Skip to content
2000
Volume 32, Issue 35
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

The use of bioactive molecules isolated from rattlesnake venom and other poisons has been ongoing for years. Among these bioactive compounds present in snake venom, crotoxin (CTX) stands out as a β-heterodimeric neurotoxin isolated from the venom of Research on this toxin for its applicability to tumor inhibition has advanced to clinical trials in recent years. Consequently, concerns regarding the use of a toxin as a treatment and the search for dose control that does not trigger extreme toxicity have emerged. Thus, it is necessary to investigate alternatives for controlled delivery and targeted toxin administration.

Methods

This study aimed to evaluate the toxic action of CTX and its phospholipase A2 CB (PLA2CB) component, both free and encapsulated in polymeric nanoparticles. The inhibitory concentration value of 50% tumor growth (IC) for CTX and PLA2CB was determined in an initial screening against six tumor cell lines. After identifying the lowest inhibitory concentration value of 0.8 μM observed in human melanoma (SK-MEL-103), this cell line was chosen.

Results

The cell death mechanism triggered by CTX and PLA2CB exhibited characteristics associated with the necrotic process. However, polymeric nanoparticles containing PLA2CB (NP-PLA2CB) demonstrated apoptosis-like cell death processes in flow cytometry. PLGA polymeric nanoparticles containing PLA2CB were synthesized using microfluidics, resulting in NP-PLA2CB with a diameter of 91 ± 2.9 nm and a zeta potential of -21.8 ± 3.2 mV. The encapsulation efficiency of PLA2CB was approximately 70% (protein content).

Conclusion

It was concluded that using the phospholipase component of the toxin in a polymeric-controlled delivery and targeted system may be an alternative solution to the issues in advancing this bioactive molecule in clinical-oncological studies. However, further studies are still being conducted for targeted treatment involving this nanotechnological approach.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673274499250327053516
2025-04-10
2025-11-01
Loading full text...

Full text loading...

References

  1. AlShammariA.K. Abd El-AzizT.M. Al-SabiA. Snake venom: A promising source of neurotoxins targeting voltage-gated potassium channels.Toxins20231611210.3390/toxins1601001238251229
    [Google Scholar]
  2. PéterfiO. BodaF. SzabóZ. FerenczE. BábaL. Hypotensive snake venom components—a mini-review.Molecules20192415277810.3390/molecules2415277831370142
    [Google Scholar]
  3. FrangiehJ. RimaM. FajlounZ. HenrionD. SabatierJ.M. LegrosC. MatteiC. Snake venom components: Tools and cures to target cardiovascular diseases.Molecules2021268222310.3390/molecules2608222333921462
    [Google Scholar]
  4. PimentaA.D.L. AlmeidaD.M.E.S. BretonesM.L. CirilloM.C. CuriR. SampaioS.C. Crotoxin promotes macrophage reprogramming towards an antiangiogenic phenotype.Sci. Rep.201991428110.1038/s41598‑019‑40903‑030862840
    [Google Scholar]
  5. AlmeidaC.F. AmaralC. AugustoT.V. Correia-da-SilvaG. Marques de AndradeC. TorquetiM.R. TeixeiraN. The anti-cancer potential of crotoxin in estrogen receptor-positive breast cancer: Its effects and mechanism of action.Toxicon2021200697710.1016/j.toxicon.2021.07.00334265323
    [Google Scholar]
  6. CuraJ.E. BlanzacoD.P. BrissonC. CuraM.A. CabrolR. LarrateguyL. MendezC. SechiJ.C. SilveiraJ.S. TheillerE. RoodtD.A.R. VidalJ.C. Phase I and pharmacokinetics study of crotoxin (cytotoxic PLA(2), NSC-624244) in patients with advanced cancer.Clin. Cancer Res.2002841033104110.1016/j.toxicon.2018.10.30611948110
    [Google Scholar]
  7. RanaD. MandalB.M. BhattacharyyaS.N. Analogue calorimetric studies of blends of poly(vinyl ester)s and polyacrylates.Macromolecules19962951579158310.1021/ma950954n
    [Google Scholar]
  8. SuY. ZhangB. SunR. LiuW. ZhuQ. ZhangX. WangR. ChenC. PLGA-based biodegradable microspheres in drug delivery: Recent advances in research and application.Drug Deliv.20212811397141810.1080/10717544.2021.193875634184949
    [Google Scholar]
  9. CaputoT.M. CusanoA.M. PrincipeS. CicatielloP. CelettiG. AlibertiA. MiccoA. RuvoM. TagliamonteM. RagoneC. MinopoliM. CarrieroM.V. BuonaguroL. CusanoA. Sorafenib-loaded PLGA carriers for enhanced drug delivery and cellular uptake in liver cancer cells.Int. J. Nanomedicine2023184121414210.2147/IJN.S41596837525693
    [Google Scholar]
  10. PereañezJ.A. PreciadoL.M. Rey-SuárezP. Knowledge about snake venoms and toxins from colombia: A systematic review.Toxins2023151165810.3390/toxins1511065837999521
    [Google Scholar]
  11. MouraD.G OliveiraD.J MendesY OliveiraD.J RodriguesJ GonçalvesV NicoleteR. Antitumor and antiparasitic activity of antimicrobial peptides derived from snake venom: A systematic review approach.Curr. Med. Chem.202229325358536810.2174/0929867329666220507011719
    [Google Scholar]
  12. AlvesB.F.A. FerreiraR.S.Jr. Antineoplastic properties and pharmacological applications of Crotalus durissus terrificus snake venom.Rev. Soc. Bras. Med. Trop.202255e0323-202210.1590/0037‑8682‑0323‑202236542014
    [Google Scholar]
  13. ShekarabiS.M. ParsianH. BagheriP.K. ShahbazzadehD. Oxilipin, a new anti-cancer phospholipase A2- like protein from iranian caspian cobra, Naja Naja oxiana.Iran. J. Pharm. Res.2022211e12961610.5812/ijpr‑12961636937210
    [Google Scholar]
  14. FrihlingB.E.F. BoletiA.P.A. OliveiraD.C.F.R. SanchesS.C. CardosoP.H.O. VerbisckN. MacedoM.L.R. RitaP.H.S. CarvalhoC.M.E. MiglioloL. Purification, characterization and evaluation of the antitumoral activity of a phospholipase A2 from the snake bothrops moojeni. Pharmaceuticals202215672410.3390/ph1506072435745643
    [Google Scholar]
  15. BhattacharyyaS. RanaD. BhattacharyyaS. A thermodynamic study of molecular association by gas-liquid chromatography.J. lndian. Chem.199774199745646310.5281/zenodo.5883682
    [Google Scholar]
  16. BhattacharyyaS. RanaD. BhattacharyyaS. Determination of heat of formation of associated systems by calorimetry.J. lndian. Chem.199774710310710.5281/zenodo.5875144
    [Google Scholar]
  17. ZhangM XiangR GlorieuxC HuangP. PLA2G2A phospholipase promotes fatty acid synthesis and energy metabolism in pancreatic cancer cells with k-ras mutation.Int. J. Mol. Sci.202323191172110.3390/ijms231911721
    [Google Scholar]
  18. AzevedoP.D.V.V.F. LopesD.S. ZóiaM.A.P. CorreiaL.I.V. SaitoN. FonsecaB.B. PolloniL. TeixeiraS.C. GoulartL.R. ÁvilaD.M.R.V. A new approach to inhibiting triple-negative breast cancer: in vitro, ex vivo and in vivo antiangiogenic effect of BthTx-II, a PLA2-Asp-49 from Bothrops jararacussu venom.Biomolecules202212225810.3390/biom1202025835204758
    [Google Scholar]
  19. BhattacharyaC. MaitiN. MandalB.M. BhattacharyyaS.N. Thermodynamic characterization of miscible blends from very similar polymers by inverse gas chromatography. The poly(ethyl acrylate)-poly(vinyl propionate) system.Macromolecules198922104062406810.1021/ma00200a043
    [Google Scholar]
  20. RanaD. BagK. BhattacharyyaS.N. MandalB.M. Miscibility of poly(styrene-co-butyl acrylate) with poly(ethyl methacrylate): Existence of both UCST and LCST.J. Polym. Sci., B, Polym. Phys.200038336937510.1002/(SICI)1099‑0488(20000201)38:3<369::AID‑POLB3>3.0.CO;2‑W
    [Google Scholar]
  21. AliM. GentV.M.E. WaalD.A.M. DoodewaerdV.B.R. BosE. KoningR.I. CordfunkeR.A. DrijfhoutJ.W. NibberingP.H. Physical and functional characterization of PLGA nanoparticles containing the antimicrobial peptide SAAP-148.Int. J. Mol. Sci.2023243286710.3390/ijms2403286736769188
    [Google Scholar]
  22. GaurM MauryaS AkhtarMS YadavAB Synthesis and evaluation of BSA-loaded PLGA-chitosan composite nanoparticles for the protein-based drug delivery system.ACS Omega2023821187511875910.1021/acsomega.3c00738
    [Google Scholar]
  23. WallaceMP. Trealose encapsulation in PLGA nanoparticles: Production, characterization, and application for drug delivery.Belo HorizonteUniversidade Federal de Minas Gerais2011
    [Google Scholar]
  24. ThesesUSP USP Theses. Complete corrected dissertation.2021Available from: https://www.teses.usp.br/teses/disponiveis/60/60137/tde-20092021-204517/publico/Dissertacao_Corrigida_Completa.pdf
  25. CuryD.M. SumanovskiL. ZimmermannS. Nanoparticle-based conjugates for selective drug delivery to skin cancer cells.Available from: https://digitalscholar.lsuhsc.edu/cgi/viewcontent.cgi?article=3408&context=som-facpubs
  26. KwonS. MengF. TamamH. GadallaH.H. WangJ. DongB. JannaschH.A.S. RatliffT.L. YeoY. Systemic delivery of paclitaxel by Find-Me nanoparticles activates antitumor immunity and eliminates tumors.ACS Nano20241843681369810.1021/acsnano.3c1144538227965
    [Google Scholar]
  27. ChangC.S. RyuJ.Y. ChoiJ.K. ChoY.J. ChoiJ.J. HwangJ.R. ChoiJ.Y. NohJ.J. LeeC.M. WonJ.E. HanH.D. LeeJ.W. Anti-cancer effect of fenbendazole-incorporated PLGA nanoparticles in ovarian cancer.J. Gynecol. Oncol.2023345e5810.3802/jgo.2023.34.e5837170725
    [Google Scholar]
  28. Cruz-NovaP. Gibbens-BandalaB. Ancira-CortezA. Ramírez-NavaG. Santos-CuevasC. Luna-GutiérrezM. Ocampo-GarcíaB. Chemo-radiotherapy with 177Lu-PLGA(RGF)-CXCR4L for the targeted treatment of colorectal cancer.Front. Med.202310119131510.3389/fmed.2023.119131537378300
    [Google Scholar]
  29. GuptaP. SinghA. VermaA. KantS. PandeyA. KhareP. PrakashV. The anti-tumor and immunomodulatory effects of PLGA-based docetaxel nanoparticles in lung cancer: The potential involvement of necroptotic cell death through reactive oxygen species and calcium build-up.Vaccines20221011180110.3390/vaccines1011180136366309
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673274499250327053516
Loading
/content/journals/cmc/10.2174/0109298673274499250327053516
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): bioactive molecules; Crotoxin; melanoma; phospholipase A2 CB; PLGA; polymeric nanoparticles
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test