In vitro and in vivo evaluation, binding mode prediction and SAR exploration.Eur. J. Med. Chem.201814925726810.1016/j.ejmech.2018.02.02029501946
    [Google Scholar]
  32. SijmM. Siciliano de AraújoJ. Ramos LlorcaA. OrrlingK. StinyL. MatheeussenA. MaesL. de EschI.J.P. de Nazaré Correia SoeiroM. SterkG.J. LeursR. Identification of phenylpyrazolone dimers as a new class of anti- Trypanosoma cruzi agents.ChemMedChem201914181662166810.1002/cmdc.20190037031319019
    [Google Scholar]
  33. VargheseS. RahmaniR. RussellS. DeoraG.S. FerrinsL. ToyntonA. JonesA. SykesM. KesslerA. EufrásioA. CordeiroA.T. ShermanJ. RodriguezA. AveryV.M. PiggottM.J. BaellJ.B. Discovery of potent N -ethylurea pyrazole derivatives as dual inhibitors of Trypanosoma brucei and Trypanosoma cruzi.ACS Med. Chem. Lett.202011327828510.1021/acsmedchemlett.9b0021832184957
    [Google Scholar]
  34. TochowiczA. MckerrowJ.H. CraikC.S. Crystal structure analysis of cruzain with Fragment 1 (N-(1H-benzimidazol-2-yl)-1,3-dimethyl-pyrazole-4-carboxamide).2014Available From: https://www.wwpdb.org/pdb?id=pdb_00004w5b
  35. OrlandoL.M.R. LechugaG.C. da Silva LaraL. FerreiraB.S. PereiraC.N. SilvaR.C. dos SantosM.S. PereiraM.C.S. Structural optimization and biological activity of pyrazole derivatives: Virtual computational analysis, recovery assay and 3D culture model as potential predictive tools of effectiveness against Trypanosoma cruzi. Molecules20212621674210.3390/molecules2621674234771151
    [Google Scholar]
  36. Beltran-HortelanoI. AlcoleaV. FontM. Pérez-SilanesS. The role of imidazole and benzimidazole heterocycles in Chagas disease: A review.Eur. J. Med. Chem.202020611269210.1016/j.ejmech.2020.11269232818869
    [Google Scholar]
  37. ReisC.R.C. SouzaH.V.C.M. LemeR.P.P. Castelo-BrancoF.S. FernandesT.V.A. BoechatN. DiasL.R.S. HoelzL.V.B. Study of the dynamic behavior of the cruzain enzyme in free and complexed forms with competitive and noncovalent benzimidazole inhibitors.J. Biomol. Struct. Dyn.202341104368438210.1080/07391102.2022.206723835475501
    [Google Scholar]
  38. Vera-DiVaioM.A.F. FreitasA.C.C. CastroH.C. de AlbuquerqueS. CabralL.M. RodriguesC.R. AlbuquerqueM.G. MartinsR.C.A. HenriquesM.G.M.O. DiasL.R.S. Synthesis, antichagasic in vitro evaluation, cytotoxicity assays, molecular modeling and SAR/QSAR studies of a 2-phenyl-3-(1-phenyl-1H-pyrazol-4-yl)-acrylic acid benzylidene-carbohydrazide series.Bioorg. Med. Chem.200917129530210.1016/j.bmc.2008.10.08519036592
    [Google Scholar]
  39. de OliveiraC.H.A. MairinkL.M. PaziniF. LiãoL.M. de OliveiraA.L. ViegasC.Jr de OliveiraV. CunhaL.C. OliveiraF.G.F. PazJ.L.Jr EberlinM.N. MenegattiR. Chemoselective and regiospecific formylation of 1-phenyl-1H-pyrazoles through the duff reaction.Synth. Commun.201343121633163910.1080/00397911.2012.657764
    [Google Scholar]
  40. Tie-gangR. Hong-binC. Jing-laiZ. Wei-jieL. JiaG. Li-rongY. Synthesis of benzimidazoles containing pyrazole group and quantum chemistry calculation of their spectroscopic properties and electronic structure.J. Fluoresc.201222120121210.1007/s10895‑011‑0947‑721826423
    [Google Scholar]
  41. LaraL.S. LechugaG.C. MoreiraC.S. SantosT.B. FerreiraV.F. da RochaD.R. PereiraM.C.S. Optimization of 1,4-naphthoquinone hit compound: A computational, phenotypic, and in vivo screening against Trypanosoma cruzi. Molecules202126242310.3390/molecules2602042333467422
    [Google Scholar]
  42. MeirellesM.N. de Araujo-JorgeT.C. MirandaC.F. de SouzaW. BarbosaH.S. Interaction of Trypanosoma cruzi with heart muscle cells: Ultrastructural and cytochemical analysis of endocytic vacuole formation and effect upon myogenesis in vitro.Eur. J. Cell Biol.19864121982063093234
    [Google Scholar]
  43. GarzoniL.R. AdesseD. SoaresM.J. RossiM.I.D. BorojevicR. MeirellesM.N.L. Fibrosis and hypertrophy induced by Trypanosoma cruzi in a three-dimensional cardiomyocyte-culture system.J. Infect. Dis.2008197690691510.1086/52837318279074
    [Google Scholar]
  44. HenriquesC. CastroD.P. GomesL.H.F. GarciaE.S. de SouzaW. Bioluminescent imaging of Trypanosoma cruzi infection in Rhodnius prolixus. Parasit. Vectors20125121410.1186/1756‑3305‑5‑21423013827
    [Google Scholar]
  45. SanderT. FreyssJ. von KorffM. RufenerC. DataWarrior: An open-source program for chemistry aware data visualization and analysis.J. Chem. Inf. Model.201555246047310.1021/ci500588j25558886
    [Google Scholar]
  46. OrlandoL.M.R. LaraL.S. LechugaG.C. RodriguesG.C. PandoliO.G. de SáD.S. PereiraM.C.S. Antitrypanosomal activity of 1,2,3-triazole-based hybrids evaluated using in vitro preclinical translational models.Biology (Basel)2023129122210.3390/biology1209122237759621
    [Google Scholar]
  47. FivelmanQ.L. AdaguI.S. WarhurstD.C. Modified fixed-ratio isobologram method for studying in vitro interactions between atovaquone and proguanil or dihydroartemisinin against drug-resistant strains of Plasmodium falciparum. Antimicrob. Agents Chemother.200448114097410210.1128/AAC.48.11.4097‑4102.200415504827
    [Google Scholar]
  48. OddsF.C. Synergy, antagonism, and what the chequerboard puts between them.J. Antimicrob. Chemother.20035211110.1093/jac/dkg30112805255
    [Google Scholar]
  49. Mendez-CuestaC. Herrera-RuedaM. Hidalgo-FigueroaS. TlahuextH. Moo-PucR. Chale-DzulJ. Chan-BacabM. Ortega-MoralesB. Hernandez-NunezE. Mendez-LucioO. Medina-FrancoJ. Navarrete-VazquezG. Synthesis, screening and in silico simulations of anti-parasitic propamidine/benzimidazole derivatives.Med. Chem.201713213714810.2174/157340641266616081111240827527618
    [Google Scholar]
  50. Betancourt-CondeI. Avitia-DomínguezC. Hernández-CamposA. CastilloR. Yépez-MuliaL. Oria-HernándezJ. MéndezS.T. Sierra-CamposE. Valdez-SolanaM. Martínez-CaballeroS. HermosoJ.A. Romo-MancillasA. Téllez-ValenciaA. Benzimidazole derivatives as new and selective inhibitors of arginase from Leishmania mexicana with biological activity against promastigotes and amastigotes.Int. J. Mol. Sci.202122241361310.3390/ijms22241361334948408
    [Google Scholar]
  51. EscalaN. PinedaL.M. NgM.G. CoronadoL.M. SpadaforaC. del OlmoE. Antiplasmodial activity, structure–activity relationship and studies on the action of novel benzimidazole derivatives.Sci. Rep.202313128510.1038/s41598‑022‑27351‑z36609676
    [Google Scholar]
  52. PopovA.B. StolićI. KrstulovićL. TaylorM.C. KellyJ.M. TomićS. TumirL. BajićM. Raić-MalićS. Novel symmetric bis-benzimidazoles: Synthesis, DNA/RNA binding and antitrypanosomal activity.Eur. J. Med. Chem.2019173637510.1016/j.ejmech.2019.04.00730986572
    [Google Scholar]
  53. MianaG.E. RiboneS.R. VeraD.M.A. Sánchez- MorenoM. MazzieriM.R. QuevedoM.A. Design, synthesis and molecular docking studies of novel N-arylsulfonyl-benzimidazoles with anti Trypanosoma cruzi activity.Eur. J. Med. Chem.201916511010.1016/j.ejmech.2019.01.01330641409
    [Google Scholar]
  54. LeshabaneM. DziwornuG.A. CoertzenD. ReaderJ. MoyoP. van der WattM. ChisangaK. NsanzubuhoroC. FergerR. ErlankE. VenterN. KoekemoerL. ChibaleK. BirkholtzL.M. Benzimidazole derivatives are potent against multiple life cycle stages of Plasmodium falciparum malaria parasites.ACS Infect. Dis.2021771945195510.1021/acsinfecdis.0c0091033673735
    [Google Scholar]
  55. Matadamas-MartínezF. Nogueda-TorresB. CastilloR. Hernández-CamposA. Barrera-ValdesM.L. León-ÁvilaG. HernándezJ.M. Yépez-MuliaL. Characterisation of the in vitro activity of a Nitazoxanide-N-methyl-1H-benzimidazole hybrid molecule against albendazole and nitazoxanide susceptible and resistant strains of Giardia intestinalis and its in vivo giardicidal activity.Mem. Inst. Oswaldo Cruz2020115e19034810.1590/0074‑0276019034832049098
    [Google Scholar]
  56. NasrI.S.A. KokoW.S. KhanT.A. SchobertR. BiersackB. Antiparasitic activity of fluorophenyl-substituted pyrimido[1,2-a]benzimidazoles.Biomedicines202311121910.3390/biomedicines1101021936672727
    [Google Scholar]
  57. FrancesconiV. RizzoM. SchenoneS. CarboneA. TonelliM. State-of-the-art review on the antiparasitic activity of benzimidazolebased derivatives: Facing malaria, leishmaniasis, and trypanosomiasis.Curr. Med. Chem.202431151955198210.2174/092986733166623091509392837718524
    [Google Scholar]
  58. DNDiTarget product profile for Chagas disease.2015Available From: https://dndi.org/diseases/chagas/target-product-profile
  59. McNamaraN. RahmaniR. SykesM.L. AveryV.M. BaellJ. Hit-to-lead optimization of novel benzimidazole phenylacetamides as broad spectrum trypanosomacides.RSC Med. Chem.202011668569510.1039/D0MD00058B33479668
    [Google Scholar]
  60. AlqahtaniM. S. KaziM. AlsenaidyM. A. AhmadM. Z. Advances in oral drug delivery.Front Pharmacol.20211261841110.3389/fphar.2021.618411
    [Google Scholar]
  61. GanorkarS.B. HeydenY.V. Recent trends in pharmaceutical analysis to foster modern drug discovery by comparative in-silico profiling of drugs and related substances.Trends Analyt. Chem.202215711674710.1016/j.trac.2022.116747
    [Google Scholar]
  62. StegemannS. MoretonC. SvanbäckS. BoxK. MotteG. PaudelA. Trends in oral small-molecule drug discovery and product development based on product launches before and after the Rule of Five.Drug Discov. Today202328210334410.1016/j.drudis.2022.10334436442594
    [Google Scholar]
  63. PicchioV. FlorisE. DerevyanchukY. CozzolinoC. MessinaE. PaganoF. ChimentiI. GaetaniR. Multicellular 3D models for the study of cardiac fibrosis.Int. J. Mol. Sci.202223191164210.3390/ijms23191164236232943
    [Google Scholar]
  64. MamoshinaP. RodriguezB. Bueno-OrovioA. Toward a broader view of mechanisms of drug cardiotoxicity.Cell Rep. Med.20212310021610.1016/j.xcrm.2021.10021633763655
    [Google Scholar]
  65. de Dios-FigueroaG.T. Aguilera-MarquezJ.R. Camacho-VillegasT.A. Lugo-FabresP.H. 3D cell culture models in COVID-19 times: A review of 3D technologies to understand and accelerate therapeutic drug discovery.Biomedicines20219660210.3390/biomedicines906060234073231
    [Google Scholar]
  66. BelfioreL. AghaeiB. LawA.M.K. DobrowolskiJ.C. RafteryL.J. TjandraA.D. YeeC. PiloniA. VolkerlingA. FerrisC.J. EngelM. Generation and analysis of 3D cell culture models for drug discovery.Eur. J. Pharm. Sci.202116310587610.1016/j.ejps.2021.10587633989755
    [Google Scholar]
  67. ArezF. RebeloS.P. FontinhaD. SimãoD. MartinsT.R. MachadoM. FischliC. OeuvrayC. BadoloL. CarrondoM.J.T. RottmannM. SpangenbergT. BritoC. GrecoB. PrudêncioM. AlvesP.M. Flexible 3D cell-based platforms for the discovery and profiling of novel drugs targeting Plasmodium hepatic infection.ACS Infect. Dis.20195111831184210.1021/acsinfecdis.9b0014431479238
    [Google Scholar]
  68. NisimuraL.M. FerrãoP.M. NogueiraA.R. WaghabiM.C. Meuser-BatistaM. MoreiraO.C. UrbinaJ.A. GarzoniL.R. Effect of Posaconazole in an in vitro model of cardiac fibrosis induced by Trypanosoma cruzi. Mol. Biochem. Parasitol.202023811128310.1016/j.molbiopara.2020.11128332564978
    [Google Scholar]
  69. OlivieriB.P. MolinaJ.T. de CastroS.L. PereiraM.C. CalvetC.M. UrbinaJ.A. Araújo-JorgeT.C. A comparative study of posaconazole and benznidazole in the prevention of heart damage and promotion of trypanocidal immune response in a murine model of Chagas disease.Int. J. Antimicrob. Agents2010361798310.1016/j.ijantimicag.2010.03.00620452188
    [Google Scholar]
  70. de Almeida FiuzaL.F. BatistaD.G.J. NunesD.F. MoreiraO.C. CascabulhoC. SoeiroM.N.C. Benznidazole modulates release of inflammatory mediators by cardiac spheroids infected with Trypanosoma cruzi. Exp. Parasitol.202122110806110.1016/j.exppara.2020.10806133383023
    [Google Scholar]
  71. SantosV.C. OliveiraA.E.R. CamposA.C.B. Reis-CunhaJ.L. BartholomeuD.C. TeixeiraS.M.R. LimaA.P.C.A. FerreiraR.S. The gene repertoire of the main cysteine protease of Trypanosoma cruzi, cruzipain, reveals four sub-types with distinct active sites.Sci. Rep.20211111823110.1038/s41598‑021‑97490‑234521898
    [Google Scholar]
  72. da Silva-JuniorE.F. Barcellos FrancaP.H. RibeiroF.F. Bezerra Mendonca-JuniorF.J. ScottiL. ScottiM.T. de AquinoT.M. de Araujo-JuniorJ.X. Molecular docking studies applied to a dataset of cruzain inhibitors.Curr. Computer-aided Drug Des.2018141687810.2174/157340991366617051911275828523999
    [Google Scholar]
  73. RíosN. VarelaJ. BirrielE. GonzálezM. CerecettoH. MerlinoA. PorcalW. Identification of novel benzimidazole derivatives as anti-Trypanosoma cruzi agents: Solid-phase synthesis, structure-activity relationships and molecular docking studies.Future Med. Chem.20135151719173210.4155/fmc.13.16024144409
    [Google Scholar]
  74. PereiraG.A.N. SantosL.H. WangS.C. MartinsL.C. VillelaF.S. LiaoW. DessoyM.A. DiasL.C. AndricopuloA.D. CostaM.A.F. NagemR.A.P. CaffreyC.R. LiedlK.R. CaffarenaE.R. FerreiraR.S. Benzimidazole inhibitors of the major cysteine protease of Trypanosoma brucei. Future Med. Chem.201911131537155110.4155/fmc‑2018‑052331469332
    [Google Scholar]
  75. PratesJ.L.B. LopesJ.R. ChinC.M. FerreiraE.I. dos SantosJ.L. ScarimC.B. Discovery of novel inhibitors of cruzain cysteine protease of Trypanosoma cruzi. Curr. Med. Chem.202431162285230810.2174/010929867325486423092109051937888814
    [Google Scholar]
  76. Hernández-OchoaB. Martínez-RosasV. Morales-LunaL. Calderón-JaimesE. Rocha-RamírezL.M. Ortega-CuellarD. Rufino-GonzálezY. González-ValdezA. Arreguin-EspinosaR. Enríquez-FloresS. Castillo-RodríguezR.A. Cárdenas-RodríguezN. Wong-BaezaC. Baeza-RamírezI. Gómez-ManzoS. Pyridyl methylsulfinyl benzimidazole derivatives as promising agents against Giardia lamblia and Trichomonas vaginalis. Molecules20222724890210.3390/molecules2724890236558035
    [Google Scholar]
  77. KumarA. NimsarkarP. SinghS. Systems pharmacology aiding benzimidazole scaffold as potential lead compounds against leishmaniasis for functional therapeutics.Life Sci.202230812096010.1016/j.lfs.2022.12096036116527
    [Google Scholar]
  78. López-LiraC. TapiaR.A. HerreraA. LapierM. MayaJ.D. Soto-DelgadoJ. OliverA.G. Graham LappinA. UriarteE. New benzimidazolequinones as trypanosomicidal agents.Bioorg. Chem.202111110482310.1016/j.bioorg.2021.10482333798844
    [Google Scholar]
  79. Díaz-ChiguerD.L. Hernández-LuisF. Nogueda-TorresB. CastilloR. Reynoso-DucoingO. Hernández-CamposA. AmbrosioJ.R. JVG9, a benzimidazole derivative, alters the surface and cytoskeleton of Trypanosoma cruzi bloodstream trypomastigotes.Mem. Inst. Oswaldo Cruz2014109675776010.1590/0074‑027614009625317703
    [Google Scholar]
  80. MakhobaX.H. ViegasC.Jr MosaR.A. ViegasF.P.D. PooeO.J. Potential impact of the multi-target drug approach in the treatment of some complex diseases.Drug Des. Devel. Ther.2020143235324910.2147/DDDT.S25749432884235
    [Google Scholar]
  81. MazzetiA.L. Capelari-OliveiraP. BahiaM.T. MosqueiraV.C.F. Review on experimental treatment strategies against Trypanosoma cruzi. J. Exp. Pharmacol.20211340943210.2147/JEP.S26737833833592
    [Google Scholar]
  82. GouveiaM.J. BrindleyP.J. GärtnerF. CostaJ.M.C. ValeN. Drug repurposing for schistosomiasis: Combinations of drugs or biomolecules.Pharmaceuticals (Basel)20181111510.3390/ph1101001529401734
    [Google Scholar]
  83. MachadoY.A. BahiaM.T. CaldasI.S. MazzetiA.L. NovaesR.D. Vilas BoasB.R. SantosL.J.S. Martins-FilhoO.A. MarquesM.J. DinizL.F. Amlodipine increases the therapeutic potential of Ravuconazole upon Trypanosoma cruzi infection.Antimicrob. Agents Chemother.2020648e02497-1910.1128/AAC.02497‑1932423960
    [Google Scholar]
  84. MazzetiA.L. GonçalvesK.R. MotaS.L.A. PereiraD.E. DinizL.F. BahiaM.T. Combination therapy using nitro compounds improves the efficacy of experimental Chagas disease treatment.Parasitology2021148111320132710.1017/S003118202100100134247670
    [Google Scholar]
  85. BarbosaJ.M.C. Pedra-RezendeY. PereiraL.D. de MeloT.G. BarbosaH.S. Lannes-VieiraJ. de CastroS.L. DaliryA. SalomãoK. Benznidazole and amiodarone combined treatment attenuates cytoskeletal damage in Trypanosoma cruzi-infected cardiac cells.Front. Cell. Infect. Microbiol.20221297593110.3389/fcimb.2022.97593136093188
    [Google Scholar]
  86. BarbosaJ.M.C. Pedra RezendeY. de MeloT.G. de OliveiraG. CascabulhoC.M. PereiraE.N.G.S. DaliryA. SalemK.S. Experimental combination therapy with amiodarone and low-dose benznidazole in a mouse model of Trypanosoma cruzi Acute Infection.Microbiol. Spectr.2022101e01852-2110.1128/spectrum.01852‑2135138142
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673342932241016032905
Loading
/content/journals/cmc/10.2174/0109298673342932241016032905
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test