Skip to content
2000
Volume 32, Issue 39
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Aim

To explore the mechanism of regulatory genes related to reactive oxygen species (ROS) in glioblastoma (GBM).

Background

GBM is a brain malignancy with a poor prognosis. ROS plays a critical role in cellular metabolism, signaling, and senescence, and abnormalities in ROS are closely associated with cancer initiation and development. However, the role of ROS-regulated genes in GBM remained unknown.

Objective

To explore the role of ROS-regulated genes in GBM and to build a ROS-related prognostic model.

Methods

RNA sequencing data and clinical data from GBM patients were collected from public databases. The enrichment scores of ROS-correlated pathway gene sets obtained from The Molecular Signatures Database (MSiDB) were calculated using single sample gene set enrichment analysis (ssGSEA). Subsequently, key ROS-correlated gene modules were sectioned by weighted gene co-expression network analysis (WGCNA). Least absolute shrinkage and selection operator (LASSO) and Cox regression analyses were performed to screen ROS-related genes, which were used to develop a risk model. In addition, the correlation between patients in high-risk and low-risk groups and clinicopathological features, metabolism-related pathways, and pathways related to tumor progression was analyzed. Finally, the difference in immune cell infiltration between patients in the two risk groups was calculated using CIBERSORT.

Results

We found that ROS-related genes could predict the prognosis of patients suffering from GBM and that abnormal activation of the ROS pathway increased the metabolism of sugars, fats, and amino acids. WGCNA identified gene modules closely associated with ROS. A prognostic risk model was created using three key genes (OSMR, SLC6A6, and UPP1). Immune infiltration analysis showed that high-risk Patients had higher levels of macrophage infiltration, and a high-RiskScore was positively correlated with multiple metabolism processes, programmed death, and epithelial-mesenchymal transition (EMT) pathway activity.

Conclusion

The ROS-associated risk model could accurately predict tumor immunity and progression for GBM patients, acting as an effective predictor of GBM prognosis. The present discovery provided a novel understanding of the diagnosis and treatment of GBM patients.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673311171240611050715
2025-07-01
2025-12-19
Loading full text...

Full text loading...

References

  1. LeeE. YongR.L. PaddisonP. ZhuJ. Comparison of glioblastoma (GBM) molecular classification methods.Semin. Cancer Biol.20185320121110.1016/j.semcancer.2018.07.00630031763
    [Google Scholar]
  2. Ke-LinZ. ShuoD. Guo-BingF. ShengG. Hippocampal Proteomic Analysis Reveals Potential Antidepressant Protein Targets of Abdominal Massage Therapy in a Rat Chronic Unpredictable Mild Stress Model of Depression.J. Biol. Regul. Homeost. Agents202337840794092
    [Google Scholar]
  3. SchaffL.R. MellinghoffI.K. Glioblastoma and other primary brain malignancies in adults.JAMA2023329757458710.1001/jama.2023.002336809318
    [Google Scholar]
  4. OmuroA. DeAngelisL.M. Glioblastoma and other malignant gliomas: A clinical review.JAMA2013310171842185010.1001/jama.2013.28031924193082
    [Google Scholar]
  5. TanA.C. AshleyD.M. LópezG.Y. MalinzakM. FriedmanH.S. KhasrawM. Management of glioblastoma: State of the art and future directions.CA Cancer J. Clin.202070429931210.3322/caac.2161332478924
    [Google Scholar]
  6. KleihuesP. OhgakiH. Phenotype vs. genotype in the evolution of astrocytic brain tumors.Toxicol. Pathol.200028116417010.1177/01926233000280012110669004
    [Google Scholar]
  7. GaoX. JiangW. ZhuG. XingZ. ZhuP. KeZ. HuangQ. AQP1 as a novel biomarker to predict prognosis and tumor immunity in glioma patients.Oncologie202426111713010.1515/oncologie‑2023‑0292
    [Google Scholar]
  8. KurdiM. FadulM.M. AddasB. FaizoE. BamagaA.K. AlsinaniT. KatibY. AlkhotaniA. FathaddinA.A. TurkistaniA.N. NajjarA.A. BaeesaS. ToonsiF.A. AlmansouriM. AlkhayyatS. Glioblastoma with PRMT5 gene upregulation is a key target for tumor cell regression.Oncologie202426223924610.1515/oncologie‑2023‑0534
    [Google Scholar]
  9. MinnitiG. NiyaziM. AlongiF. NavarriaP. BelkaC. Current status and recent advances in reirradiation of glioblastoma.Radiat. Oncol.20211613610.1186/s13014‑021‑01767‑933602305
    [Google Scholar]
  10. Le RhunE. PreusserM. RothP. ReardonD.A. van den BentM. WenP. ReifenbergerG. WellerM. Molecular targeted therapy of glioblastoma.Cancer Treat. Rev.20198010189610.1016/j.ctrv.2019.10189631541850
    [Google Scholar]
  11. BausartM. PréatV. MalfantiA. Immunotherapy for glioblastoma: The promise of combination strategies.J. Exp. Clin. Cancer Res.20224113510.1186/s13046‑022‑02251‑235078492
    [Google Scholar]
  12. LiuT. SunL. ZhangY. WangY. ZhengJ. Imbalanced GSH/ROS and sequential cell death.J. Biochem. Mol. Toxicol.2022361e2294210.1002/jbt.2294234725879
    [Google Scholar]
  13. YangS. LianG. ROS and diseases: Role in metabolism and energy supply.Mol. Cell. Biochem.20204671-211210.1007/s11010‑019‑03667‑931813106
    [Google Scholar]
  14. FuY. ChungF.L. Oxidative stress and hepatocarcinogenesis.Hepatoma Res.2018483910.20517/2394‑5079.2018.2930761356
    [Google Scholar]
  15. DingD.N. XieL.Z. ShenY. LiJ. GuoY. FuY. LiuF.Y. HanF.J. Insights into the role of oxidative stress in ovarian cancer.Oxid. Med. Cell. Longev.2021202112010.1155/2021/838825834659640
    [Google Scholar]
  16. CenK. WuZ. MaiY. DaiY. HongK. GuoY. Identification of a novel reactive oxygen species (ROS)-related genes model combined with RT-qPCR experiments for prognosis and immunotherapy in gastric cancer.Front. Genet.202314107490010.3389/fgene.2023.107490037124616
    [Google Scholar]
  17. LiG. PingM. ZhangW. WangY. ZhangZ. SuZ. Establishment of the molecular subtypes and a risk model for stomach adenocarcinoma based on genes related to reactive oxygen species.Heliyon2024105e2707910.1016/j.heliyon.2024.e2707938463816
    [Google Scholar]
  18. TanN. LiuJ. LiP. SunZ. PanJ. ZhaoW. Reactive oxygen species metabolism-based prediction model and drug for patients with recurrent glioblastoma.Aging20191123110101102910.18632/aging.10250631801111
    [Google Scholar]
  19. ZhangW. XieX. HuangZ. ZhongX. LiuY. CheongK.L. ZhouJ. TangS. The integration of single- cell sequencing, TCGA, and GEO data analysis revealed that PRRT3-AS1 is a biomarker and therapeutic target of SKCM.Front. Immunol.20221391914510.3389/fimmu.2022.91914536211371
    [Google Scholar]
  20. Toro-DomínguezD. Martorell-MarugánJ. López- DomínguezR. García-MorenoA. González-RumayorV. Alarcón-RiquelmeM.E. Carmona-SáezP. ImaGEO: integrative gene expression meta-analysis from GEO database.Bioinformatics201935588088210.1093/bioinformatics/bty72130137226
    [Google Scholar]
  21. XuJ. ZhangZ. QianM. WangS. QiuW. ChenZ. SunZ. XiongY. WangC. SunX. ZhaoR. XueH. LiG. Cullin-7 (CUL7) is overexpressed in glioma cells and promotes tumorigenesis via NF-κB activation.J. Exp. Clin. Cancer Res.20203915910.1186/s13046‑020‑01553‑732252802
    [Google Scholar]
  22. SunY. YeL. ZhengY. YangZ. Identification of crucial genes associated with Parkinson’s disease using microarray data.Mol. Med. Rep.20181733775378229257331
    [Google Scholar]
  23. LiberzonA. BirgerC. ThorvaldsdóttirH. GhandiM. MesirovJ.P. TamayoP. The molecular signatures database (MSigDB) hallmark gene set collection.Cell Syst.20151641742510.1016/j.cels.2015.12.00426771021
    [Google Scholar]
  24. KanehisaM. FurumichiM. TanabeM. SatoY. MorishimaK. KEGG: new perspectives on genomes, pathways, diseases and drugs.Nucleic Acids Res.201745D1D353D36110.1093/nar/gkw109227899662
    [Google Scholar]
  25. WangY. ChenW. LiK. WuG. ZhangW. MaP. FengS. Tissue-based metabolomics reveals metabolic signatures and major metabolic pathways of gastric cancer with help of transcriptomic data from TCGA.Biosci. Rep.20214110BSR2021147610.1042/BSR2021147634549263
    [Google Scholar]
  26. WuQ. MiaoX. ZhangJ. XiangL. LiX. BaoX. DuS. WangM. MiaoS. FanY. WangW. XuX. ShenX. YangD. WangX. FangY. HuL. PanX. DongH. WangH. WangY. LiJ. HuangZ. Astrocytic YAP protects the optic nerve and retina in an experimental autoimmune encephalomyelitis model through TGF-β signaling.Theranostics202111178480849910.7150/thno.6003134373754
    [Google Scholar]
  27. ZhuangW. SunH. ZhangS. ZhouY. WengW. WuB. YeT. HuangW. LinZ. ShiL. ShiK. An immunogenomic signature for molecular classification in hepatocellular carcinoma.Mol. Ther. Nucleic Acids20212510511510.1016/j.omtn.2021.06.02434401208
    [Google Scholar]
  28. SongZ. YuJ. WangM. ShenW. WangC. LuT. ShanG. DongG. WangY. ZhaoJ. CHDTEPDB: Transcriptome expression profile database and interactive analysis platform for congenital heart disease.Congenit. Heart Dis.202318669370110.32604/chd.2024.048081
    [Google Scholar]
  29. NangrajA.S. SelvarajG. KaliamurthiS. KaushikA.C. ChoW.C. WeiD.Q. Integrated PPI- and WGCNA-Retrieval of hub gene signatures shared between barrett’s esophagus and esophageal adenocarcinoma.Front. Pharmacol.20201188110.3389/fphar.2020.0088132903837
    [Google Scholar]
  30. NissK. Gomez-CasadoC. HjaltelinJ.X. JoerisT. AgaceW.W. BellingK.G. BrunakS. Complete topological mapping of a cellular protein interactome reveals bow-tie motifs as ubiquitous connectors of protein complexes.Cell Rep.2020311110776310.1016/j.celrep.2020.10776332553166
    [Google Scholar]
  31. RitchieM.E. PhipsonB. WuD. HuY. LawC.W. ShiW. SmythG.K. limma powers differential expression analyses for RNA-sequencing and microarray studies.Nucleic Acids Res.2015437e4710.1093/nar/gkv00725605792
    [Google Scholar]
  32. NewmanA.M. LiuC.L. GreenM.R. GentlesA.J. FengW. XuY. HoangC.D. DiehnM. AlizadehA.A. Robust enumeration of cell subsets from tissue expression profiles.Nat. Methods201512545345710.1038/nmeth.333725822800
    [Google Scholar]
  33. SuX. YangY. YangQ. PangB. SunS. WangY. QiaoQ. GuoC. LiuH. PangQ. NOX4-derived ROS-induced overexpression of FOXM1 regulates aerobic glycolysis in glioblastoma.BMC Cancer2021211118110.1186/s12885‑021‑08933‑y34740322
    [Google Scholar]
  34. ZhangL. CaoY. GuoX. WangX. HanX. KanworeK. HongX. ZhouH. GaoD. Hypoxia-induced ROS aggravate tumor progression through HIF-1α-SERPINE1 signaling in glioblastoma.J. Zhejiang Univ. Sci. B2023241324910.1631/jzus.B220026936632749
    [Google Scholar]
  35. WangX-J. LiL-C. ZhangM. FengY-K. IDH1-R132H suppresses glioblastoma malignancy through FAT1-ROS-HIF-1α signaling.Neurol. India20206851050105810.4103/0028‑3886.29455733109851
    [Google Scholar]
  36. YiR. WangH. DengC. WangX. YaoL. NiuW. FeiM. ZhabaW. Dihydroartemisinin initiates ferroptosis in glioblastoma through GPX4 inhibition.Biosci. Rep.2020406BSR2019331410.1042/BSR2019331432452511
    [Google Scholar]
  37. VolmarM.N.M. ChengJ. AleneziH. RichterS. HaugA. HassanZ. GoldbergM. LiY. HouM. Herold-MendeC. MaireC.L. LamszusK. FlühC. Held-FeindtJ. GargiuloG. ToppingG.J. SchillingF. SaurD. SchneiderG. SynowitzM. SchickJ.A. KälinR.E. GlassR. Cannabidiol converts NF-κB into a tumor suppressor in glioblastoma with defined antioxidative properties.Neuro-oncol.202123111898191010.1093/neuonc/noab09533864076
    [Google Scholar]
  38. LantieriF. BachettiT. OSM/OSMR and interleukin 6 family cytokines in physiological and pathological condition.Int. J. Mol. Sci.202223191109610.3390/ijms23191109636232392
    [Google Scholar]
  39. HaraT. Chanoch-MyersR. MathewsonN.D. MyskiwC. AttaL. BussemaL. EichhornS.W. GreenwaldA.C. KinkerG.S. RodmanC. Gonzalez CastroL.N. WakimotoH. Rozenblatt-RosenO. ZhuangX. FanJ. HunterT. VermaI.M. WucherpfennigK.W. RegevA. SuvàM.L. TiroshI. Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma.Cancer Cell2021396779792.e1110.1016/j.ccell.2021.05.00234087162
    [Google Scholar]
  40. SharanekA. BurbanA. LaaperM. HeckelE. JoyalJ.S. SoleimaniV.D. Jahani-AslA. OSMR controls glioma stem cell respiration and confers resistance of glioblastoma to ionizing radiation.Nat. Commun.2020111411610.1038/s41467‑020‑17885‑z32807793
    [Google Scholar]
  41. GuoQ. GuanG. CaoJ. ZouC. ZhuC. ChengW. XuX. LinZ. ChengP. WuA. Overexpression of oncostatin M receptor regulates local immune response in glioblastoma.J. Cell. Physiol.20192349154961550910.1002/jcp.2819730693511
    [Google Scholar]
  42. HouX. WangZ. DingF. HeY. WangP. LiuX. XuF. WangJ. YangY. Taurine transporter regulates adipogenic differentiation of human adipose-derived stem cells through affecting Wnt/β-catenin signaling pathway.Int. J. Biol. Sci.20191551104111210.7150/ijbs.3179431182929
    [Google Scholar]
  43. StaryD. BajdaM. Taurine and creatine transporters as potential drug targets in cancer therapy.Int. J. Mol. Sci.2023244378810.3390/ijms2404378836835201
    [Google Scholar]
  44. DazhiW. JingD. ChunlingR. MiZ. ZhixuanX. Elevated SLC6A6 expression drives tumorigenesis and affects clinical outcomes in gastric cancer.Biomarkers Med.20191329510410.2217/bmm‑2018‑025630767502
    [Google Scholar]
  45. PingY. ShanJ. LiuY. LiuF. WangL. LiuZ. LiJ. YueD. WangL. ChenX. ZhangY. Taurine enhances the antitumor efficacy of PD-1 antibody by boosting CD8+ T cell function.Cancer Immunol. Immunother.20237241015102710.1007/s00262‑022‑03308‑z36261540
    [Google Scholar]
  46. GuanY. BhandariA. ZhangX. WangO. Uridine phosphorylase 1 associates to biological and clinical significance in thyroid carcinoma cell lines.J. Cell. Mol. Med.201923117438744810.1111/jcmm.1461231496029
    [Google Scholar]
  47. WangJ. XuS. LvW. ShiF. MeiS. ShanA. XuJ. YangY. Uridine phosphorylase 1 is a novel immune-related target and predicts worse survival in brain glioma.Cancer Med.20209165940594710.1002/cam4.325132583596
    [Google Scholar]
  48. RouraA.J. SzadkowskaP. PoleszakK. DabrowskiM.J. Ellert-MiklaszewskaA. WojnickiK. CiechomskaI.A. StepniakK. KaminskaB. WojtasB. Regulatory networks driving expression of genes critical for glioblastoma are controlled by the transcription factor c-Jun and the pre-existing epigenetic modifications.Clin. Epigenetics20231512910.1186/s13148‑023‑01446‑436850002
    [Google Scholar]
  49. YanT. TanY. DengG. SunZ. LiuB. WangY. YuanF. SunQ. HuP. GaoL. TianD. ChenQ. TGF-β induces GBM mesenchymal transition through upregulation of CLDN4 and nuclear translocation to activate TNF-α/NF-κB signal pathway.Cell Death Dis.202213433910.1038/s41419‑022‑04788‑835418179
    [Google Scholar]
  50. YiL. ZhouX. LiT. LiuP. HaiL. TongL. MaH. TaoZ. XieY. ZhangC. YuS. YangX. Notch1 signaling pathway promotes invasion, self-renewal and growth of glioma initiating cells via modulating chemokine system CXCL12/CXCR4.J. Exp. Clin. Cancer Res.201938133910.1186/s13046‑019‑1319‑431382985
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673311171240611050715
Loading
/content/journals/cmc/10.2174/0109298673311171240611050715
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): epithelial-mesenchymal transition; Glioblastoma; immunity; prognosis; riskscore; ROS
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test