Skip to content
2000
Volume 32, Issue 35
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Introduction

The high prevalence of non-alcoholic Fatty Liver Disease (NAFLD), a chronic progressive disease characterized by hepatic steatosis, poses a serious burden to human health. Depression and NAFLD share some common pathogenic mechanisms, and patients with depression are at an increased risk of NAFLD. The drug mirtazapine is commonly used in the treatment of depression, but it can also cause liver damage. However, whether mirtazapine induces or aggravates NAFLD remains uncertain. Thus, we evaluated the risk factors for NAFLD in patients with depression and the effects of mirtazapine on NAFLD .

Methods

Inpatients diagnosed with depression at the Second Xiangya Hospital of Central South University between 2019 and 2022 were included in this study, and NAFLD was determined using an abdominal ultrasound examination. The risk factors for the development of NAFLD in patients with depression were analyzed using logistic regression analysis. AML-12 and MIHA cell lines were used to observe the effects of mirtazapine on NAFLD using oil red O staining. RT-qPCR and Western blotting were used to explore the molecular mechanism behind NAFLD development induced by mirtazapine.

Results

Logistic regression analysis showed that older age, use of mirtazapine or fluoxetine, longer duration of antidepressant use, and combined hyperlipidemia or T2DM were risk factors for NAFLD in patients with depression. experiments revealed a subsequent increase in the content of intracellular lipid droplets as mirtazapine concentration increased. Mechanistic studies showed that mirtazapine increased the expressions of TLR4, MyD88, IFN-γ, IL-1β, IL-6, and TNF-α mRNA in hepatocytes and the expressions of TLR4, MyD88, and p-NF-κB-p65 proteins in a dose-dependent manner.

Conclusion

Age, antidepressant type, duration of antidepressant use, and comorbidities could be risk factors for NAFLD in patients with depression. Furthermore, mirtazapine can cause steatosis in both AML-12 and MIHA cell lines and may promote the development of NAFLD through the TLR4/MyD88/NF-κB signaling pathway. This study lays a solid foundation for further research on depression and NAFLD and can contribute to the prevention and treatment of these two diseases.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673317281240828170031
2025-10-01
2025-11-01
Loading full text...

Full text loading...

References

  1. WangY. HuangY.W. AblikimD. LuQ. ZhangA.J. DongY.Q. ZengF.C. XuJ.H. WangW. HuZ.H. Efficacy of acupuncture at ghost points combined with fluoxetine in treating depression: A randomized study.World J. Clin. Cases202210392993835127907
    [Google Scholar]
  2. GuoY. SunJ. HuS. NicholasS. WangJ. Hospitalization costs and financial burden on families with children with depression: a cross-section study in Shandong province, China.Int. J. Environ. Res. Public Health20191619352631547207
    [Google Scholar]
  3. VerduijnJ. VerhoevenJ.E. MilaneschiY. SchoeversR.A. van HemertA.M. BeekmanA.T.F. PenninxB.W.J.H. Reconsidering the prognosis of major depressive disorder across diagnostic boundaries: full recovery is the exception rather than the rule.BMC Med.201715121529228943
    [Google Scholar]
  4. YounossiZ. TackeF. ArreseM. Chander SharmaB. MostafaI. BugianesiE. Wai-Sun WongV. YilmazY. GeorgeJ. FanJ. VosM.B. Global perspectives on non-alcoholic fatty liver disease and non-alcoholic steatohepatitis.Hepatology20196962672268230179269
    [Google Scholar]
  5. FangY.L. ChenH. WangC.L. LiangL. Pathogenesis of non-alcoholic fatty liver disease in children and adolescence: From “two hit theory” to “multiple hit model”.World J. Gastroenterol.201824272974298330038464
    [Google Scholar]
  6. SharifniaT. AntounJ. VerriereT.G. SuarezG. WattacherilJ. WilsonK.T. PeekR.M.Jr AbumradN.N. FlynnC.R. Hepatic TLR4 signaling in obese NAFLD.Am. J. Physiol. Gastrointest. Liver Physiol.20153094G270G27826113297
    [Google Scholar]
  7. SiM.D. WuM. ChengX.Z. MaZ.H. ZhengY.G. LiJ. LiS. SongY.X. MaD. Swertia mussotii prevents high-fat diet-induced non-alcoholic fatty liver disease in rats by inhibiting expression the TLR4/MyD88 and the phosphorylation of NF-κB.Pharm. Biol.20226011960196836205548
    [Google Scholar]
  8. ZhangJ. FengQ. Pharmacological effects and molecular protective mechanisms of astragalus polysaccharides on non-alcoholic fatty liver disease.Front. Pharmacol.20221385467435308224
    [Google Scholar]
  9. WangL. JiaZ. WangB. ZhangB. Berberine inhibits liver damage in rats with non-alcoholic fatty liver disease by regulating TLR4/MyD88/NF-κB pathway.Turk. J. Gastroenterol.2020311290290933626003
    [Google Scholar]
  10. HamJ.R. LeeH.I. ChoiR.Y. SimM.O. SeoK.I. LeeM.K. Anti-steatotic and anti-inflammatory roles of syringic acid in high-fat diet-induced obese mice.Food Funct.20167268969726838182
    [Google Scholar]
  11. YounossiZ.M. Non-alcoholic fatty liver disease - A global public health perspective.J. Hepatol.201970353154430414863
    [Google Scholar]
  12. KimD. YooE.R. LiA.A. TigheS.P. CholankerilG. HarrisonS.A. AhmedA. Depression is associated with non-alcoholic fatty liver disease among adults in the United States.Aliment. Pharmacol. Ther.201950559059831328300
    [Google Scholar]
  13. MaQ. YangF. MaB. JingW. LiuJ. GuoM. LiJ. WangZ. LiuM. Prevalence of non-alcoholic fatty liver disease in mental disorder inpatients in China: an observational study.Hepatol. Int.202115112713633512644
    [Google Scholar]
  14. WeinsteinA.A. Kallman PriceJ. StepanovaM. PomsL.W. FangY. MoonJ. NaderF. YounossiZ.M. Depression in patients with non-alcoholic fatty liver disease and chronic viral hepatitis B and C.Psychosomatics201152212713221397104
    [Google Scholar]
  15. YoussefN.A. AbdelmalekM.F. BinksM. GuyC.D. OmenettiA. SmithA.D. DiehlA.M. SuzukiA. Associations of depression, anxiety and antidepressants with histological severity of non-alcoholic fatty liver disease.Liver Int.20133371062107023560860
    [Google Scholar]
  16. FilipovićB. MarkovićO. ĐurićV. FilipovićB. Cognitive changes and brain volume reduction in patients with non-alcoholic fatty liver disease.Can. J. Gastroenterol. Hepatol.20182018963879729682494
    [Google Scholar]
  17. SheaS. LionisC. KiteC. AtkinsonL. ChaggarS.S. RandevaH.S. KyrouI. Non-alcoholic fatty liver disease (NAFLD) and potential links to depression, anxiety, and chronic stress.Biomedicines2021911169734829926
    [Google Scholar]
  18. YanJ. HouC. LiangY. The prevalence and risk factors of young male schizophrenics with non-alcoholic fatty liver disease.Neuropsychiatr. Dis. Treat.2017131493149828652750
    [Google Scholar]
  19. KorekiA. MoriH. NozakiS. KoizumiT. SuzukiH. OnayaM. Risk of nonalcoholic fatty liver disease in patients with schizophrenia treated with antipsychotic drugs: a cross-sectional study.J. Clin. Psychopharmacol.202141447447734086626
    [Google Scholar]
  20. RostamaB. BeaucheminM. BouchardC. BernierE. VaryC.P.H. MayM. HouseknechtK.L. Understanding mechanisms underlying non-alcoholic fatty liver disease (NAFLD) in mental illness: risperidone and olanzapine alter the hepatic proteomic signature in mice.Int. J. Mol. Sci.20202124936233302598
    [Google Scholar]
  21. LiR. ZhuW. HuangP. YangY. LuoF. DaiW. ShenL. PeiW. HuangX. Olanzapine leads to non-alcoholic fatty liver disease through the apolipoprotein A5 pathway.Biomed. Pharmacother.202114111180334146854
    [Google Scholar]
  22. FengX.M. XiongJ. QinH. LiuW. ChenR.N. ShangW. NingR. HuG. YangJ. Fluoxetine induces hepatic lipid accumulation via both promotion of the SREBP1c-related lipogenesis and reduction of lipolysis in primary mouse hepatocytes.CNS Neurosci. Ther.2012181297498023137031
    [Google Scholar]
  23. RaederM.B. FernøJ. GlambekM. StansbergC. SteenV.M. Antidepressant drugs activate SREBP and up-regulate cholesterol and fatty acid biosynthesis in human glial cells.Neurosci. Lett.2006395318519016324787
    [Google Scholar]
  24. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury.National Institute of Diabetes and Digestive and Kidney Diseases201231643176
    [Google Scholar]
  25. ParkS.H. IshinoR. Liver injury associated with antidepressants.Curr. Drug Saf.20138320722323914755
    [Google Scholar]
  26. Schwasinger-SchmidtT.E. MacalusoM. Other Antidepressants.Handb. Exp. Pharmacol.201925032535530194544
    [Google Scholar]
  27. Merck. Medication guide for mirtazapine. FDA approved. 2017.Available from: http://www.merck.com/product/usa/pi_circulars/r/remeron/remeron_tablets_pi.pdf
  28. ThomasE. HaboubiH. WilliamsN. LloydA. Ch’ngC.L. Mirtazapine-induced steatosis.Int. J. Clin. Pharmacol. Ther.201755763063228427497
    [Google Scholar]
  29. ShaheenA.A. KaplanG.G. SharkeyK.A. LethebeB.C. SwainM.G. Impact of major depression and antidepressant use on alcoholic and non-alcoholic fatty liver disease: A population-based study.Liver Int.202141102308231734037296
    [Google Scholar]
  30. WangQ. MaM. YuH. YuH. ZhangS. LiR. Mirtazapine prevents cell activation, inflammation, and oxidative stress against isoflurane exposure in microglia.Bioengineered202213152153034964706
    [Google Scholar]
  31. AlmishriW. ShaheenA.A. SharkeyK.A. SwainM.G. The antidepressant mirtazapine inhibits hepatic innate immune networks to attenuate immune-mediated liver injury in mice.Front. Immunol.20191080331031775
    [Google Scholar]
  32. KrausT. HaackM. SchuldA. Hinze-SelchD. KoetheD. PollmächerT. Body weight, the tumor necrosis factor system, and leptin production during treatment with mirtazapine or venlafaxine.Pharmacopsychiatry200235622022512518269
    [Google Scholar]
  33. MunzerA. SackU. MerglR. SchönherrJ. PeterseinC. BartschS. KirkbyK.C. BauerK. HimmerichH. Impact of antidepressants on cytokine production of depressed patients in vitro.Toxins (Basel)20135112227224024257035
    [Google Scholar]
  34. BaumeisterD. CiufoliniS. MondelliV. Effects of psychotropic drugs on inflammation: consequence or mediator of therapeutic effects in psychiatric treatment?Psychopharmacology (Berl.)201623391575158926268146
    [Google Scholar]
  35. LeeJ.W. ParkS.H. Association between depression and non-alcoholic fatty liver disease: Contributions of insulin resistance and inflammation.J. Affect. Disord.202127825926332977263
    [Google Scholar]
  36. LiuL. TanR. FangZ. LiL. ChenX. LuoY. YangD. Prevalence of non-alcoholic fatty liver disease in pediatric mental disorder inpatients: a tertiary mental health referral hospital study.Rev. Esp. Enferm. Dig.20231152646936281916
    [Google Scholar]
  37. PenninxB.W.J.H. LangeS.M.M. Metabolic syndrome in psychiatric patients: overview, mechanisms, and implications.Dialogues Clin. Neurosci.2018201637329946213
    [Google Scholar]
  38. VancampfortD. StubbsB. MitchellA.J. De HertM. WampersM. WardP.B. RosenbaumS. CorrellC.U. Risk of metabolic syndrome and its components in people with schizophrenia and related psychotic disorders, bipolar disorder and major depressive disorder: a systematic review and meta-analysis.World Psychiatry201514333934726407790
    [Google Scholar]
  39. Merck. Mirtazapine tablet insert 76621. FDA approved. 2012.Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2007/020415s019,021208s010lbl.pdf
  40. NicholasL.M. FordA.L. EspositoS.M. EkstromR.D. GoldenR.N. The effects of mirtazapine on plasma lipid profiles in healthy subjects.J. Clin. Psychiatry200364888388912927002
    [Google Scholar]
  41. LynchC. ChanC.S. DrakeA.J. Early life programming and the risk of non-alcoholic fatty liver disease.J. Dev. Orig. Health Dis.20178326327228112071
    [Google Scholar]
  42. De LongN.E. BarryE.J. PinelliC. WoodG.A. HardyD.B. MorrisonK.M. TaylorV.H. GersteinH.C. HollowayA.C. Antenatal exposure to the selective serotonin reuptake inhibitor fluoxetine leads to postnatal metabolic and endocrine changes associated with type 2 diabetes in Wistar rats.Toxicol. Appl. Pharmacol.20152851324025771129
    [Google Scholar]
  43. XiongJ. YangH. WuL. ShangW. ShanE. LiuW. HuG. XiT. YangJ. Fluoxetine suppresses AMP-activated protein kinase signaling pathway to promote hepatic lipid accumulation in primary mouse hepatocytes.Int. J. Biochem. Cell Biol.20145423624425102273
    [Google Scholar]
  44. FitzgeraldK.A. KaganJ.C. Toll-like receptors and the control of immunity.Cell202018061044106632164908
    [Google Scholar]
  45. XuX. YinY. TangJ. XieY. HanZ. ZhangX. LiuQ. QinX. HuangX. SunB. Long non-coding RNA MyD88 promotes growth and metastasis in hepatocellular carcinoma via regulating MyD88 expression through H3K27 modification.Cell Death Dis.2017810e312429022910
    [Google Scholar]
  46. LingelA. EhlersE. WangQ. CaoM. WoodC. LinR. ZhangL. Kaposi’s sarcoma-associated herpesvirus reduces cellular myeloid differentiation primary-response gene 88 (MyD88) expression via modulation of its RNA.J. Virol.201590118018826468534
    [Google Scholar]
  47. FusellaF. SeclìL. CannataC. BrancaccioM. The one thousand and one chaperones of the NF-κB pathway.Cell. Mol. Life Sci.202077122275228831811308
    [Google Scholar]
  48. ValizadehA. MajidiniaM. Samadi-KafilH. YousefiM. YousefiB. The roles of signaling pathways in liver repair and regeneration.J. Cell. Physiol.20192349149661497430770551
    [Google Scholar]
  49. TilgH. MoschenA.R. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis.Hepatology20105251836184621038418
    [Google Scholar]
  50. TiniakosD.G. VosM.B. BruntE.M. Non-alcoholic fatty liver disease: pathology and pathogenesis.Annu. Rev. Pathol.2010514517120078219
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673317281240828170031
Loading
/content/journals/cmc/10.2174/0109298673317281240828170031
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test