Skip to content
2000
image of A Gene Signature Developed Based on Reactive Oxygen Species to Predict the Metabolism, Immunity, Mutational Status, and Prognostic Survival for Glioblastoma

Abstract

Aim

To explore the mechanism of regulatory genes related to reactive oxygen species (ROS) in glioblastoma (GBM).

Background

GBM is a brain malignancy with a poor prognosis. ROS plays a critical role in cellular metabolism, signaling, and senescence, and abnormalities in ROS are closely associated with cancer initiation and development. However, the role of ROS-regulated genes in GBM remained unknown.

Objective

To explore the role of ROS-regulated genes in GBM and to build a ROS-related prognostic model.

Methods

RNA sequencing and clinical data from GBM patients were collected from public databases. The enrichment scores of ROS-correlated pathway gene sets obtained from The Molecular Signatures Database (MSiDB) were calculated using single sample gene set enrichment analysis (ssGSEA). Subsequently, key ROS-correlated gene modules were sectioned by weighted gene co-expression network analysis (WGCNA). Least absolute shrinkage and selection operator (LASSO) and Cox regression analyses were performed to screen ROS-related genes, which were used to develop a risk model. In addition, the correlation between patients in high-risk and low-risk groups and clinicopathological features, metabolism-related pathways, and pathways related to tumor progression was analyzed. Finally, the difference in immune cell infiltration between patients in the two risk groups was calculated using CIBERSORT.

Results

We found that ROS-related genes could predict the prognosis of patients suffering from GBM and that abnormal activation of the ROS pathway increased the metabolism of sugars, fats, and amino acids. WGCNA identified gene modules closely associated with ROS. A prognostic risk model was created using three key genes (OSMR, SLC6A6, and UPP1). Immune infiltration analysis showed that high-risk Patients had higher levels of macrophage infiltration, and a high-RiskScore was positively correlated with multiple metabolism processes, programmed death, and epithelial-mesenchymal transition (EMT) pathway activity.

Conclusion

The ROS-associated risk model could accurately predict tumor immunity and progression for GBM patients, acting as an effective predictor of GBM prognosis. The present discovery provided a novel understanding of the diagnosis and treatment of GBM patients.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673311171240611050715
2025-07-01
2025-09-10
Loading full text...

Full text loading...

References

  1. Lee E. Yong R.L. Paddison P. Zhu J. Comparison of glioblastoma (GBM) molecular classification methods. Semin. Cancer Biol. 2018 53 201 211 10.1016/j.semcancer.2018.07.006 30031763
    [Google Scholar]
  2. Ke-Lin Z. Shuo D. Guo-Bing F. Sheng G. Hippocampal Proteomic Analysis Reveals Potential Antidepressant Protein Targets of Abdominal Massage Therapy in a Rat Chronic Unpredictable Mild Stress Model of Depression. J. Biol. Regul. Homeost. Agents 2023 37 8 4079 4092
    [Google Scholar]
  3. Schaff L.R. Mellinghoff I.K. Glioblastoma and other primary brain malignancies in adults. JAMA 2023 329 7 574 587 10.1001/jama.2023.0023 36809318
    [Google Scholar]
  4. Omuro A. DeAngelis L.M. Glioblastoma and other malignant gliomas: A clinical review. JAMA 2013 310 17 1842 1850 10.1001/jama.2013.280319 24193082
    [Google Scholar]
  5. Tan A.C. Ashley D.M. López G.Y. Malinzak M. Friedman H.S. Khasraw M. Management of glioblastoma: State of the art and future directions. CA Cancer J. Clin. 2020 70 4 299 312 10.3322/caac.21613 32478924
    [Google Scholar]
  6. Kleihues P. Ohgaki H. Phenotype vs. genotype in the evolution of astrocytic brain tumors. Toxicol. Pathol. 2000 28 1 164 170 10.1177/019262330002800121 10669004
    [Google Scholar]
  7. Gao X. Jiang W. Zhu G. Xing Z. Zhu P. Ke Z. Huang Q. AQP1 as a novel biomarker to predict prognosis and tumor immunity in glioma patients. Oncologie 2024 26 1 117 130 10.1515/oncologie‑2023‑0292
    [Google Scholar]
  8. Kurdi M. Fadul M.M. Addas B. Faizo E. Bamaga A.K. Alsinani T. Katib Y. Alkhotani A. Fathaddin A.A. Turkistani A.N. Najjar A.A. Baeesa S. Toonsi F.A. Almansouri M. Alkhayyat S. Glioblastoma with PRMT5 gene upregulation is a key target for tumor cell regression. Oncologie 2024 26 2 239 246 10.1515/oncologie‑2023‑0534
    [Google Scholar]
  9. Minniti G. Niyazi M. Alongi F. Navarria P. Belka C. Current status and recent advances in reirradiation of glioblastoma. Radiat. Oncol. 2021 16 1 36 10.1186/s13014‑021‑01767‑9 33602305
    [Google Scholar]
  10. Le Rhun E. Preusser M. Roth P. Reardon D.A. van den Bent M. Wen P. Reifenberger G. Weller M. Molecular targeted therapy of glioblastoma. Cancer Treat. Rev. 2019 80 101896 10.1016/j.ctrv.2019.101896 31541850
    [Google Scholar]
  11. Bausart M. Préat V. Malfanti A. Immunotherapy for glioblastoma: The promise of combination strategies. J. Exp. Clin. Cancer Res. 2022 41 1 35 10.1186/s13046‑022‑02251‑2 35078492
    [Google Scholar]
  12. Liu T. Sun L. Zhang Y. Wang Y. Zheng J. Imbalanced GSH/ROS and sequential cell death. J. Biochem. Mol. Toxicol. 2022 36 1 e22942 10.1002/jbt.22942 34725879
    [Google Scholar]
  13. Yang S. Lian G. ROS and diseases: Role in metabolism and energy supply. Mol. Cell. Biochem. 2020 467 1-2 1 12 10.1007/s11010‑019‑03667‑9 31813106
    [Google Scholar]
  14. Fu Y. Chung F.L. Oxidative stress and hepatocarcinogenesis. Hepatoma Res. 2018 4 8 39 10.20517/2394‑5079.2018.29 30761356
    [Google Scholar]
  15. Ding D.N. Xie L.Z. Shen Y. Li J. Guo Y. Fu Y. Liu F.Y. Han F.J. Insights into the role of oxidative stress in ovarian cancer. Oxid. Med. Cell. Longev. 2021 2021 1 20 10.1155/2021/8388258 34659640
    [Google Scholar]
  16. Cen K. Wu Z. Mai Y. Dai Y. Hong K. Guo Y. Identification of a novel reactive oxygen species (ROS)-related genes model combined with RT-qPCR experiments for prognosis and immunotherapy in gastric cancer. Front. Genet. 2023 14 1074900 10.3389/fgene.2023.1074900 37124616
    [Google Scholar]
  17. Li G. Ping M. Zhang W. Wang Y. Zhang Z. Su Z. Establishment of the molecular subtypes and a risk model for stomach adenocarcinoma based on genes related to reactive oxygen species. Heliyon 2024 10 5 e27079 10.1016/j.heliyon.2024.e27079 38463816
    [Google Scholar]
  18. Tan N. Liu J. Li P. Sun Z. Pan J. Zhao W. Reactive oxygen species metabolism-based prediction model and drug for patients with recurrent glioblastoma. Aging 2019 11 23 11010 11029 10.18632/aging.102506 31801111
    [Google Scholar]
  19. Zhang W. Xie X. Huang Z. Zhong X. Liu Y. Cheong K.L. Zhou J. Tang S. The integration of single- cell sequencing, TCGA, and GEO data analysis revealed that PRRT3-AS1 is a biomarker and therapeutic target of SKCM. Front. Immunol. 2022 13 919145 10.3389/fimmu.2022.919145 36211371
    [Google Scholar]
  20. Toro-Domínguez D. Martorell-Marugán J. López- Domínguez R. García-Moreno A. González-Rumayor V. Alarcón-Riquelme M.E. Carmona-Sáez P. ImaGEO: integrative gene expression meta-analysis from GEO database. Bioinformatics 2019 35 5 880 882 10.1093/bioinformatics/bty721 30137226
    [Google Scholar]
  21. Xu J. Zhang Z. Qian M. Wang S. Qiu W. Chen Z. Sun Z. Xiong Y. Wang C. Sun X. Zhao R. Xue H. Li G. Cullin-7 (CUL7) is overexpressed in glioma cells and promotes tumorigenesis via NF-κB activation. J. Exp. Clin. Cancer Res. 2020 39 1 59 10.1186/s13046‑020‑01553‑7 32252802
    [Google Scholar]
  22. Sun Y. Ye L. Zheng Y. Yang Z. Identification of crucial genes associated with Parkinson’s disease using microarray data. Mol. Med. Rep. 2018 17 3 3775 3782 29257331
    [Google Scholar]
  23. Liberzon A. Birger C. Thorvaldsdóttir H. Ghandi M. Mesirov J.P. Tamayo P. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 2015 1 6 417 425 10.1016/j.cels.2015.12.004 26771021
    [Google Scholar]
  24. Kanehisa M. Furumichi M. Tanabe M. Sato Y. Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017 45 D1 D353 D361 10.1093/nar/gkw1092 27899662
    [Google Scholar]
  25. Wang Y. Chen W. Li K. Wu G. Zhang W. Ma P. Feng S. Tissue-based metabolomics reveals metabolic signatures and major metabolic pathways of gastric cancer with help of transcriptomic data from TCGA. Biosci. Rep. 2021 41 10 BSR20211476 10.1042/BSR20211476 34549263
    [Google Scholar]
  26. Wu Q. Miao X. Zhang J. Xiang L. Li X. Bao X. Du S. Wang M. Miao S. Fan Y. Wang W. Xu X. Shen X. Yang D. Wang X. Fang Y. Hu L. Pan X. Dong H. Wang H. Wang Y. Li J. Huang Z. Astrocytic YAP protects the optic nerve and retina in an experimental autoimmune encephalomyelitis model through TGF-β signaling. Theranostics 2021 11 17 8480 8499 10.7150/thno.60031 34373754
    [Google Scholar]
  27. Zhuang W. Sun H. Zhang S. Zhou Y. Weng W. Wu B. Ye T. Huang W. Lin Z. Shi L. Shi K. An immunogenomic signature for molecular classification in hepatocellular carcinoma. Mol. Ther. Nucleic Acids 2021 25 105 115 10.1016/j.omtn.2021.06.024 34401208
    [Google Scholar]
  28. Song Z. Yu J. Wang M. Shen W. Wang C. Lu T. Shan G. Dong G. Wang Y. Zhao J. CHDTEPDB: Transcriptome expression profile database and interactive analysis platform for congenital heart disease. Congenit. Heart Dis. 2023 18 6 693 701 10.32604/chd.2024.048081
    [Google Scholar]
  29. Nangraj A.S. Selvaraj G. Kaliamurthi S. Kaushik A.C. Cho W.C. Wei D.Q. Integrated PPI- and WGCNA-Retrieval of hub gene signatures shared between barrett’s esophagus and esophageal adenocarcinoma. Front. Pharmacol. 2020 11 881 10.3389/fphar.2020.00881 32903837
    [Google Scholar]
  30. Niss K. Gomez-Casado C. Hjaltelin J.X. Joeris T. Agace W.W. Belling K.G. Brunak S. Complete topological mapping of a cellular protein interactome reveals bow-tie motifs as ubiquitous connectors of protein complexes. Cell Rep. 2020 31 11 107763 10.1016/j.celrep.2020.107763 32553166
    [Google Scholar]
  31. Ritchie M.E. Phipson B. Wu D. Hu Y. Law C.W. Shi W. Smyth G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015 43 7 e47 10.1093/nar/gkv007 25605792
    [Google Scholar]
  32. Newman A.M. Liu C.L. Green M.R. Gentles A.J. Feng W. Xu Y. Hoang C.D. Diehn M. Alizadeh A.A. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 2015 12 5 453 457 10.1038/nmeth.3337 25822800
    [Google Scholar]
  33. Su X. Yang Y. Yang Q. Pang B. Sun S. Wang Y. Qiao Q. Guo C. Liu H. Pang Q. NOX4-derived ROS-induced overexpression of FOXM1 regulates aerobic glycolysis in glioblastoma. BMC Cancer 2021 21 1 1181 10.1186/s12885‑021‑08933‑y 34740322
    [Google Scholar]
  34. Zhang L. Cao Y. Guo X. Wang X. Han X. Kanwore K. Hong X. Zhou H. Gao D. Hypoxia-induced ROS aggravate tumor progression through HIF-1α-SERPINE1 signaling in glioblastoma. J. Zhejiang Univ. Sci. B 2023 24 1 32 49 10.1631/jzus.B2200269 36632749
    [Google Scholar]
  35. Wang X-J. Li L-C. Zhang M. Feng Y-K. IDH1-R132H suppresses glioblastoma malignancy through FAT1-ROS-HIF-1α signaling. Neurol. India 2020 68 5 1050 1058 10.4103/0028‑3886.294557 33109851
    [Google Scholar]
  36. Yi R. Wang H. Deng C. Wang X. Yao L. Niu W. Fei M. Zhaba W. Dihydroartemisinin initiates ferroptosis in glioblastoma through GPX4 inhibition. Biosci. Rep. 2020 40 6 BSR20193314 10.1042/BSR20193314 32452511
    [Google Scholar]
  37. Volmar M.N.M. Cheng J. Alenezi H. Richter S. Haug A. Hassan Z. Goldberg M. Li Y. Hou M. Herold-Mende C. Maire C.L. Lamszus K. Flüh C. Held-Feindt J. Gargiulo G. Topping G.J. Schilling F. Saur D. Schneider G. Synowitz M. Schick J.A. Kälin R.E. Glass R. Cannabidiol converts NF-κB into a tumor suppressor in glioblastoma with defined antioxidative properties. Neuro-oncol. 2021 23 11 1898 1910 10.1093/neuonc/noab095 33864076
    [Google Scholar]
  38. Lantieri F. Bachetti T. OSM/OSMR and interleukin 6 family cytokines in physiological and pathological condition. Int. J. Mol. Sci. 2022 23 19 11096 10.3390/ijms231911096 36232392
    [Google Scholar]
  39. Hara T. Chanoch-Myers R. Mathewson N.D. Myskiw C. Atta L. Bussema L. Eichhorn S.W. Greenwald A.C. Kinker G.S. Rodman C. Gonzalez Castro L.N. Wakimoto H. Rozenblatt-Rosen O. Zhuang X. Fan J. Hunter T. Verma I.M. Wucherpfennig K.W. Regev A. Suvà M.L. Tirosh I. Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma. Cancer Cell 2021 39 6 779 792.e11 10.1016/j.ccell.2021.05.002 34087162
    [Google Scholar]
  40. Sharanek A. Burban A. Laaper M. Heckel E. Joyal J.S. Soleimani V.D. Jahani-Asl A. OSMR controls glioma stem cell respiration and confers resistance of glioblastoma to ionizing radiation. Nat. Commun. 2020 11 1 4116 10.1038/s41467‑020‑17885‑z 32807793
    [Google Scholar]
  41. Guo Q. Guan G. Cao J. Zou C. Zhu C. Cheng W. Xu X. Lin Z. Cheng P. Wu A. Overexpression of oncostatin M receptor regulates local immune response in glioblastoma. J. Cell. Physiol. 2019 234 9 15496 15509 10.1002/jcp.28197 30693511
    [Google Scholar]
  42. Hou X. Wang Z. Ding F. He Y. Wang P. Liu X. Xu F. Wang J. Yang Y. Taurine transporter regulates adipogenic differentiation of human adipose-derived stem cells through affecting Wnt/β-catenin signaling pathway. Int. J. Biol. Sci. 2019 15 5 1104 1112 10.7150/ijbs.31794 31182929
    [Google Scholar]
  43. Stary D. Bajda M. Taurine and creatine transporters as potential drug targets in cancer therapy. Int. J. Mol. Sci. 2023 24 4 3788 10.3390/ijms24043788 36835201
    [Google Scholar]
  44. Dazhi W. Jing D. Chunling R. Mi Z. Zhixuan X. Elevated SLC6A6 expression drives tumorigenesis and affects clinical outcomes in gastric cancer. Biomarkers Med. 2019 13 2 95 104 10.2217/bmm‑2018‑0256 30767502
    [Google Scholar]
  45. Ping Y. Shan J. Liu Y. Liu F. Wang L. Liu Z. Li J. Yue D. Wang L. Chen X. Zhang Y. Taurine enhances the antitumor efficacy of PD-1 antibody by boosting CD8+ T cell function. Cancer Immunol. Immunother. 2023 72 4 1015 1027 10.1007/s00262‑022‑03308‑z 36261540
    [Google Scholar]
  46. Guan Y. Bhandari A. Zhang X. Wang O. Uridine phosphorylase 1 associates to biological and clinical significance in thyroid carcinoma cell lines. J. Cell. Mol. Med. 2019 23 11 7438 7448 10.1111/jcmm.14612 31496029
    [Google Scholar]
  47. Wang J. Xu S. Lv W. Shi F. Mei S. Shan A. Xu J. Yang Y. Uridine phosphorylase 1 is a novel immune-related target and predicts worse survival in brain glioma. Cancer Med. 2020 9 16 5940 5947 10.1002/cam4.3251 32583596
    [Google Scholar]
  48. Roura A.J. Szadkowska P. Poleszak K. Dabrowski M.J. Ellert-Miklaszewska A. Wojnicki K. Ciechomska I.A. Stepniak K. Kaminska B. Wojtas B. Regulatory networks driving expression of genes critical for glioblastoma are controlled by the transcription factor c-Jun and the pre-existing epigenetic modifications. Clin. Epigenetics 2023 15 1 29 10.1186/s13148‑023‑01446‑4 36850002
    [Google Scholar]
  49. Yan T. Tan Y. Deng G. Sun Z. Liu B. Wang Y. Yuan F. Sun Q. Hu P. Gao L. Tian D. Chen Q. TGF-β induces GBM mesenchymal transition through upregulation of CLDN4 and nuclear translocation to activate TNF-α/NF-κB signal pathway. Cell Death Dis. 2022 13 4 339 10.1038/s41419‑022‑04788‑8 35418179
    [Google Scholar]
  50. Yi L. Zhou X. Li T. Liu P. Hai L. Tong L. Ma H. Tao Z. Xie Y. Zhang C. Yu S. Yang X. Notch1 signaling pathway promotes invasion, self-renewal and growth of glioma initiating cells via modulating chemokine system CXCL12/CXCR4. J. Exp. Clin. Cancer Res. 2019 38 1 339 10.1186/s13046‑019‑1319‑4 31382985
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673311171240611050715
Loading
/content/journals/cmc/10.2174/0109298673311171240611050715
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: ROS ; Glioblastoma ; immunity ; epithelial-mesenchymal transition ; riskscore ; prognosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test