Skip to content
2000
Volume 32, Issue 33
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

The melanoma incidence has been increasing over the past three decades, with a disproportionately high fraction of tumors. The diagnosis of melanoma at its earliest stages can be challenging. The detectability of tumor melanocytes in the dermis is of key importance for distinguishing from invasive melanomas. In this review, a total of 475 melanomas diagnosed as tumors by hematoxylin and eosin staining were analyzed. This diagnosis was confirmed for 68% of cases, but 15% of melanomas were reassessed as invasive lesions using immunohistochemistry. The cases were upstaged by Melan-A/Mart-1, S-100, and SOX-10 with frequencies of 14.6%, 11.7%, and 10.8%, respectively. Whereas, the diagnosis of melanoma was confirmed by SOX-10, Melan-A/Mart-1, and S-100 in 81.4%, 63.8%, and 59.1% of cases, respectively. Moreover, the analysis of immunohistochemical detectability of melanocyte markers in different types of dermal cells was carried out for 574 various skin lesions. The stainings of S-100, SOX-10, MITF, and PRAME in fibroblasts and histiocytes, as well as Melan-A/Mart-1, HMB-45, and MITF in melanophages, were noted. The diagnosis of melanoma based on hematoxylin and eosin staining is confirmed by immunohistochemistry in most cases. However, some tumors become reassessed as invasive malignancies. Although none of the currently used melanocyte markers is absolutely specific, simultaneous analysis of nuclear SOX-10 and cytoplasmic Melan-A/Mart-1 stainings can support the diagnosis. However, immunohistochemistry remains an auxiliary tool, and the results should be analyzed in association with the cytomorphological features.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673339877250210105022
2025-02-18
2025-11-21
Loading full text...

Full text loading...

References

  1. AckermanA.B. CerroniL. KerlH. Pitfalls in Histopathologic Diagnosis of Malignant Melanoma.Malvern, Pennsylvania, USALea & Febiger1994
    [Google Scholar]
  2. HigginsH.W.II LeeK.C. GalanA. LeffellD.J. Melanoma in situ: Part I. Epidemiology, screening, and clinical features.J. Am. Acad. Dermatol.201573218119010.1016/j.jaad.2015.04.01426183967
    [Google Scholar]
  3. HigginsH.W.II LeeK.C. GalanA. LeffellD.J. Melanoma in situ: Part II. Histopathology, treatment, and clinical management.J. Am. Acad. Dermatol.201573219320310.1016/j.jaad.2015.03.05726183968
    [Google Scholar]
  4. SaidaT. Histogenesis of cutaneous malignant melanoma: The vast majority do not develop from melanocytic nevus but arise de novo as melanoma in situ.J. Dermatol.2019462809410.1111/1346‑8138.1473730632197
    [Google Scholar]
  5. Dainese-MarqueO. GarciaV. Andrieu-AbadieN. RiondJ. Contribution of Keratinocytes in skin cancer initiation and progression.Int. J. Mol. Sci.20242516881310.3390/ijms2516881339201498
    [Google Scholar]
  6. GreenK.J. PokornyJ. JarrellB. Dangerous liaisons: Loss of keratinocyte control over melanocytes in melanomagenesis.BioEssays20244611240013510.1002/bies.20240013539233509
    [Google Scholar]
  7. BarnhillR.L. BusamK.J. Pathology of Melanocytic Nevi and Malignant Melanoma.Newton, Massachusetts, USAButterworth-Heinemann1995
    [Google Scholar]
  8. LeeJ.A.H. The systematic relationship between melanomas diagnosed in situ and when invasive.Melanoma Res.200111552352910.1097/00008390‑200110000‑0001311595891
    [Google Scholar]
  9. OlsenC.M. PandeyaN. RosenbergP.S. WhitemanD.C. Incidence of in situ vs. invasive melanoma: Testing the “obligate precursor” hypothesis.J. Natl. Cancer Inst.2022114101364137010.1093/jnci/djac13836042554
    [Google Scholar]
  10. SacchettoL. ZanettiR. ComberH. BouchardyC. BrewsterD.H. BroganelliP. ChirlaqueM.D. CozaD. GalceranJ. GavinA. HacklM. KatalinicA. LarønningenS. LouwmanM.W.J. MorganE. RobsahmT.E. SanchezM.J. TryggvadóttirL. TuminoR. Van EyckenE. VernonS. ZadnikV. RossoS. Trends in incidence of thick, thin and in situ melanoma in Europe.Eur. J. Cancer20189210811810.1016/j.ejca.2017.12.02429395684
    [Google Scholar]
  11. RimalR. RobsahmT.E. GreenA.C. GhiasvandR. RueeggC.S. BassarovaA. GjersvikP. WeiderpassE. AalenO.O. MøllerB. PerrierF. VeierødM.B. Trends in invasive melanoma thickness in Norway, 1983–2019.Acta Derm. Venereol.2024104adv2611010.2340/actadv.v104.2611039221835
    [Google Scholar]
  12. ScalvenziM. MegnaM. CostaC. FabbrociniG. VillaniA. GrecoV. Cutaneous melanoma associated with naevi prevalence: A 15-year cross-sectional retrospective study.Australas. J. Dermatol.2020611394210.1111/ajd.1317131603538
    [Google Scholar]
  13. GershenwaldJ.E. ScolyerR.A. HessK.R. SondakV.K. LongG.V. RossM.I. LazarA.J. FariesM.B. KirkwoodJ.M. McArthurG.A. HayduL.E. EggermontA.M.M. FlahertyK.T. BalchC.M. ThompsonJ.F. Melanoma staging: Evidence-based changes in the American Joint Committee on Cancer eighth edition cancer staging manual.CA. Cancer J. Clin.2017676472492
    [Google Scholar]
  14. Quintanilla-DieckM.J. BichakjianC.K. Management of early-stage melanoma.Facial Plast. Surg. Clin. North Am.2019271354210.1016/j.fsc.2018.08.00330420071
    [Google Scholar]
  15. TasF. Metastatic behavior in melanoma: Timing, pattern, survival, and influencing factors.J. Oncol.201220121910.1155/2012/64768422792102
    [Google Scholar]
  16. GarbeC. PerisK. HauschildA. SaiagP. MiddletonM. BastholtL. GrobJ.J. MalvehyJ. Newton-BishopJ. StratigosA.J. PehambergerH. EggermontA.M. European Dermatology Forum (EDF) European Association of Dermato-Oncology (EADO) European Organisation for Research and Treatment of Cancer (EORTC) Diagnosis and treatment of melanoma. European consensus-based interdisciplinary guideline – Update 2016.Eur. J. Cancer20166320121710.1016/j.ejca.2016.05.00527367293
    [Google Scholar]
  17. SantillanA.A. MessinaJ.L. MarzbanS.S. CrespoG. SondakV.K. ZagerJ.S. Pathology review of thin melanoma and melanoma in situ in a multidisciplinary melanoma clinic: impact on treatment decisions.J. Clin. Oncol.201028348148610.1200/JCO.2009.24.773420008627
    [Google Scholar]
  18. PatrawalaS. MaleyA. GreskovichC. StuartL. ParkerD. SwerlickR. StoffB. Discordance of histopathologic parameters in cutaneous melanoma: Clinical implications.J. Am. Acad. Dermatol.2016741758010.1016/j.jaad.2015.09.00826514601
    [Google Scholar]
  19. ErikssonH. Frohm-NilssonM. HedbladM. HellborgH. Kanter-LewensohnL. KrawiecK. RozellB. Månsson-BrahmeE. HanssonJ. Interobserver variability of histopathological prognostic parameters in cutaneous malignant melanoma: Impact on patient management.Acta Derm. Venereol.201393441141610.2340/00015555‑151723306667
    [Google Scholar]
  20. NieblingM.G. HayduL.E. KarimR.Z. ThompsonJ.F. ScolyerR.A. Pathology review significantly affects diagnosis and treatment of melanoma patients: An analysis of 5011 patients treated at a melanoma treatment center.Ann. Surg. Oncol.20142172245225110.1245/s10434‑014‑3682‑x24748128
    [Google Scholar]
  21. ElmoreJ.G. BarnhillR.L. ElderD.E. LongtonG.M. PepeM.S. ReischL.M. CarneyP.A. TitusL.J. NelsonH.D. OnegaT. TostesonA.N.A. WeinstockM.A. KnezevichS.R. PiepkornM.W. Pathologists’ diagnosis of invasive melanoma and melanocytic proliferations: Observer accuracy and reproducibility study.BMJ2017357j281310.1136/bmj.j281328659278
    [Google Scholar]
  22. PiepkornM.W. LongtonG.M. ReischL.M. ElderD.E. PepeM.S. KerrK.F. TostesonA.N.A. NelsonH.D. KnezevichS. RadickA. ShucardH. OnegaT. CarneyP.A. ElmoreJ.G. BarnhillR.L. Assessment of second-opinion strategies for diagnoses of cutaneous melanocytic lesions.JAMA Netw. Open2019210e191259710.1001/jamanetworkopen.2019.1259731603483
    [Google Scholar]
  23. GellerB.M. FrederickP.D. KnezevichS.R. LottJ.P. NelsonH.D. TitusL.J. CarneyP.A. TostesonA.N.A. OnegaT.L. BarnhillR.L. WeinstockM.A. ElderD.E. PiepkornM.W. ElmoreJ.G. Pathologists’ use of second opinions in interpretation of melanocytic cutaneous lesions: Policies, practices, and perceptions.Dermatol. Surg.201844217718510.1097/DSS.000000000000125628858936
    [Google Scholar]
  24. BaxM.J. JohnsonT.M. HarmsP.W. SchwartzJ.L. ZhaoL. FullenD.R. ChanM.P. Detection of occult invasion in melanoma in situ. JAMA Dermatol.2016152111201120810.1001/jamadermatol.2016.266827533878
    [Google Scholar]
  25. DrabeniM. Lopez-VilaróL. BarrancoC. TrevisanG. GallardoF. PujolR.M. Differences in tumor thickness between hematoxylin and eosin and Melan-A immunohistochemically stained primary cutaneous melanomas.Am. J. Dermatopathol.2013351566310.1097/DAD.0b013e31825ba93322688397
    [Google Scholar]
  26. PenneysN.S. Microinvasive lentigo maligna melanoma.J. Am. Acad. Dermatol.198717467568010.1016/S0190‑9622(87)70254‑03312317
    [Google Scholar]
  27. SuchakR. HameedO.A. RobsonA. Evaluation of the role of routine melan-A immunohistochemistry for exclusion of microinvasion in 120 cases of lentigo maligna.Am. J. Dermatopathol.201436538739110.1097/DAD.0b013e3182a3877a24394300
    [Google Scholar]
  28. Parra-MedinaR. MoralesS.D. Diagnostic utility of epithelial and melanocitic markers with double sequential immunohistochemical staining in differentiating melanoma in situ from invasive melanoma.Ann. Diagn. Pathol.201726707410.1016/j.anndiagpath.2016.07.01027594302
    [Google Scholar]
  29. DysonS.W. BassJ. PomeranzJ. JaworskyC. SigelJ. SomachS. Impact of thorough block sampling in the histologic evaluation of melanomas.Arch. Dermatol.2005141673473610.1001/archderm.141.6.73415967919
    [Google Scholar]
  30. StuartL.N. RodriguezA.S. GardnerJ.M. FosterT.E. MacKelfreshJ. ParkerD.C. ChenS.C. StoffB.K. Utility of additional tissue sections in dermatopathology: Diagnostic, clinical and financial implications.J. Cutan. Pathol.2014412818710.1111/cup.1226724251693
    [Google Scholar]
  31. MegahedM. SchönM. SelimovicD. SchönM.P. Reliability of diagnosis of melanoma in situ. Lancet200235993211921192210.1016/S0140‑6736(02)08741‑X12057558
    [Google Scholar]
  32. DangaM.E. YaarR. BhawanJ. Melan-A positive dermal cells in malignant melanoma in situ.J. Cutan. Pathol.201542638839310.1111/cup.1247325726939
    [Google Scholar]
  33. PopA.M. MoneaM. OlahP. MoraruR. CotoiO.S. The importance of immunohistochemistry in the evaluation of tumor depth of primary cutaneous melanoma.Diagnostics2023136102010.3390/diagnostics1306102036980327
    [Google Scholar]
  34. RodicN. GlusacE.J. Detection of occult invasion in melanoma in situ. JAMA Dermatol.2017153661110.1001/jamadermatol.2017.019628384663
    [Google Scholar]
  35. KuźbickiŁ. BrożynaA.A. The detectability of intraepidermal melanocytes—A narrative review of immunohistochemical studies.J. Cutan. Pathol.202249121074108910.1111/cup.1429535851493
    [Google Scholar]
  36. RobsonA. AllenP. HollowoodK. S100 expression in cutaneous scars: A potential diagnostic pitfall in the diagnosis of desmoplastic melanoma.Histopathology200138213514010.1046/j.1365‑2559.2001.01066.x11207826
    [Google Scholar]
  37. TrejoO. ReedJ.A. PrietoV.G. Atypical cells in human cutaneous re-excision scars for melanoma express p75NGFR, C56/N-CAM and GAP-43: evidence of early Schwann cell differentiation.J. Cutan. Pathol.200229739740610.1034/j.1600‑0560.2002.290703.x12139634
    [Google Scholar]
  38. Ramos-HerberthF.I. KaramchandaniJ. KimJ. DadrasS.S. SOX10 immunostaining distinguishes desmoplastic melanoma from excision scar.J. Cutan. Pathol.201037994495210.1111/j.1600‑0560.2010.01568.x20653825
    [Google Scholar]
  39. ChornyJ.A. BarrR.J. S100-positive spindle cells in scars: A diagnostic pitfall in the re-excision of desmoplastic melanoma.Am. J. Dermatopathol.200224430931210.1097/00000372‑200208000‑0000412142609
    [Google Scholar]
  40. BehrensE.L. BootheW. D’SilvaN. WalterscheidB. WatkinsP. TarboxM. SOX-10 staining in dermal scars.J. Cutan. Pathol.201946857958510.1111/cup.1346830950082
    [Google Scholar]
  41. DonaldsonM.R. WeberL.A. SOX10 commonly stains scar in Mohs sections.Dermatol. Online J.20202611510.5070/D326104719632155034
    [Google Scholar]
  42. TanC.L. MaheshwariP. ChooS.N. ChanY.H. NgS.B. Expression of melanocytic markers in melanophages across platforms: A potential diagnostic pitfall.Histopathology201770350150410.1111/his.1307527598989
    [Google Scholar]
  43. Audrey-BayanC. TragerM.H. Gartrell-CorradoR.D. RizkE.M. PradhanJ. SilvermanA.M. LopezA. MarksD.K. NiedtG. GeskinL.J. SaengerY.M. Distinguishing melanophages from tumor in melanoma patients treated with talimogene laherparepvec.Melanoma Res.202030441041510.1097/CMR.000000000000066132379409
    [Google Scholar]
  44. HarveyN.T. AcottN.J. WoodB.A. Sox10-positive cells within scars: A potential diagnostic pitfall.Am. J. Dermatopathol.2017391079179310.1097/DAD.000000000000075627759704
    [Google Scholar]
  45. Febres-AldanaC.A. AlexisJ. Normal expression of SRY-related HMG-BOX gene 10 (SOX-10) in recent and old cutaneous scars is a potential mimicker of desmoplastic malignant melanoma.Appl. Immunohistochem. Mol. Morphol.202028319720410.1097/PAI.000000000000072930672775
    [Google Scholar]
  46. ChristensenK.N. HochwaltP.C. HockerT.L. RoenigkR.K. BrewerJ.D. BaumC.L. OtleyC.C. ArpeyC.J. Comparison of MITF and Melan-a Immunohistochemistry during mohs surgery for lentigo maligna-type melanoma in situ and lentigo maligna melanoma.Dermatol. Surg.201642216717510.1097/DSS.000000000000060026771682
    [Google Scholar]
  47. AndresC. FlaigM.J. Pitfalls of Melan-A staining.J. Cutan. Pathol.201037891791810.1111/j.1600‑0560.2009.01442.x19804418
    [Google Scholar]
  48. HendiA. BrodlandD.G. ZitelliJ.A. Melanocytes in long-standing sun-exposed skin: Quantitative analysis using the MART-1 immunostain.Arch. Dermatol.2006142787187610.1001/archderm.142.7.87116847203
    [Google Scholar]
  49. PlotzkeJ.M. ZoumberosN.A. HrycajS.M. HarmsP.W. BreslerS.C. ChanM.P. PRAME expression is similar in scar and desmoplastic melanoma.J. Cutan. Pathol.202249982983210.1111/cup.1428635752877
    [Google Scholar]
  50. FujimotoM. JinnouchiK. KakuY. HirataM. NishitsujiK. HagaH. Investigation of PRAME expression in lipid-laden and non-lipid-laden cutaneous histiocytes.J. Cutan. Pathol.202249121011101410.1111/cup.1433436149230
    [Google Scholar]
  51. WakefieldC. HeffronC.C.B.B. PRAME immunoexpression in benign fibroblasts - A diagnostic pitfall.Histopathology20228061011101310.1111/his.1461535103337
    [Google Scholar]
  52. RawsonR.V. ShteinmanE.R. AnsarS. VergaraI.A. ThompsonJ.F. LongG.V. ScolyerR.A. WilmottJ.S. Diagnostic utility of PRAME, p53 and 5-hmC immunostaining for distinguishing melanomas from naevi, neurofibromas, scars and other histological mimics.Pathology202254786387310.1016/j.pathol.2022.05.01235987723
    [Google Scholar]
  53. FritschyJ.M. Is my antibody-staining specific? How to deal with pitfalls of immunohistochemistry.Eur. J. Neurosci.200828122365237010.1111/j.1460‑9568.2008.06552.x19087167
    [Google Scholar]
  54. GownA.M. Diagnostic immunohistochemistry: What can go wrong and how to prevent it.Arch. Pathol. Lab. Med.2016140989389810.5858/arpa.2016‑0119‑RA27575264
    [Google Scholar]
  55. KużbickiŁ. LangeD. ChwirotB.W. Cyclooxygenase-2 immunohistochemistry in human melanoma: Differences between results obtained with different antibodies.Melanoma Res.200919529430010.1097/CMR.0b013e32832e0bde19543125
    [Google Scholar]
  56. KuźbickiŁ. UrbanJ. ChwirotB.W. Different detectability of cyclooxygenase-2 (COX-2) protein in standard paraffin sections and tissue microarrays of human melanomas and naevi – Comparative study.Pathol. Res. Pract.2014210959159510.1016/j.prp.2014.04.01424878108
    [Google Scholar]
  57. MatosoA. SinghK. JacobR. GreavesW.O. TavaresR. NobleL. ResnickM.B. DeLellisR.A. WangL.J. Comparison of thyroid transcription factor-1 expression by 2 monoclonal antibodies in pulmonary and nonpulmonary primary tumors.Appl. Immunohistochem. Mol. Morphol.201018214214910.1097/PAI.0b013e3181bdf4e719887917
    [Google Scholar]
  58. SawickaM. PawlikowskiJ. WilsonS. FerdinandoD. WuH. AdamsP.D. GunnD.A. ParishW. The specificity and patterns of staining in human cells and tissues of p16INK4a antibodies demonstrate variant antigen binding.PLoS One201381e5331310.1371/journal.pone.005331323308192
    [Google Scholar]
  59. BorrisholtM. NielsenS. VybergM. Demonstration of CDX2 is highly antibody dependant.Appl. Immunohistochem. Mol. Morphol.2013211647210.1097/PAI.0b013e318257f8aa22595949
    [Google Scholar]
  60. RøgeR. NielsenS. VybergM. Carb-3 is the superior anti-CD15 monoclonal antibody for immunohistochemistry.Appl. Immunohistochem. Mol. Morphol.201422644945810.1097/PAI.0b013e318292b76423846425
    [Google Scholar]
  61. ToriyamaA. MoriT. SekineS. YoshidaA. HinoO. TsutaK. Utility of PAX8 mouse monoclonal antibody in the diagnosis of thyroid, thymic, pleural and lung tumours: A comparison with polyclonal PAX8 antibody.Histopathology201465446547210.1111/his.1240524592933
    [Google Scholar]
  62. SinghK. HanleyL.C. SungC.J. QuddusM.R. Comparison of PAX8 expression in breast carcinoma using MRQ50 and BC12 monoclonal antibodies.Appl. Immunohistochem. Mol. Morphol.202028755856110.1097/PAI.000000000000079631335489
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673339877250210105022
Loading
/content/journals/cmc/10.2174/0109298673339877250210105022
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test