Skip to content
2000
Volume 32, Issue 41
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Introduction

The development of Methicillin-Resistant (MRSA) presents a significant risk to worldwide health and necessitates the creation of novel antimicrobial approaches. The enzyme dehydrosqualene synthase (CrtM), necessary for the bacterial species to produce staphyloxanthin, is a viable candidate for medicinal investigation. Blocking CrtM hampers the synthesis of staphyloxanthin, reducing the pathogen's ability to cause disease and making it more vulnerable to both the immune system and conventional antibiotics. This study aimed to target the CrtM protein using approaches and identified its inhibitors.

Methods

Tanimoto's similarity of 406,621 unique natural compounds collected from the COCONUT database was calculated using the known inhibitor of CrtM, hesperidin. Further, machine learning-based QSAR screening was performed on these natural compounds where two compounds showed promising binding with the CrtM protein (4299376 and 12897366). A binding score of -9.49 kcal/mol was found for 4299376 and 12897366, respectively, molecular docking; this value was close to that of the control drug, hesperidin, which was -9.55 kcal/mol. Molecular dynamics simulations conducted at 30 ns and with complexes of MM/GBSA demonstrated binding free energies of -14.38 kcal/mol for 12897366 and -42.72 kcal/mol for 4299376, respectively. 4299376 was selected further for 200 ns MD simulation because of its high binding affinity and stability in the RMSD plots.

Results

Additionally, post 200 ns MD analysis and MM/GBSA analysis showed the consistent stability and strong binding of 4299376 with CrtM (RMSD = 0.3 nm and binding free energy of -37.30 kcal/mol). Moreover, the critical residue Gln165 of CrtM was found to have a hydrogen bond with 4299376 in the 0 ns, 100 ns, and 200 ns conformation. Overall, 4299376 performed well in the PCA, free energy landscape, and per-residue decomposition, proving it is an effective CrtM binder. The free energy perturbation (FEP) analysis revealed that as the system progressed from fully bound (λ = 0) to decoupled (λ = 10), the free energy (∆G) changed from 6.56 kT to -4.38 kT, signifying a reduction in binding free energy and implying an increase in entropy and solvation effects that stabilize the ligand in the decoupled state. This underscores the entropic contribution and solvent interactions as critical determinants in the lowering of binding free energy.

Conclusion

This study concluded that 4299376 exhibits considerable therapeutic potential and could be investigated further for its potential use as an inhibitor against CrtM of .

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673340184250120065924
2025-02-28
2025-11-01
Loading full text...

Full text loading...

References

  1. FosterT. Staphylococcus.Medical Microbiology. BaronS. Galveston, TXUniversity of Texas Medical Branch at Galveston1996
    [Google Scholar]
  2. TongS.Y.C. DavisJ.S. EichenbergerE. HollandT.L. FowlerV.G.Jr. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management.Clin. Microbiol. Rev.201528360366110.1128/CMR.00134‑1426016486
    [Google Scholar]
  3. TaylorT.A. UnakalC.G. Staphylococcus aureus Infection.StatPearls.Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  4. LiuJ. ChenD. PetersB.M. LiL. LiB. XuZ. ShirliffM.E. Staphylococcal chromosomal cassettes mec (SCCmec): A mobile genetic element in methicillin-resistant Staphylococcus aureus.Microb. Pathog.2016101566710.1016/j.micpath.2016.10.02827836760
    [Google Scholar]
  5. VentolaC.L. The antibiotic resistance crisis: Part 1: Causes and threats.P&T201540427728325859123
    [Google Scholar]
  6. BlairJ.M.A. WebberM.A. BaylayA.J. OgboluD.O. PiddockL.J.V. Molecular mechanisms of antibiotic resistance.Nat. Rev. Microbiol.2015131425110.1038/nrmicro338025435309
    [Google Scholar]
  7. MunitaJ.M. AriasC.A. Mechanisms of antibiotic resistance.Microbiol. Spectr.2016424.2.1510.1128/microbiolspec.VMBF‑0016‑201527227291
    [Google Scholar]
  8. Antibiotic Adjuvants: Rescuing Antibiotics from Resistance: Trends in Microbiology.2024Available from: https://www.cell.com/trends/microbiology/abstract/S0966-842X(16)30072-5?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0966842X16300725%3Fshowall%3Dtrue (Accessed Nov 5, 2024).
  9. ClauditzA. ReschA. WielandK.P. PeschelA. GötzF. Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress.Infect. Immun.20067484950495310.1128/IAI.00204‑0616861688
    [Google Scholar]
  10. LiuC.I. LiuG.Y. SongY. YinF. HenslerM.E. JengW.Y. NizetV. WangA.H.J. OldfieldE. A cholesterol biosynthesis inhibitor blocks Staphylococcus Aureus virulence.Science200831958681391139410.1126/science.115301818276850
    [Google Scholar]
  11. ChangJ. ChenB. DuZ. ZhaoB. LiJ. LiZ. ArunachalamK. ShiT. WeiD. ShiC. Eugenol Targeting CrtM Inhibits the Biosynthesis of Staphyloxanthin in Staphylococcus Aureus.Food Sci. Hum. Wellness2023
    [Google Scholar]
  12. ValliammaiA. SelvarajA. MuthuramalingamP. PriyaA. RameshM. PandianS.K. Staphyloxanthin inhibitory potential of thymol impairs antioxidant fitness, enhances neutrophil mediated killing and alters membrane fluidity of methicillin resistant Staphylococcus aureus.Biomed. Pharmacother.202114111193310.1016/j.biopha.2021.11193334328107
    [Google Scholar]
  13. YangY. WangH. ZhouH. HuZ. ShangW. RaoY. PengH. ZhengY. HuQ. ZhangR. LuoH. RaoX. Protective effect of the golden staphyloxanthin biosynthesis pathway on Staphylococcus aureus under cold atmospheric plasma treatment.Appl. Environ. Microbiol.2020863e01998-1910.1128/AEM.01998‑1931704682
    [Google Scholar]
  14. YehiaF.A.A. YousefN. AskouraM. Celastrol mitigates staphyloxanthin biosynthesis and biofilm formation in Staphylococcus aureus via targeting key regulators of virulence; in vitro and in vivo approach.BMC Microbiol.202222110610.1186/s12866‑022‑02515‑z35421933
    [Google Scholar]
  15. YounesK.M. AbouziedA.S. AlafnanA. HuwaimelB. KhojaliW.M.A. AlzahraniR.M. Investigating the bispecific lead compounds against methicillin-resistant Staphylococcus aureus SarA and CrtM using machine learning and molecular dynamics approach.J. Biomol. Struct. Dyn.202311810.1080/07391102.2023.229701238147401
    [Google Scholar]
  16. SelvarajA. ValliammaiA. MuthuramalingamP. PriyaA. SubaM. RameshM. PandianK.S. Carvacrol targets sara and crtm of methicillin-resistant Staphylococcus aureus to mitigate biofilm formation and staphyloxanthin synthesis: An in vitro and in vivo approach.ACS Omega2020548311003111410.1021/acsomega.0c0425233324819
    [Google Scholar]
  17. DorchehF.A. BalmehN. SanjariS. In-silico investigation of antibacterial herbal compounds in order to find new antibiotic against Staphylococcus aureus and its resistant subtypes.Inform. Med. Unlocked20222810084310.1016/j.imu.2021.100843
    [Google Scholar]
  18. TangB. PanZ. YinK. KhateebA. Recent advances of deep learning in bioinformatics and computational biology.Front Genet.20241021410.3389/fgene.2019.0021430972100
    [Google Scholar]
  19. GuoZ. LiuJ. WangY. ChenM. WangD. XuD. ChengJ. Diffusion models in bioinformatics: A new wave of deep learning revolution in action.Nat. Rev. Bioeng.202322136154
    [Google Scholar]
  20. BermanH.M. WestbrookJ. FengZ. GillilandG. BhatT.N. WeissigH. ShindyalovI.N. BourneP.E. The protein data bank.Nucleic Acids Res.200028123524210.1093/nar/28.1.23510592235
    [Google Scholar]
  21. LaskowskiR.A. LuscombeN.M. SwindellsM.B. ThorntonJ.M. Protein clefts in molecular recognition and function.Protein Sci.1996512243824528976552
    [Google Scholar]
  22. LiangJ. WoodwardC. EdelsbrunnerH. Anatomy of protein pockets and cavities: Measurement of binding site geometry and implications for ligand design.Protein Sci.1998791884189710.1002/pro.55600709059761470
    [Google Scholar]
  23. BinkowskiT.A. NaghibzadehS. LiangJ. CASTp: Computed atlas of surface topography of proteins.Nucleic Acids Res.200331133352335510.1093/nar/gkg51212824325
    [Google Scholar]
  24. EbalunodeJ.O. OuyangZ. LiangJ. ZhengW. Novel approach to structure-based pharmacophore search using computational geometry and shape matching techniques.J. Chem. Inf. Model.200848488990110.1021/ci700368p18396858
    [Google Scholar]
  25. MachP. KoehlP. Geometric measures of large biomolecules: Surface, volume, and pockets.J. Comput. Chem.201132143023303810.1002/jcc.2188421823134
    [Google Scholar]
  26. VijayakumarK. MuhilvannanS. VigneshA.M. Hesperidin inhibits biofilm formation, virulence and staphyloxanthin synthesis in methicillin resistant Staphylococcus aureus by targeting SarA and CrtM: An in vitro and in silico approach.World J. Microbiol. Biotechnol.20223834410.1007/s11274‑022‑03232‑535064842
    [Google Scholar]
  27. SinghN. SainiS. NagpalN. YadavM. TuliA. Pharmacological and therapeutic potential of hesperidin-a comprehensive review eur.Euro. J. Org. Chem.202312Special issue -844994537
    [Google Scholar]
  28. ElmesseriR.A. SalehS.E. ElsherifH.M. YahiaI.S. AboshanabK.M. Staphyloxanthin as a potential novel target for deciphering promising anti-Staphylococcus aureus agents.Antibiotics (Basel)202211329810.3390/antibiotics1103029835326762
    [Google Scholar]
  29. SorokinaM. MerseburgerP. RajanK. YirikM.A. SteinbeckC. COCONUT online: Collection of open natural products database.J. Cheminform.2021131210.1186/s13321‑020‑00478‑933423696
    [Google Scholar]
  30. SorokinaM. SteinbeckC. Review on natural products databases: Where to find data in 2020.J. Cheminform.20201212010.1186/s13321‑020‑00424‑933431011
    [Google Scholar]
  31. CapecchiA. ReymondJ.L. Classifying natural products from plants, fungi or bacteria using the COCONUT database and machine learning.J. Cheminform.20211318210.1186/s13321‑021‑00559‑334663470
    [Google Scholar]
  32. AtanasovA.G. ZotchevS.B. DirschV.M. SupuranC.T. Natural products in drug discovery: Advances and opportunities.Nat. Rev. Drug Discov.202120320021610.1038/s41573‑020‑00114‑z33510482
    [Google Scholar]
  33. LandrumG. RDKit: Open-source cheminformatics.Release 2014.03. 1. Zenodo.2014
    [Google Scholar]
  34. MaoJ. AkhtarJ. ZhangX. SunL. GuanS. LiX. ChenG. LiuJ. JeonH.N. KimM.S. NoK.T. WangG. Comprehensive strategies of machine-learning-based quantitative structure-activity relationship models.iScience202124910305210.1016/j.isci.2021.10305234553136
    [Google Scholar]
  35. DaviesM. NowotkaM. PapadatosG. DedmanN. GaultonA. AtkinsonF. BellisL. OveringtonJ.P. ChEMBL web services: Streamlining access to drug discovery data and utilities.Nucleic Acids Res.201543W1W612W62010.1093/nar/gkv35225883136
    [Google Scholar]
  36. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and autodocktools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.2125619399780
    [Google Scholar]
  37. EberhardtJ. MartinsS.D. TillackA.F. ForliS. AutoDock vina 1.2.0: New docking methods, expanded force field, and python bindings.J. Chem. Inf. Model.20216183891389810.1021/acs.jcim.1c0020334278794
    [Google Scholar]
  38. BauerP. HessB. LindahlE. GROMACS 2022.4 Manual.GROMACS: GroningenThe Netherlands2022
    [Google Scholar]
  39. HuangJ. MacKerellA.D.Jr. CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data.J. Comput. Chem.201334252135214510.1002/jcc.2335423832629
    [Google Scholar]
  40. VanommeslaegheK. HatcherE. AcharyaC. KunduS. ZhongS. ShimJ. DarianE. GuvenchO. LopesP. VorobyovI. MackerellA.D.Jr. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields.J. Comput. Chem.201031467169010.1002/jcc.2136719575467
    [Google Scholar]
  41. DardenT. YorkD. PedersenL. Particle mesh Ewald: An N log( N ) method for Ewald sums in large systems.J. Chem. Phys.19939812100891009210.1063/1.464397
    [Google Scholar]
  42. HarrachM.F. DrosselB. Structure and dynamics of TIP3P, TIP4P, and TIP5P water near smooth and atomistic walls of different hydroaffinity.J. Chem. Phys.20141401717450110.1063/1.487223924811640
    [Google Scholar]
  43. HessB. BekkerH. BerendsenH.J.C. FraaijeJ.G.E.M. LINCS: A linear constraint solver for molecular simulations.J. Comput. Chem.199718121463147210.1002/(SICI)1096‑987X(199709)18:12<1463::AID‑JCC4>3.0.CO;2‑H
    [Google Scholar]
  44. ParrinelloM. RahmanA. Polymorphic transitions in single crystals: A new molecular dynamics method.J. Appl. Phys.198152127182719010.1063/1.328693
    [Google Scholar]
  45. BussiG. DonadioD. ParrinelloM. Canonical sampling through velocity rescaling.J. Chem. Phys.2007126101410110.1063/1.240842017212484
    [Google Scholar]
  46. TresancoV.M.S. TresancoV.M.E. ValienteP.A. MorenoE. gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS.J. Chem. Theory Comput.202117106281629110.1021/acs.jctc.1c0064534586825
    [Google Scholar]
  47. MillerB.R.III McGeeT.D.Jr SwailsJ.M. HomeyerN. GohlkeH. RoitbergA.E. MMPBSA.py: An efficient program for end-state free energy calculations.J. Chem. Theory Comput.2012893314332110.1021/ct300418h26605738
    [Google Scholar]
  48. BerendsenH.J.C. van der SpoelD. Drunenv.R. GROMACS: A message-passing parallel molecular dynamics implementation.Comput. Phys. Commun.1995911-3435610.1016/0010‑4655(95)00042‑E
    [Google Scholar]
  49. HessB. KutznerC. van der SpoelD. LindahlE. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation.J. Chem. Theory Comput.20084343544710.1021/ct700301q26620784
    [Google Scholar]
  50. SgarbossaA. Natural biomolecules and protein aggregation: Emerging strategies against amyloidogenesis.Int. J. Mol. Sci.20121312171211713710.3390/ijms13121712123242152
    [Google Scholar]
  51. ChristC.D. MarkA.E. Gunsterenv.W.F. Basic ingredients of free energy calculations: A review.J. Comput. Chem.20103181569158210.1002/jcc.2145020033914
    [Google Scholar]
  52. CerchiaC. LavecchiaA. In silico drug design and discovery: Big data for small molecule design.Biomolecules20221314410.3390/biom1301004436671429
    [Google Scholar]
  53. HernándezC.A.L. MercadoJ.K.E. GonzálezS.F.I. FrancoM.J.L. Towards the de novo design of HIV-1 protease inhibitors based on natural products.Biomolecules20211112180510.3390/biom1112180534944448
    [Google Scholar]
  54. MartínezP.F.D. Fernández-de GortariE. FrancoM.J.L. Michel Espinoza-FonsecaL. An in silico pipeline for the discovery of multitarget ligands: A case study for epi-polypharmacology based on DNMT1/HDAC2 inhibition.Artif. Intell. Life Sci.2021110000810.1016/j.ailsci.2021.10000835475037
    [Google Scholar]
  55. SzilágyiK. HajdúI. FlachnerB. LőrinczZ. BalczerJ. GálP. ZávodszkyP. PirliC. BaloghB. MándityI.M. CsehS. DormánG. Design and selection of novel c1s inhibitors by in silico and in vitro approaches.Molecules20192420364110.3390/molecules2420364131600984
    [Google Scholar]
  56. SzilágyiK. FlachnerB. HajdúI. SzaszkóM. DobiK. LőrinczZ. CsehS. DormánG. Rapid identification of potential drug candidates from multi-million compounds’ repositories. combination of 2d similarity search with 3d ligand/structure based methods and in vitro screening.Molecules20212618559310.3390/molecules2618559334577064
    [Google Scholar]
  57. WillettP. Similarity searching using 2D structural fingerprints.Methods Mol. Biol.201067213315810.1007/978‑1‑60761‑839‑3_520838967
    [Google Scholar]
  58. BajuszD. RáczA. HébergerK. Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations?J. Cheminform.2015712010.1186/s13321‑015‑0069‑326052348
    [Google Scholar]
  59. GuerraC.J. LópezJ.M. FigueredoS.F. MuñozA.E. RoblesJ.R. 2D-QSAR Analysis of derivatives of quinoxaline 1,4-di-n-oxides with activity against chagas’ disease.Quim. Nova201610.5935/0100‑4042.20160078
    [Google Scholar]
  60. ZhangZ. WangX. HeQ. SunZ. Chemical accuracy prediction of molecular solvation and partition in ionic liquids with educated estimators.J. Mol. Liq.202339112320210.1016/j.molliq.2023.123202
    [Google Scholar]
  61. RudrapalM. ChetiaD. Virtual screening, molecular docking and qsar studies in drug discovery and development programme.J. Drug Deliv. Ther.202010422523310.22270/jddt.v10i4.4218
    [Google Scholar]
  62. FanF. WarshaviakT.D. HamadehH.K. DunnR.T.II. The integration of pharmacophore-based 3D QSAR modeling and virtual screening in safety profiling: A case study to identify antagonistic activities against adenosine receptor, A2A, using 1,897 known drugs.PLoS One2019141e020437810.1371/journal.pone.020437830605479
    [Google Scholar]
  63. JawarkarR.D. BakalR.L. ZakiM.E.A. HussainA.S. GhoshA. GandhiA. MukerjeeN. SamadA. MasandV.H. LewaaI. QSAR based virtual screening derived identification of a novel hit as a SARS CoV-229E 3CLpro Inhibitor: GA-MLR QSAR modeling supported by molecular Docking, molecular dynamics simulation and MMGBSA calculation approaches.Arab. J. Chem.202215110349910.1016/j.arabjc.2021.10349934909066
    [Google Scholar]
  64. HalimA.A.N. HussinM.A.S. NgainiZ. ZamakshshariN.H. HaronI.Z. Synthesis, antibacterial potential and in silico molecular docking analysis of triazene compounds via diazo coupling reactions of an amine.Tetrahedron Lett.202313215480310.1016/j.tetlet.2023.154803
    [Google Scholar]
  65. KahlonA.K. RoyS. SharmaA. Molecular docking studies to map the binding site of squalene synthase inhibitors on dehydrosqualene synthase of Staphylococcus aureus.J. Biomol. Struct. Dyn.201028220121010.1080/07391102.2010.1050735320645653
    [Google Scholar]
  66. SunZ YanY.N. YangM. ZhangJ.Z.H. Interaction entropy for protein-protein binding.J. Chem. Phys.20171461212412410.1063/1.4978893
    [Google Scholar]
  67. ChambersH. DeLeoF. Waves of resistance: Staphylococcus aureus in the antibiotic era.Nat. Rev. Micro.2009762964110.1038/nrmicro2200
    [Google Scholar]
  68. LiuG.Y. NizetV. Color me bad: Microbial pigments as virulence factors: Trends in Microbiology.Trends Microbiol.200917940641310.1016/j.tim.2009.06.006
    [Google Scholar]
  69. WrightG.D. Antibiotic adjuvants: Rescuing antibiotics from resistance.Trends Microbiol.2016241186287110.1016/j.tim.2016.06.00927430191
    [Google Scholar]
  70. ZhuH. ZhangY. LiW. HuangN. A comprehensive survey of prospective structure-based virtual screening for early drug discovery in the past fifteen years.Int. J. Mol. Sci.202223241596110.3390/ijms232415961
    [Google Scholar]
  71. KollmanP.A. MassovaI. ReyesC. KuhnB. HuoS. ChongL. LeeM. LeeT. DuanY. WangW. DoniniO. CieplakP. SrinivasanJ. CaseD.A. CheathamT.E. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models.Acc. Chem. Res.2000331288989710.1021/ar000033j11123888
    [Google Scholar]
  72. LiangM. GeX. XuaH. MaK. ZhangW. ZanY. EfferthT. XueZ. HuaX. Phytochemicals with activity against methicillin-resistant Staphylococcus aureus. Phytomedicine202210015407310.1016/j.phymed.2022.15407335397285
    [Google Scholar]
  73. HuaiZ. ShenZ. SunZ. Binding thermodynamics and interaction patterns of inhibitor-major urinary protein-i binding from extensive free-energy calculations: Benchmarking amber force fields.J. Chem. Infor. Mode.202161128429710.1021/acs.jcim.0c0121733307679
    [Google Scholar]
  74. SunZ. ZhengL. WangK. HuaiZ. LiuZ. Primary vs secondary: Directionalized guest coordination in β-cyclodextrin derivatives.Carbohydrate Polymers202229712005010.1016/j.carbpol.2022.120050
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673340184250120065924
Loading
/content/journals/cmc/10.2174/0109298673340184250120065924
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test