Skip to content
2000
Volume 32, Issue 41
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Methicillin-resistant (MRSA) stands as an enduring threat within healthcare landscapes, characterized by its ability to rapidly evolve and develop resistance to conventional antibiotics. This comprehensive review embarks on a journey through the historical landscape of MRSA, elucidating its initial emergence and subsequent evolution of resistance mechanisms over time. The narrative unfolds to underscore the profound impact of MRSA on patient outcomes and healthcare systems globally. Current trends in MRSA therapies come under meticulous scrutiny, spotlighting the limitations and challenges associated with existing treatment modalities. This analysis underscores the critical need for transformative and innovative therapeutic strategies to effectively combat the ever-growing spectre of drug resistance in MRSA from the exploration of novel antibiotics designed to overcome resistance mechanisms to the promising potential of phage therapy and immunotherapies. Amidst the exploration of innovative therapies, the review identifies and discusses emerging issues and challenges in MRSA management. Insights are provided into the intricate web of obstacles hindering the adoption and implementation of new therapeutic strategies. Furthermore, the socio-economic implications of MRSA and drug resistance are brought to the forefront, emphasizing the broader impact on public health and healthcare systems. In parallel, historical perspectives on MRSA research illuminate key milestones in scientific understanding and technological advancements. The evolution of research strategies and their impact on our ability to comprehend and combat MRSA is examined, providing context for the current state of the field. In conclusion, this review summarizes major findings and drawing implications for the future of MRSA treatment. Recommendations for further research and clinical practice are outlined, encapsulating a holistic overview of the resilient efforts against resistance in the ongoing battle against MRSA.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673316661241002060518
2024-10-17
2025-11-03
Loading full text...

Full text loading...

References

  1. LowyF.D. Staphylococcus aureus infections.N. Engl. J. Med.1998339852053210.1056/NEJM1998082033908069709046
    [Google Scholar]
  2. ChambersH.F. DeLeoF.R. Waves of resistance: Staphylococcus aureus in the antibiotic era.Nat. Rev. Microbiol.20097962964110.1038/nrmicro220019680247
    [Google Scholar]
  3. MorshedM.T. Discovery and development of next-generation antibiotics.2023p. 441
    [Google Scholar]
  4. TongS.Y.C. DavisJ.S. EichenbergerE. HollandT.L. FowlerV.G.Jr. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management.Clin. Microbiol. Rev.201528360366110.1128/CMR.00134‑1426016486
    [Google Scholar]
  5. GellerB.L. LiL. MartinezF. SullyE. SturgeC.R. DalyS.M. PybusC. GreenbergD.E. Morpholino oligomers tested in vitro, in biofilm and in vivo against multidrug-resistant Klebsiella pneumoniae.J. Antimicrob. Chemother.20187361611161910.1093/jac/dky05829506074
    [Google Scholar]
  6. McGuinnessW.A. MalachowaN. DeLeoF.R. Focus: infectious diseases: vancomycin resistance in Staphylococcus aureus.Yale J. Biol. Med.201790226928128656013
    [Google Scholar]
  7. VillanoS. SteenbergenJ. LohE. Omadacycline: development of a novel aminomethylcycline antibiotic for treating drug-resistant bacterial infections.Future Microbiol.201611111421143410.2217/fmb‑2016‑010027539442
    [Google Scholar]
  8. AbrahamL. BambergerD.M. Staphylococcus aureus bacteremia: contemporary management.Mo. Med.2020117434134532848271
    [Google Scholar]
  9. MunfordR.S. Severe sepsis and septic shock: the role of gram-negative bacteremia.Annu. Rev. Pathol.20061146749610.1146/annurev.pathol.1.110304.10020018039123
    [Google Scholar]
  10. ZhangP. ShiQ. HuH. HongB. WuX. DuX. AkovaM. YuY. Emergence of ceftazidime/avibactam resistance in carbapenem-resistant Klebsiella pneumoniae in China.Clin. Microbiol. Infect.2020261124.e1124.e410.1016/j.cmi.2019.08.02031494252
    [Google Scholar]
  11. JohnsonS. GerdingD.N. Clostridium difficile--associated diarrhea.Clin. Infect. Dis.19982651027103410.1086/5202769597221
    [Google Scholar]
  12. KatayamaY. ItoT. HiramatsuK. A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus.Antimicrob. Agents Chemother.20004461549155510.1128/AAC.44.6.1549‑1555.200010817707
    [Google Scholar]
  13. ArcherG.L. NiemeyerD.M. Origin and evolution of DNA associated with resistance to methicillin in staphylococci.Trends Microbiol.199421034334710.1016/0966‑842X(94)90608‑47850198
    [Google Scholar]
  14. ItoT. KatayamaY. HiramatsuK. Cloning and nucleotide sequence determination of the entire mec DNA of pre-methicillin-resistant Staphylococcus aureus N315.Antimicrob. Agents Chemother.19994361449145810.1128/AAC.43.6.144910348769
    [Google Scholar]
  15. FrénayH.M.E. BunschotenA.E. SchoulsL.M. LeeuwenW.J. Vandenbroucke-GraulsC.M.J.E. VerhoefJ. MooiF.R. Molecular typing of methicillin-resistant Staphylococcus aureus on the basis of protein A gene polymorphism.Eur. J. Clin. Microbiol. Infect. Dis.1996151606410.1007/BF015861868641305
    [Google Scholar]
  16. HarrisS.R. FeilE.J. HoldenM.T.G. QuailM.A. NickersonE.K. ChantratitaN. GardeteS. TavaresA. DayN. LindsayJ.A. EdgeworthJ.D. de LencastreH. ParkhillJ. PeacockS.J. BentleyS.D. Evolution of MRSA during hospital transmission and intercontinental spread.Science2010327596446947410.1126/science.118239520093474
    [Google Scholar]
  17. ChambersH. The changing epidemiology of Staphylococcus aureus?Emerg. Infect. Dis.20017217818210.3201/eid0702.01020411294701
    [Google Scholar]
  18. PinhoM.G. de LencastreH. TomaszA. An acquired and a native penicillin-binding protein cooperate in building the cell wall of drug-resistant staphylococci.Proc. Natl. Acad. Sci. USA20019819108861089110.1073/pnas.19126079811517340
    [Google Scholar]
  19. MillerL.G. Perdreau-RemingtonF. RiegG. MehdiS. PerlrothJ. BayerA.S. TangA.W. PhungT.O. SpellbergB. Necrotizing fasciitis caused by community-associated methicillin-resistant Staphylococcus aureus in Los Angeles.N. Engl. J. Med.2005352141445145310.1056/NEJMoa04268315814880
    [Google Scholar]
  20. Guianvarc’hD. Guangqi E DrujonT. ReyC. WangQ. PlouxO. Identification of inhibitors of the E. coli cyclopropane fatty acid synthase from the screening of a chemical library: In vitro and in vivo studies.Biochim. Biophys. Acta. Proteins Proteomics20081784111652165810.1016/j.bbapap.2008.04.01918501724
    [Google Scholar]
  21. NotomiT. OkayamaH. MasubuchiH. YonekawaT. WatanabeK. AminoN. HaseT. Loop-mediated isothermal amplification of DNA.Nucleic Acids Res.2000281263e6310.1093/nar/28.12.e6310871386
    [Google Scholar]
  22. StrommengerB. KettlitzC. WernerG. WitteW. Multiplex PCR assay for simultaneous detection of nine clinically relevant antibiotic resistance genes in Staphylococcus aureus.J. Clin. Microbiol.20034194089409410.1128/JCM.41.9.4089‑4094.200312958230
    [Google Scholar]
  23. WernerG. StrommengerB. WitteW. Acquired vancomycin resistance in clinically relevant pathogens.Future Microbiol.20083554756210.2217/17460913.3.5.54718811239
    [Google Scholar]
  24. WangL. ArcherG.L. Roles of CcrA and CcrB in excision and integration of staphylococcal cassette chromosome mec, a Staphylococcus aureus genomic island.J. Bacteriol.2010192123204321210.1128/JB.01520‑0920382769
    [Google Scholar]
  25. CourvalinP. Vancomycin resistance in gram-positive cocci.Clin. Infect. Dis.200642Suppl. 1S25S3410.1086/49171116323116
    [Google Scholar]
  26. GardeteS. TomaszA. Mechanisms of vancomycin resistance in Staphylococcus aureus.J. Clin. Invest.201412472836284010.1172/JCI6883424983424
    [Google Scholar]
  27. ZhangL. MengQ. ChenS. ZhangM. ChenB. WuB. YanG. WangX. JiaZ. Treatment outcomes of multidrug-resistant tuberculosis patients in Zhejiang, China, 2009–2013.Clin. Microbiol. Infect.201824438138810.1016/j.cmi.2017.07.00828712668
    [Google Scholar]
  28. DavidM.Z. DaumR.S. Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic.Clin. Microbiol. Rev.201023361668710.1128/CMR.00081‑0920610826
    [Google Scholar]
  29. SujathaS. PraharajI. Glycopeptide resistance in gram-positive cocci: a review.Interdiscip. Perspect. Infect. Dis.2012201211010.1155/2012/78167922778729
    [Google Scholar]
  30. KatayamaY. TakeuchiF. ItoT. MaX.X. Ui-MizutaniY. KobayashiI. HiramatsuK. Identification in methicillin-susceptible Staphylococcus hominis of an active primordial mobile genetic element for the staphylococcal cassette chromosome mec of methicillin-resistant Staphylococcus aureus.J. Bacteriol.200318592711272210.1128/JB.185.9.2711‑2722.200312700250
    [Google Scholar]
  31. LiG. WalkerM.J. De OliveiraD.M.P. Vancomycin resistance in enterococcus and Staphylococcus aureus.Microorganisms20221112410.3390/microorganisms1101002436677316
    [Google Scholar]
  32. PfeltzR. WilkinsonB. The escalating challenge of vancomycin resistance in Staphylococcus aureus.Curr. Drug Targets Infect. Disord.20044427329410.2174/156800504334047015578969
    [Google Scholar]
  33. AleneK.A. YiH. VineyK. McBrydeE.S. YangK. BaiL. GrayD.J. ClementsA.C.A. XuZ. Treatment outcomes of patients with multidrug-resistant and extensively drug resistant tuberculosis in Hunan Province, China.BMC Infect. Dis.201717157310.1186/s12879‑017‑2662‑828814276
    [Google Scholar]
  34. OtterJ.A. FrenchG.L. Community-associated meticillin-resistant Staphylococcus aureus: the case for a genotypic definition.J. Hosp. Infect.201281314314810.1016/j.jhin.2012.04.00922622448
    [Google Scholar]
  35. MatsumotoK. WatanabeE. KanazawaN. FukamizuT. ShigemiA. YokoyamaY. IkawaK. MorikawaN. TakedaY. Pharmacokinetic/pharmacodynamic analysis of teicoplanin in patients with MRSA infections.Clin. Pharmacol.20168151827099534
    [Google Scholar]
  36. OdenholtI. LöwdinE. CarsO. In vitro studies of the pharmacodynamics of teicoplanin against Staphylococcus aureus, Staphylococcus epidermidis and Enterococcus faecium.Clin. Microbiol. Infect.20039993093710.1046/j.1469‑0691.2003.00692.x14616681
    [Google Scholar]
  37. van MensS.P. ten DoesschateT. Kluytmans-van den BerghM.F.Q. MoutonJ.W. RossenJ.W.A. VerhulstC. BontenM.J.M. KluytmansJ.A.J.W. Fosfomycin Etest for Enterobacteriaceae: Interobserver and interlaboratory agreement.Int. J. Antimicrob. Agents201852567868110.1016/j.ijantimicag.2018.06.01429958976
    [Google Scholar]
  38. D’AvolioA. SimieleM. CalcagnoA. SiccardiM. LarovereG. AgatiS. BaiettoL. CusatoJ. TettoniM. SciandraM. TrentiniL. Di PerriG. BonoraS. Intracellular accumulation of ritonavir combined with different protease inhibitors and correlations between concentrations in plasma and peripheral blood mononuclear cells.J. Antimicrob. Chemother.201368490791010.1093/jac/dks48423221630
    [Google Scholar]
  39. StetsR. PopescuM. GonongJ.R. MithaI. NseirW. MadejA. KirschC. DasA.F. Garrity-RyanL. SteenbergenJ.N. ManleyA. EckburgP.B. TzanisE. McGovernP.C. LohE. Omadacycline for community-acquired bacterial pneumonia.N. Engl. J. Med.2019380651752710.1056/NEJMoa180020130726692
    [Google Scholar]
  40. RybakM.J. LeJ. LodiseT.P. LevineD.P. BradleyJ.S. LiuC. MuellerB.A. PaiM.P. Wong-BeringerA. RotschaferJ.C. RodvoldK.A. MaplesH.D. LomaestroB.M. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: A revised consensus guideline and review by the American society of health-system pharmacists, the infectious diseases society of America, the pediatric infectious diseases society, and the society of infectious diseases pharmacists.Am. J. Health Syst. Pharm.2020771183586410.1093/ajhp/zxaa03632191793
    [Google Scholar]
  41. LiuC. BayerA. CosgroveS.E. DaumR.S. FridkinS.K. GorwitzR.J. KaplanS.L. KarchmerA.W. LevineD.P. MurrayB.E. RybakM.J. TalanD.A. ChambersH.F. Infectious Diseases Society of America Clinical practice guidelines by the infectious diseases society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children.Clin. Infect. Dis.2011523e18e5510.1093/cid/ciq14621208910
    [Google Scholar]
  42. StevensD.L. BisnoA.L. ChambersH.F. DellingerE.P. GoldsteinE.J.C. GorbachS.L. HirschmannJ.V. KaplanS.L. MontoyaJ.G. WadeJ.C. Infectious Diseases Society of America Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the infectious diseases society of America.Clin. Infect. Dis.2014592e10e5210.1093/cid/ciu29624973422
    [Google Scholar]
  43. BurginD.J. LiuR. HsiehR.C. HeinzingerL.R. OttoM. Investigational agents for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) bacteremia: progress in clinical trials.Expert Opin. Investig. Drugs202231326327910.1080/13543784.2022.204001535129409
    [Google Scholar]
  44. CasapaoA.M. DavisS.L. BarrV.O. KlinkerK.P. GoffD.A. BarberK.E. KayeK.S. MynattR.P. MolloyL.M. PogueJ.M. RybakM.J. Large retrospective evaluation of the effectiveness and safety of ceftaroline fosamil therapy.Antimicrob. Agents Chemother.20145852541254610.1128/AAC.02371‑1324550331
    [Google Scholar]
  45. CoreyG.R. WilcoxM. TalbotG.H. FriedlandH.D. BaculikT. WitherellG.W. CritchleyI. DasA.F. ThyeD. Integrated analysis of CANVAS 1 and 2: phase 3, multicenter, randomized, double-blind studies to evaluate the safety and efficacy of ceftaroline versus vancomycin plus aztreonam in complicated skin and skin-structure infection.Clin. Infect. Dis.201051664165010.1086/65582720695801
    [Google Scholar]
  46. SaderH.S. FlammR.K. JonesR.N. Antimicrobial activity of ceftaroline and comparator agents tested against bacterial isolates causing skin and soft tissue infections and community-acquired respiratory tract infections isolated from the Asia-Pacific region and South Africa (2010).Diagn. Microbiol. Infect. Dis.2013761616810.1016/j.diagmicrobio.2013.01.00523535208
    [Google Scholar]
  47. ArbeitR.D. MakiD. TallyF.P. CampanaroE. EisensteinB.I. Daptomycin 98-01 and 99-01 Investigators The safety and efficacy of daptomycin for the treatment of complicated skin and skin-structure infections.Clin. Infect. Dis.200438121673168110.1086/42081815227611
    [Google Scholar]
  48. AdriaenssensN. CoenenS. MullerA. VankerckhovenV. GoossensH. ESAC Project Group European Surveillance of Antimicrobial Consumption (ESAC): outpatient systemic antimycotic and antifungal use in Europe.J. Antimicrob. Chemother.201065476977410.1093/jac/dkq02320142264
    [Google Scholar]
  49. García-ÁlvarezL. HoldenM.T.G. LindsayH. WebbC.R. BrownD.F.J. CurranM.D. WalpoleE. BrooksK. PickardD.J. TealeC. ParkhillJ. BentleyS.D. EdwardsG.F. GirvanE.K. KearnsA.M. PichonB. HillR.L.R. LarsenA.R. SkovR.L. PeacockS.J. MaskellD.J. HolmesM.A. Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study.Lancet Infect. Dis.201111859560310.1016/S1473‑3099(11)70126‑821641281
    [Google Scholar]
  50. LeeB.Y. SinghA. DavidM.Z. BartschS.M. SlaytonR.B. HuangS.S. ZimmerS.M. PotterM.A. MacalC.M. LauderdaleD.S. MillerL.G. DaumR.S. The economic burden of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA).Clin. Microbiol. Infect.201319652853610.1111/j.1469‑0691.2012.03914.x22712729
    [Google Scholar]
  51. VossA. LoeffenF. BakkerJ. KlaassenC. WulfM. Methicillin-resistant Staphylococcus aureus in pig farming.Emerg. Infect. Dis.200511121965196610.3201/eid1112.05042816485492
    [Google Scholar]
  52. SmythD.S. McDougalL.K. GranF.W. ManoharanA. EnrightM.C. SongJ.H. de LencastreH. RobinsonD.A. Population structure of a hybrid clonal group of methicillin-resistant Staphylococcus aureus, ST239-MRSA-III.PLoS One201051e858210.1371/journal.pone.000858220062529
    [Google Scholar]
  53. JennesS. MerabishviliM. SoentjensP. PangK.W. RoseT. KeersebilckE. SoeteO. FrançoisP.M. TeodorescuS. VerweenG. VerbekenG. De VosD. PirnayJ.P. Use of bacteriophages in the treatment of colistin-only-sensitive Pseudomonas aeruginosa septicaemia in a patient with acute kidney injury—a case report.Crit. Care201721112910.1186/s13054‑017‑1709‑y28583189
    [Google Scholar]
  54. SchooleyR.T. BiswasB. GillJ.J. Hernandez-MoralesA. LancasterJ. LessorL. BarrJ.J. ReedS.L. RohwerF. BenlerS. SegallA.M. TaplitzR. SmithD.M. KerrK. KumaraswamyM. NizetV. LinL. McCauleyM.D. StrathdeeS.A. BensonC.A. PopeR.K. LerouxB.M. PicelA.C. MateczunA.J. CilwaK.E. RegeimbalJ.M. EstrellaL.A. WolfeD.M. HenryM.S. QuinonesJ. SalkaS. Bishop-LillyK.A. YoungR. HamiltonT. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection.Antimicrob. Agents Chemother.20176110e00954-1710.1128/AAC.00954‑1728807909
    [Google Scholar]
  55. FowlerV.G.Jr ProctorR.A. Where does a Staphylococcus aureus vaccine stand?Clin. Microbiol. Infect.2014200 5Suppl. 5667510.1111/1469‑0691.1257024476315
    [Google Scholar]
  56. ProctorR.A. Challenges for a universal Staphylococcus aureus vaccine.Clin. Infect. Dis.20125481179118610.1093/cid/cis03322354924
    [Google Scholar]
  57. BikardD. EulerC.W. JiangW. NussenzweigP.M. GoldbergG.W. DuportetX. FischettiV.A. MarraffiniL.A. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials.Nat. Biotechnol.201432111146115010.1038/nbt.304325282355
    [Google Scholar]
  58. CitorikR.J. MimeeM. LuT.K. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases.Nat. Biotechnol.201432111141114510.1038/nbt.301125240928
    [Google Scholar]
  59. MahlapuuM. HåkanssonJ. RingstadL. BjörnC. Antimicrobial peptides: an emerging category of therapeutic agents.Front. Cell. Infect. Microbiol.2016619410.3389/fcimb.2016.0019428083516
    [Google Scholar]
  60. ZasloffM. Antimicrobial peptides of multicellular organisms.Nature20024156870389395
    [Google Scholar]
  61. BaharA. RenD. Antimicrobial Peptides.Pharmaceuticals (Basel)20136121543157510.3390/ph612154324287494
    [Google Scholar]
  62. MeloM.N. FerreR. CastanhoM.A.R.B. Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations.Nat. Rev. Microbiol.20097324525010.1038/nrmicro209519219054
    [Google Scholar]
  63. MookherjeeN. HancockR.E.W. Cationic host defence peptides: Innate immune regulatory peptides as a novel approach for treating infections.Cell. Mol. Life Sci.2007647-892293310.1007/s00018‑007‑6475‑617310278
    [Google Scholar]
  64. GagnonM.G. RoyR.N. LomakinI.B. FlorinT. MankinA.S. SteitzT.A. Structures of proline-rich peptides bound to the ribosome reveal a common mechanism of protein synthesis inhibition.Nucleic Acids Res.20164452439245010.1093/nar/gkw01826809677
    [Google Scholar]
  65. LeesonP.D. SpringthorpeB. The influence of drug-like concepts on decision-making in medicinal chemistry.Nat. Rev. Drug Discov.200761188189010.1038/nrd244517971784
    [Google Scholar]
  66. MenichelliE. LamB.J. WangY. WangV.S. ShafferJ. TjhungK.F. BursulayaB. NguyenT.N. VoT. AlperP.B. McAllisterC.S. JonesD.H. SpraggonG. MichellysP.Y. JoslinJ. JoyceG.F. RogersJ. Discovery of small molecules that target a tertiary-structured RNA.Proc. Natl. Acad. Sci. USA202211948e221311711910.1073/pnas.221311711936413497
    [Google Scholar]
  67. OpreaT.I. DavisA.M. TeagueS.J. LeesonP.D. Is there a difference between leads and drugs? A historical perspective.J. Chem. Inf. Comput. Sci.20014151308131510.1021/ci010366a11604031
    [Google Scholar]
  68. MukherjiS. BhartiS. ShuklaG. MukherjiS. Synthesis and characterization of size- and shape-controlled silver nanoparticles.Phys. Sci. Rev.2019412017008210.1515/psr‑2017‑0082
    [Google Scholar]
  69. JoshiH.M. BhumkarD.R. JoshiK. PokharkarV. SastryM. Gold nanoparticles as carriers for efficient transmucosal insulin delivery.Langmuir200622130030510.1021/la051982u16378435
    [Google Scholar]
  70. CasiraghiA. SuigoL. ValotiE. StranieroV. Targeting bacterial cell division: A binding site-centered approach to the most promising inhibitors of the essential protein FtsZ.Antibiotics (Basel)2020926910.3390/antibiotics902006932046082
    [Google Scholar]
  71. DoT. PageJ.E. WalkerS. Uncovering the activities, biological roles, and regulation of bacterial cell wall hydrolases and tailoring enzymes.J. Biol. Chem.2020295103347336110.1074/jbc.REV119.01015531974163
    [Google Scholar]
  72. MaN. ZhangJ. ReiterR.J. MaX. Melatonin mediates mucosal immune cells, microbial metabolism, and rhythm crosstalk: A therapeutic target to reduce intestinal inflammation.Med. Res. Rev.202040260663210.1002/med.2162831420885
    [Google Scholar]
  73. KalyaanamoorthyS. ChenY.P.P. Structure-based drug design to augment hit discovery.Drug Discov. Today20111617-1883183910.1016/j.drudis.2011.07.00621810482
    [Google Scholar]
  74. HughesJ.D. BlaggJ. PriceD.A. BaileyS. DeCrescenzoG.A. DevrajR.V. EllsworthE. FobianY.M. GibbsM.E. GillesR.W. GreeneN. HuangE. Krieger-BurkeT. LoeselJ. WagerT. WhiteleyL. ZhangY. Physiochemical drug properties associated with in vivo toxicological outcomes.Bioorg. Med. Chem. Lett.200818174872487510.1016/j.bmcl.2008.07.07118691886
    [Google Scholar]
  75. BoucherH.W. WilcoxM. TalbotG.H. PuttaguntaS. DasA.F. DunneM.W. Once-weekly dalbavancin versus daily conventional therapy for skin infection.N. Engl. J. Med.2014370232169217910.1056/NEJMoa131048024897082
    [Google Scholar]
  76. NoelG.J. DraperM.P. HaitH. TanakaS.K. ArbeitR.D. A randomized, evaluator-blind, phase 2 study comparing the safety and efficacy of omadacycline to those of linezolid for treatment of complicated skin and skin structure infections.Antimicrob. Agents Chemother.201256115650565410.1128/AAC.00948‑1222908151
    [Google Scholar]
  77. CoreyG.R. KablerH. MehraP. GuptaS. OvercashJ.S. PorwalA. GiordanoP. LucastiC. PerezA. GoodS. JiangH. MoeckG. O’RiordanW. SOLO I Investigators Single- dose oritavancin in the treatment of acute bacterial skin infections.N. Engl. J. Med.2014370232180219010.1056/NEJMoa131042224897083
    [Google Scholar]
  78. StryjewskiM.E. GrahamD.R. WilsonS.E. O’RiordanW. YoungD. LentnekA. RossD.P. FowlerV.G. HopkinsA. FriedlandH.D. BarriereS.L. KittM.M. CoreyG.R. Assessment of Telavancin in Complicated Skin and Skin-Structure Infections Study Telavancin versus vancomycin for the treatment of complicated skin and skin-structure infections caused by gram-positive organisms.Clin. Infect. Dis.200846111683169310.1086/58789618444791
    [Google Scholar]
  79. PfallerM.A. SaderH.S. RhombergP.R. FlammR.K. In vitro activity of delafloxacin against contemporary bacterial pathogens from the United States and Europe, 2014.Antimicrob. Agents Chemother.2017614e02609-1610.1128/AAC.02609‑1628167542
    [Google Scholar]
  80. ZhanelG.G. CheungD. AdamH. ZelenitskyS. GoldenA. SchweizerF. GorityalaB. Lagacé-WiensP.R.S. WalktyA. GinA.S. HobanD.J. KarlowskyJ.A. Review of eravacycline, a novel fluorocycline antibacterial agent.Drugs201676556758810.1007/s40265‑016‑0545‑826863149
    [Google Scholar]
  81. PortsmouthS. van VeenhuyzenD. EcholsR. MachidaM. FerreiraJ.C.A. AriyasuM. TenkeP. NagataT.D. Cefiderocol versus imipenem-cilastatin for the treatment of complicated urinary tract infections caused by gram-negative uropathogens: a phase 2, randomised, double-blind, non-inferiority trial.Lancet Infect. Dis.201818121319132810.1016/S1473‑3099(18)30554‑130509675
    [Google Scholar]
  82. FidaM. WolfM.J. HamdiA. VijayvargiyaP. Esquer GarrigosZ. KhalilS. Greenwood-QuaintanceK.E. ThoendelM.J. PatelR. Detection of pathogenic bacteria from septic patients using 16S ribosomal RNA gene–targeted metagenomic sequencing.Clin. Infect. Dis.20217371165117210.1093/cid/ciab34933893492
    [Google Scholar]
  83. O’RiordanW. CardenasC. ShinE. SirbuA. Garrity-RyanL. DasA.F. EckburgP.B. ManleyA. SteenbergenJ.N. TzanisE. McGovernP.C. LohE. OASIS-2 Investigators Once-daily oral omadacycline versus twice-daily oral linezolid for acute bacterial skin and skin structure infections (OASIS-2): a phase 3, double-blind, multicentre, randomised, controlled, non-inferiority trial.Lancet Infect. Dis.201919101080109010.1016/S1473‑3099(19)30275‑031474458
    [Google Scholar]
  84. BanerjeeR. GretesM. HarlemC. BasuinoL. ChambersH.F. A mecA-negative strain of methicillin-resistant Staphylococcus aureus with high-level β-lactam resistance contains mutations in three genes.Antimicrob. Agents Chemother.201054114900490210.1128/AAC.00594‑1020805396
    [Google Scholar]
  85. LimD. StrynadkaN.C.J. Structural basis for the β lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus.Nat. Struct. Biol.200291187087610.1038/nsb85812389036
    [Google Scholar]
  86. BouleyR. KumarasiriM. PengZ. OteroL.H. SongW. SuckowM.A. SchroederV.A. WolterW.R. LastochkinE. AntunesN.T. PiH. VakulenkoS. HermosoJ.A. ChangM. MobasheryS. Discovery of antibiotic (E)-3-(3-carboxyphenyl)-2-(4-cyanostyryl)quinazolin -4(3H)-one.J. Am. Chem. Soc.201513751738174110.1021/jacs.5b0005625629446
    [Google Scholar]
  87. WatanabeE. MatsumotoK. IkawaK. YokoyamaY. ShigemiA. EnokiY. UmezakiY. NakamuraK. UenoK. TerazonoH. MorikawaN. TakedaY. Pharmacokinetic/pharmacodynamic evaluation of teicoplanin against Staphylococcus aureus in a murine thigh infection model.J. Glob. Antimicrob. Resist.202124838710.1016/j.jgar.2020.11.01433290889
    [Google Scholar]
  88. HsuA. GrannemanG.R. CaoG. CarothersL. JapourA. El-ShourbagyT. DennisS. BergJ. ErdmanK. LeonardJ.M. SunE. Pharmacokinetic interaction between ritonavir and indinavir in healthy volunteers.Antimicrob. Agents Chemother.199842112784279110.1128/AAC.42.11.27849797204
    [Google Scholar]
  89. TanakaS.K. SteenbergenJ. VillanoS. Discovery, pharmacology, and clinical profile of omadacycline, a novel aminomethylcycline antibiotic.Bioorg. Med. Chem.201624246409641910.1016/j.bmc.2016.07.02927469981
    [Google Scholar]
  90. VisserM.J.E. KellD.B. PretoriusE. Bacterial dysbiosis and translocation in psoriasis vulgaris.Front. Cell. Infect. Microbiol.20199710.3389/fcimb.2019.0000730778377
    [Google Scholar]
  91. AdriaenssensN. CoenenS. VersportenA. GoossensH. Outpatient systemic antimycotic and antifungal use in Europe: New outcome measure provides new insight.Int. J. Antimicrob. Agents201342546647010.1016/j.ijantimicag.2013.07.00423993932
    [Google Scholar]
  92. KöserC.U. HoldenM.T.G. EllingtonM.J. CartwrightE.J.P. BrownN.M. Ogilvy-StuartA.L. HsuL.Y. ChewapreechaC. CroucherN.J. HarrisS.R. SandersM. EnrightM.C. DouganG. BentleyS.D. ParkhillJ. FraserL.J. BetleyJ.R. Schulz-TrieglaffO.B. SmithG.P. PeacockS.J. Rapid whole-genome sequencing for investigation of a neonatal MRSA outbreak.N. Engl. J. Med.2012366242267227510.1056/NEJMoa110991022693998
    [Google Scholar]
  93. SpellbergB. BlaserM. GuidosR.J. BoucherH.W. BradleyJ.S. EisensteinB.I. GerdingD. LynfieldR. RellerL.B. RexJ. SchwartzD. SeptimusE. TenoverF.C. GilbertD.N. Infectious Diseases Society of America (IDSA) Combating antimicrobial resistance: policy recommendations to save lives.Clin. Infect. Dis.201152Suppl 5S397S42821474585
    [Google Scholar]
  94. ParkesL.O. HotaS.S. Sink-related outbreaks and mitigation strategies in healthcare facilities.Curr. Infect. Dis. Rep.201820104210.1007/s11908‑018‑0648‑330128678
    [Google Scholar]
  95. LaxminarayanR. MatsosoP. PantS. BrowerC. RøttingenJ.A. KlugmanK. DaviesS. Access to effective antimicrobials: a worldwide challenge.Lancet20163871001416817510.1016/S0140‑6736(15)00474‑226603918
    [Google Scholar]
  96. WasanH. ReetaK.H. GuptaY.K. Strategies to improve antibiotic access and a way forward for lower middle-income countries.J. Antimicrob. Chemother.202479111010.1093/jac/dkad29138008421
    [Google Scholar]
  97. MorinS. BazarovaN. JaconP. VellaS. The manufacturers’ perspective on world health organization prequalification of in vitro diagnostics.Clin. Infect. Dis.201866230130510.1093/cid/cix71929020182
    [Google Scholar]
  98. Antimicrobial resistance: global report on surveillance.2014Available from: https://www.who.int/publications/i/item/9789241564748(accessed on 21-9-2024)
  99. HarrisS.R. CartwrightE.J.P. TörökM.E. HoldenM.T.G. BrownN.M. Ogilvy-StuartA.L. EllingtonM.J. QuailM.A. BentleyS.D. ParkhillJ. PeacockS.J. Whole-genome sequencing for analysis of an outbreak of meticillin-resistant Staphylococcus aureus: a descriptive study.Lancet Infect. Dis.201313213013610.1016/S1473‑3099(12)70268‑223158674
    [Google Scholar]
  100. ThorpeK.E. JoskiP. JohnstonK.J. Antibiotic-resistant infection treatment costs have doubled since 2002, now exceeding $2 billion annually.Health Aff. (Millwood)201837466266910.1377/hlthaff.2017.115329561692
    [Google Scholar]
  101. JencsonA.L. CadnumJ.L. PiedrahitaC. DonskeyC.J. Hospital sinks are a potential nosocomial source of Candida infections.Clin. Infect. Dis.201765111954195510.1093/cid/cix62929020154
    [Google Scholar]
  102. MendelsonM. RøttingenJ.A. GopinathanU. HamerD.H. WertheimH. BasnyatB. ButlerC. TomsonG. BalasegaramM. Maximising access to achieve appropriate human antimicrobial use in low-income and middle-income countries.Lancet20163871001418819810.1016/S0140‑6736(15)00547‑426603919
    [Google Scholar]
  103. StehlikovaZ. KostovcikM. KostovcikovaK. KverkaM. JuzlovaK. RobF. HercogovaJ. BohacP. PintoY. UzanA. KorenO. Tlaskalova-HogenovaH. Jiraskova ZakostelskaZ. Dysbiosis of skin microbiota in psoriatic patients: co-occurrence of fungal and bacterial communities.Front. Microbiol.20191043810.3389/fmicb.2019.0043830949136
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673316661241002060518
Loading
/content/journals/cmc/10.2174/0109298673316661241002060518
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test