Skip to content
2000
Volume 32, Issue 33
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Polycystic Ovary Syndrome (PCOS) is a common endocrinological disorder that affects women of reproductive age and can lead to infertility. The prevalence of PCOS ranges from 5-21% depending on the diagnostic criteria and study population. Clinical manifestations include irregular or absent menstrual periods, obesity, and signs of hyperandrogenism. PCOS can also lead to long-term consequences such as metabolic syndrome, increased risk of cardiovascular diseases, endometrial cancer, diabetes mellitus, and hypertension. Metformin and oral contraceptive pills are the most commonly used drugs for PCOS management, but their efficiency is limited and they have some considerable side effects. Researchers are looking into alternative therapeutic options such as phytochemicals. Curcumin (CUR) is a polyphenolic compound found in the rhizome of and has shown promising effects for females with PCOS. CUR exerts its anti-PCOS effects through different mechanisms such as reducing oxidative stress and inflammation, balancing hormone levels, and controlling the blood sugar and lipid profile. It can also reduce insulin resistance, regulate menstruation, and improve ovarian morphology and function. Despite its beneficial effects, CUR faces several challenges and limitations in clinical use, such as low bioavailability, instability, and rapid elimination. Therefore, researchers are investigating the potential of CUR nanoformulations and new drug delivery systems to overcome these barriers. With growing evidence regarding the potential role of CUR in PCOS treatment, we decided to provide an updated summary of the recent literature from clinical and preclinical studies on this topic.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673320502241002075427
2024-10-17
2025-10-01
Loading full text...

Full text loading...

References

  1. McCartneyC.R. MarshallJ.C. Polycystic ovary syndrome.N. Engl. J. Med.20163751546410.1056/NEJMcp151491627406348
    [Google Scholar]
  2. ReddyP.S. BegumN. MuthaS. BakshiV. Beneficial effect of curcumin in letrozole induced polycystic ovary syndrome.Asian Pac. J. Reprod.20165211612210.1016/j.apjr.2016.01.006
    [Google Scholar]
  3. SinghS. PalN. ShubhamS. SarmaD.K. VermaV. MarottaF. KumarM. Polycystic ovary syndrome: etiology, current management, and future therapeutics.J. Clin. Med.2023124145410.3390/jcm1204145436835989
    [Google Scholar]
  4. MeloA.S. FerrianiR.A. NavarroP.A. Treatment of infertility in women with polycystic ovary syndrome: approach to clinical practice.Clinics (São Paulo)2015701176576910.6061/clinics/2015(11)0926602525
    [Google Scholar]
  5. Zafari ZangenehF. Oxidative stress and its role in insulin resistance in polycystic ovary syndrome.International Journal of New Findings in Health and Educational Sciences (IJHES)20231171710.63053/ijhes.5
    [Google Scholar]
  6. BadawyA. ElnasharA. Treatment options for polycystic ovary syndrome.Int. J. Womens Health20113253510.2147/IJWH.S1130421339935
    [Google Scholar]
  7. OrioF. MuscogiuriG. PalombaS. Could the Mediterranean diet be effective in women with polycystic ovary syndrome? A proof of concept.Eur. J. Clin. Nutr.201569897410.1038/ejcn.2015.5325828622
    [Google Scholar]
  8. DomecqJ.P. PrutskyG. MullanR.J. SundareshV. WangA.T. ErwinP.J. WeltC. EhrmannD. MontoriV.M. MuradM.H. Adverse effects of the common treatments for polycystic ovary syndrome: a systematic review and meta-analysis.J. Clin. Endocrinol. Metab.201398124646465410.1210/jc.2013‑237424092830
    [Google Scholar]
  9. TrolleB. FlyvbjergA. KesmodelU. LauszusF.F. Efficacy of metformin in obese and non-obese women with polycystic ovary syndrome: a randomized, double-blinded, placebo-controlled cross-over trial.Hum. Reprod.200722112967297310.1093/humrep/dem27117766923
    [Google Scholar]
  10. AzinF. KhazaliH. Phytotherapy of polycystic ovary syndrome: A review.Int. J. Reprod. Biomed. (Yazd)2022201132010.18502/ijrm.v20i1.1040435308325
    [Google Scholar]
  11. RathoreS. MukimM. SharmaP. DeviS. NagarJ.C. KhalidM. Curcumin: A review for health benefits.Int. J. Res. Rev.202071273290
    [Google Scholar]
  12. Jafari-NozadA.M. JafariA. YousefiS. BakhshiH. FarkhondehT. SamarghandianS. Anti-gout and urate-lowering potentials of curcumin: A review from bench to beside.Curr. Med. Chem.202431243715373210.2174/092986733166623072115465337488765
    [Google Scholar]
  13. Abdollahi-KariznoM. ChahkandiM. RajabiS. RoshanravanB. Jafari-NozadA.M. AschnerM. SamargahndianS. FarkhondehT. The protective effect of curcumin against cardiotoxic effects induced by chronic exposure to chlorpyrifos.Curr. Mol. Med.202424567668210.2174/011566524025164623091910092037877145
    [Google Scholar]
  14. Jafari-NozadA.M. JafariA. ZangooieA. BehdadfardM. ZangoueiA.S. AschnerM. FarkhondehT. SamarghandianS. Curcumin combats against gastrointestinal cancer: A review of current knowledge regarding epigenetics mechanisms with a focus on DNA methylation.Curr. Med. Chem.202330384374438810.2174/092986733066623011209280236644869
    [Google Scholar]
  15. BanezM.J. GeluzM.I. ChandraA. HamdanT. BiswasO.S. BryanN.S. Von SchwarzE.R. A systemic review on the antioxidant and anti-inflammatory effects of resveratrol, curcumin, and dietary nitric oxide supplementation on human cardiovascular health.Nutr. Res.202078112610.1016/j.nutres.2020.03.00232428778
    [Google Scholar]
  16. BahramiA. Jafari-NozadA.M. KarbasiS. AyadilordM. FernsG.A. Efficacy of curcumin on cognitive function scores in women with premenstrual syndrome and dysmenorrhea: a triple-blind, placebo-controlled clinical trial.Chin. J. Integr. Med.202329538739310.1007/s11655‑023‑3732‑337119345
    [Google Scholar]
  17. HeshmatiJ. GolabF. MorvaridzadehM. PotterE. Akbari-FakhrabadiM. FarsiF. TanbakooeiS. ShidfarF. The effects of curcumin supplementation on oxidative stress, Sirtuin-1 and peroxisome proliferator activated receptor γ coactivator 1α gene expression in polycystic ovarian syndrome (PCOS) patients: A randomized placebo-controlled clinical trial.Diabetes Metab. Syndr.2020142778210.1016/j.dsx.2020.01.00231991296
    [Google Scholar]
  18. Shojaei-ZarghaniS. Molani-GolR. RafrafM. Curcumin and polycystic ovary syndrome: A systematic review.Reprod. Sci.20222982105211810.1007/s43032‑021‑00826‑635157259
    [Google Scholar]
  19. RaniR. HajamY.A. KumarR. BhatR.A. RaiS. RatherM.A. A landscape analysis of the potential role of polyphenols for the treatment of Polycystic Ovarian Syndrome (PCOS).Phytomed. Plus20222110016110.1016/j.phyplu.2021.100161
    [Google Scholar]
  20. SirmansS.M. ParishR.C. BlakeS. WangX. Epidemiology and comorbidities of polycystic ovary syndrome in an indigent population.J. Investig. Med.201462686887410.1097/01.JIM.0000446834.90599.5d24844662
    [Google Scholar]
  21. MeierR.K. Polycystic ovary syndrome.Nurs. Clin. North Am.201853340742010.1016/j.cnur.2018.04.00830100006
    [Google Scholar]
  22. ChaudhuriA. Polycystic ovary syndrome: Causes, symptoms, pathophysiology, and remedies.Obes. Med.20233910048010.1016/j.obmed.2023.100480
    [Google Scholar]
  23. MukerjeeN. Polycystic ovary syndrome (PCOS) symptoms, causes & treatments-a review.Int. J. Sci. Res.20209719491957
    [Google Scholar]
  24. XiangL. SuZ. Aerobic exercise can improve the beneficial effects of curcumin on PCOS patients.Int. Neurourol. J.2024281271281
    [Google Scholar]
  25. PoretskyL. CataldoN.A. RosenwaksZ. GiudiceL.C. The insulin-related ovarian regulatory system in health and disease.Endocr. Rev.199920453558210.1210/edrv.20.4.037410453357
    [Google Scholar]
  26. XuY. QiaoJ. Association of insulin resistance and elevated androgen levels with polycystic ovarian syndrome (PCOS): a review of literature.J. Healthc. Eng.20222022111310.1155/2022/924056935356614
    [Google Scholar]
  27. DoldiN. GrossiD. DestefaniA. GessiA. FerrariA. Polycystic ovary syndrome: evidence for reduced 3β-hydroxysteroid dehydrogenase gene expression in human luteinizing granulosa cells.Gynecol. Endocrinol.2000141323710.3109/0951359000916765710813104
    [Google Scholar]
  28. DupontJ. ScaramuzziR.J. Insulin signalling and glucose transport in the ovary and ovarian function during the ovarian cycle.Biochem. J.2016473111483150110.1042/BCJ2016012427234585
    [Google Scholar]
  29. NdefoU.A. EatonA. GreenM.R. Polycystic ovary syndrome: a review of treatment options with a focus on pharmacological approaches.P&T201338633635523946629
    [Google Scholar]
  30. BarbosaG. de SáL.B.P.C. RochaD.R.T.W. ArbexA.K. Polycystic ovary syndrome (PCOS) and fertility.Open J. Endocr. Metab. Dis.201661586510.4236/ojemd.2016.61008
    [Google Scholar]
  31. VinkJ.M. SadrzadehS. LambalkC.B. BoomsmaD.I. Heritability of polycystic ovary syndrome in a Dutch twin- family study.J. Clin. Endocrinol. Metab.20069162100210410.1210/jc.2005‑149416219714
    [Google Scholar]
  32. ArentzS. AbbottJ.A. SmithC.A. BensoussanA. Herbal medicine for the management of polycystic ovary syndrome (PCOS) and associated oligo/amenorrhoea and hyperandrogenism; a review of the laboratory evidence for effects with corroborative clinical findings.BMC Complement. Altern. Med.201414151110.1186/1472‑6882‑14‑51125524718
    [Google Scholar]
  33. Moini JazaniA. Nasimi Doost AzgomiH. Nasimi Doost AzgomiA. Nasimi Doost AzgomiR. A comprehensive review of clinical studies with herbal medicine on polycystic ovary syndrome (PCOS).Daru201927286387710.1007/s40199‑019‑00312‑031741280
    [Google Scholar]
  34. MatalliotakisI. KourtisA. KoukouraO. PanidisD. Polycystic ovary syndrome: etiology and pathogenesis.Arch. Gynecol. Obstet.2006274418719710.1007/s00404‑006‑0171‑x16685527
    [Google Scholar]
  35. RosenfieldR.L. EhrmannD.A. The pathogenesis of polycystic ovary syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited.Endocr. Rev.201637546752010.1210/er.2015‑110427459230
    [Google Scholar]
  36. PapalouO. VictorV.M. Diamanti-KandarakisE. Oxidative stress in polycystic ovary syndrome.Curr. Pharm. Des.201622182709272210.2174/138161282266616021615185226881435
    [Google Scholar]
  37. SelenH. YeşilkayaB. The role of dietary spplements and lifestyle changes in reducing polycystic ovary syndrome complications.Hacettepe University Faculty of Health Sciences Journal.202183453465
    [Google Scholar]
  38. AzarkarS. AbediM. LavasaniA.S.O. AmmamehA.H. GoharipanahF. BaloochiK. BakhshiH. JafariA. Curcumin as a natural potential drug candidate against important zoonotic viruses and prions: A narrative review.Phytother. Res.20243863080312110.1002/ptr.811938613154
    [Google Scholar]
  39. SirotkinA.V. The influence of turmeric and curcumin on female reproductive processes.Planta Med.202288121020102510.1055/a‑1542‑899234416765
    [Google Scholar]
  40. KianiA.K. DonatoK. DhuliK. StuppiaL. BertelliM. Dietary supplements for polycystic ovary syndrome.J. Prev. Med. Hyg.2022632E206E21336479481
    [Google Scholar]
  41. DulebaA.J. DokrasA. Is PCOS an inflammatory process?Fertil. Steril.201297171210.1016/j.fertnstert.2011.11.02322192135
    [Google Scholar]
  42. RehmanK. AkashM.S.H. Mechanisms of inflammatory responses and development of insulin resistance: how are they interlinked?J. Biomed. Sci.20162318710.1186/s12929‑016‑0303‑y27912756
    [Google Scholar]
  43. AboeldalylS. JamesC. SeyamE. IbrahimE.M. ShawkiH.E.D. AmerS. The role of chronic inflammation in polycystic ovarian syndrome—a systematic review and meta-analysis.Int. J. Mol. Sci.2021225273410.3390/ijms2205273433800490
    [Google Scholar]
  44. ChienY.J. ChangC.Y. WuM.Y. ChenC.H. HorngY.S. WuH.C. Effects of curcumin on glycemic control and lipid profile in polycystic ovary syndrome: systematic review with meta-analysis and trial sequential analysis.Nutrients202113268410.3390/nu1302068433669954
    [Google Scholar]
  45. KumalaM. Mutu ManikamN.R. The effects of curcumin supplementation on glycaemic index in women with polycystic ovarian syndrome: An evidence based case report.IJCNP20236111210.54773/ijcnp.v6i1.133
    [Google Scholar]
  46. AbdelazeemB. AbbasK.S. ShehataJ. BaralN. BanourS. HassanM. The effects of curcumin as dietary supplement for patients with polycystic ovary syndrome: An updated systematic review and meta-analysis of randomized clinical trials.Phytother. Res.2022361223210.1002/ptr.727434517426
    [Google Scholar]
  47. SohrevardiS.M. HeydariB. AzarpazhoohM.R. TeymourzadehM. Simental-MendíaL.E. AtkinS.L. SahebkarA. Karimi-ZarchiM. Therapeutic effect of curcumin in women with Polycystic Ovary Syndrome receiving metformin: a randomized controlled trial.Adv exp med biol2021130810911710.1007/978‑3‑030‑64872‑5_9.
    [Google Scholar]
  48. VareedS.K. KakaralaM. RuffinM.T. CrowellJ.A. NormolleD.P. DjuricZ. BrennerD.E. Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects.Cancer Epidemiol. Biomarkers Prev.20081761411141710.1158/1055‑9965.EPI‑07‑269318559556
    [Google Scholar]
  49. VitaglioneP. Barone LumagaR. FerracaneR. RadetskyI. MennellaI. SchettinoR. KoderS. ShimoniE. FoglianoV. Curcumin bioavailability from enriched bread: the effect of microencapsulated ingredients.J. Agric. Food Chem.201260133357336610.1021/jf204517k22401804
    [Google Scholar]
  50. RungseesantivanonS. ThenchaisriN. RuangvejvorachaiP. PatumrajS. Curcumin supplementation could improve diabetes-induced endothelial dysfunction associated with decreased vascular superoxide production and PKC inhibition.BMC Complement. Altern. Med.20101015710.1186/1472‑6882‑10‑5720946622
    [Google Scholar]
  51. PanahiY. HosseiniM.S. KhaliliN. NaimiE. MajeedM. SahebkarA. Antioxidant and anti-inflammatory effects of curcuminoid-piperine combination in subjects with metabolic syndrome: A randomized controlled trial and an updated meta-analysis.Clin. Nutr.20153461101110810.1016/j.clnu.2014.12.01925618800
    [Google Scholar]
  52. KarthikeyanA. SenthilN. MinT. Nanocurcumin: A promising candidate for therapeutic applications.Front. Pharmacol.20201148710.3389/fphar.2020.0048732425772
    [Google Scholar]
  53. JabczykM. NowakJ. HudzikB. Zubelewicz-SzkodzińskaB. Curcumin and its potential impact on microbiota.Nutrients2021136200410.3390/nu1306200434200819
    [Google Scholar]
  54. AbuelezzN.Z. E ShabanaM. RashedL. NB MorcosG. Nanocurcumin modulates miR-223-3p and NF-κB levels in the pancreas of rat model of polycystic ovary syndrome to attenuate autophagy flare, insulin resistance and improve ß cell mass.J. Exp. Pharmacol.20211387388810.2147/JEP.S32396234475786
    [Google Scholar]
  55. AbuelezzN.Z. ShabanaM.E. Abdel-MageedH.M. RashedL. MorcosG.N.B. Nanocurcumin alleviates insulin resistance and pancreatic deficits in polycystic ovary syndrome rats: Insights on PI3K/AkT/mTOR and TNF-α modulations.Life Sci.202025611800310.1016/j.lfs.2020.11800332589998
    [Google Scholar]
  56. Aaly-GharibehZ. HosseinchiM. Shalizar-JalaliA. Effect of nanocurcumin on fertility in murine model of polycystic ovary syndrome.Vet. Res. Forum202415211311738465321
    [Google Scholar]
  57. LimS.S. DaviesM.J. NormanR.J. MoranL.J. Overweight, obesity and central obesity in women with polycystic ovary syndrome: a systematic review and meta-analysis.Hum. Reprod. Update201218661863710.1093/humupd/dms03022767467
    [Google Scholar]
  58. BarberT.M. HansonP. WeickertM.O. FranksS. Obesity and polycystic ovary syndrome: implications for pathogenesis and novel management strategies.Clin. Med. Insights Reprod. Health201913p. 117955811987404210.1177/117955811987404231523137
    [Google Scholar]
  59. CussonsA.J. StuckeyB.G.A. WattsG.F. Cardiovascular disease in the polycystic ovary syndrome: New insights and perspectives.Atherosclerosis2006185222723910.1016/j.atherosclerosis.2005.10.00716313910
    [Google Scholar]
  60. AsanS.A. BaşM. ErenB. KaracaE. The effects of curcumin supplementation added to diet on anthropometric and biochemical status in women with polycystic ovary syndrome: A randomized, placebo-controlled trial.Prog. Nutr.2020224
    [Google Scholar]
  61. ShenW. QuY. JiangH. WangH. PanY. ZhangY. WuX. HanY. ZhangY. Therapeutic effect and safety of curcumin in women with PCOS: A systematic review and meta-analysis.Front. Endocrinol. (Lausanne)202213105111110.3389/fendo.2022.105111136387924
    [Google Scholar]
  62. AkbariM. LankaraniK.B. TabriziR. Ghayour-MobarhanM. PeymaniP. FernsG. GhaderiA. AsemiZ. The effects of curcumin on weight loss among patients with metabolic syndrome and related disorders: a systematic review and meta-analysis of randomized controlled trials.Front. Pharmacol.20191064910.3389/fphar.2019.0064931249528
    [Google Scholar]
  63. JamilianM. ForoozanfardF. KavossianE. AghadavodE. ShafabakhshR. HoseiniA. AsemiZ. Effects of curcumin on body weight, glycemic control and serum lipids in women with polycystic ovary syndrome: A randomized, double-blind, placebo-controlled trial.Clin. Nutr. ESPEN20203612813310.1016/j.clnesp.2020.01.00532220355
    [Google Scholar]
  64. HeshmatiJ. MoiniA. SepidarkishM. MorvaridzadehM. SalehiM. PalmowskiA. MojtahediM.F. ShidfarF. Effects of curcumin supplementation on blood glucose, insulin resistance and androgens in patients with polycystic ovary syndrome: A randomized double-blind placebo- controlled clinical trial.Phytomedicine20218015339510.1016/j.phymed.2020.15339533137599
    [Google Scholar]
  65. GupteP.A. KhadeK.N. WaghG.N. DeshmukhC.S. PanditV.A. BhaleraoS.S. Effect of combination of Curcuma longa with Emblica officinalis in females with polycystic ovarian syndrome: An open-label, randomized active-controlled, exploratory clinical study.Journal of Diabetology202314312613410.4103/jod.jod_17_23
    [Google Scholar]
  66. Abed al-kareem, Z.; Multag, J.H.; Khalaf, B.H.; Mosa, A.U. Correlation between hormonal and biochemical changes with kidney function in newly and previously diagnosed women diseased with polycystic ovary syndrome.Indian J. Forensic Med. Toxicol.2020143637
    [Google Scholar]
  67. WaldstreicherJ. SantoroN.F. HallJ. FilicoriM. CrowleyW.F. Hyperfunction of the hypothalamic-pituitary axis in women with polycystic ovarian disease: indirect evidence for partial gonadotroph desensitization.J. Clin. Endocrinol. Metab.198866116517210.1210/jcem‑66‑1‑1652961784
    [Google Scholar]
  68. YangH. DiJ. PanJ. YuR. TengY. CaiZ. DengX. The association between prolactin and metabolic parameters in PCOS women: a retrospective analysis.Front. Endocrinol. (Lausanne)20201126310.3389/fendo.2020.0026332477263
    [Google Scholar]
  69. FauserB.C.J.M. PacheT.D. LambertsS.W.J. HopW.C.J. De JongF.H. DahlK.D. Serum bioactive and immunoreactive luteinizing hormone and follicle-stimulating hormone levels in women with cycle abnormalities, with or without polycystic ovarian disease.J. Clin. Endocrinol. Metab.199173481181710.1210/jcem‑73‑4‑8111909705
    [Google Scholar]
  70. ChoudharyA. JainS. ChaudhariP. Prevalence and symptomatology of polycystic ovarian syndrome in Indian women: is there a rising incidence?Int. J. Reprod. Contracept. Obstet. Gynecol.20176114971497510.18203/2320‑1770.ijrcog20175010
    [Google Scholar]
  71. SaadiaZ. Follicle stimulating hormone (LH: FSH) ratio in polycystic ovary syndrome (PCOS)-obese vs. non-obese women.Med. Arh.202074428929310.5455/medarh.2020.74.289‑29333041447
    [Google Scholar]
  72. BalenA.H. TanS.L. JacobsH.S. Hypersecretion of luteinising hormone: a significant cause of infertility and miscarriage.BJOG1993100121082108910.1111/j.1471‑0528.1993.tb15170.x8297840
    [Google Scholar]
  73. HaganC.R. FaivreE.J. LangeC.A. Scaffolding actions of membrane-associated progesterone receptors.Steroids200974756857210.1016/j.steroids.2008.12.00419135465
    [Google Scholar]
  74. BachmeierB.E. MirisolaV. RomeoF. GenerosoL. EspositoA. Dell’EvaR. BlengioF. KillianP.H. AlbiniA. PfefferU. Reference profile correlation reveals estrogen-like trancriptional activity of Curcumin.Cell. Physiol. Biochem.201026347148210.1159/00032057020798532
    [Google Scholar]
  75. Tiwari-PandeyR. SairamM.R. Modulation of ovarian structure and abdominal obesity in curcumin- and flutamide-treated aging FSH-R haploinsufficient mice.Reprod. Sci.200916653955010.1177/193371910933282219304795
    [Google Scholar]
  76. MosaA.U. JasimW.K. OudaM.H. HassanA.H. Ameliorative effects of curcumin on dehydroepiandrosterone-induced polycystic ovary syndrome in female rats.Iraqi J Vet. Sci.20233719119610.33899/ijvs.2023.138616.2819
    [Google Scholar]
  77. ShannagS. NuseirK. TahainehL. HananehW. Curcumin is comparable to metformin for the treatment of PCOS in rats: a preclinical study.Pharmacia20247111010.3897/pharmacia.71.e119708
    [Google Scholar]
  78. AlibraheemiN.A.A. BustaniG.S. Al-DhalimyA.M.B. Effect of curcumin on LH and FSH hormones of polycystic syndrome induced by letrozole in female rats.Lat. Am. J. Pharm.202140179183
    [Google Scholar]
  79. Abd-AlqaderS.M. ZearahS.A. Al-AssadiI.J. Effect of Curcumin (Standard and Supplement) with Zinc on reproductive hormones in Polycystic Ovary Syndrome (PCOS) rats.Trop. J. Nat. Prod. Res.2023732540254610.26538/tjnpr/v7i3.12.
    [Google Scholar]
  80. MalvasiA. TinelliA. DellinoM. TrojanoG. VinciguerraM. MinaM. Curcumin and Teupolioside attenuate signs and symptoms severity associated to hirsutism in PCOS women: a preliminary pilot study.Eur. Rev. Med. Pharmacol. Sci.202226176187619136111918
    [Google Scholar]
  81. DingH. ZhangJ. ZhangF. ZhangS. ChenX. LiangW. XieQ. Resistance to the insulin and elevated level of androgen: A major cause of polycystic ovary syndrome.Front. Endocrinol. (Lausanne)20211274176410.3389/fendo.2021.74176434745009
    [Google Scholar]
  82. WojcikM. KrawczykM. WojcikP. CyprykK. WozniakL.A. Molecular mechanisms underlying curcumin- mediated therapeutic effects in Type 2 Diabetes and Cancer.Oxid Med Cell Longev20182018969825810.1155/2018/9698258
    [Google Scholar]
  83. SohaeiS. AmaniR. TarrahiM.J. Ghasemi-TehraniH. The effects of curcumin supplementation on glycemic status, lipid profile and hs-CRP levels in overweight/obese women with polycystic ovary syndrome: A randomized, double-blind, placebo-controlled clinical trial.Complement. Ther. Med.20194710220110.1016/j.ctim.2019.10220131780025
    [Google Scholar]
  84. DzigandzliG. AskaripourM. RajabiS. ShahmoradiM. Beneficial effects of curcumin on rats with polycystic ovary syndrome: Evaluation of the gene expression of GLUT4, Erα and insulin resistance.20182180710.29088/GMJM.2018.80.
    [Google Scholar]
  85. Jiménez-OsorioA.S. MonroyA. AlavezS. Curcumin and insulin resistance-molecular targets and clinical evidences.Biofactors201642656158010.1002/biof.130227325504
    [Google Scholar]
  86. Ghanbarzadeh-GhashtiN. Ghanbari-HomaieS. ShasebE. AbbasalizadehS. MirghafourvandM. The effect of Curcumin on metabolic parameters and androgen level in women with polycystic ovary syndrome: a randomized controlled trial.BMC Endocr. Disord.20232314010.1186/s12902‑023‑01295‑536788534
    [Google Scholar]
  87. ZohrabiT. NadjarzadehA. JambarsangS. SheikhhaM.H. AflatoonianA. Mozaffari-KhosraviH. Effect of dietary approaches to stop hypertension, and standard diets with and without curcumin on interleukin-1 alpha, 5-alpha reductase gene expressions, and androgenic and glycemic profile in polycystic ovary syndrome women undergoing in vitro fertilization treatment: A study protocol.Int. J. Reprod Biomed202321543344210.18502/ijrm.v21i5.13496.
    [Google Scholar]
  88. Abd-AlqaderS.M. ZearahS.A. Al-AssadiI.J. Studying the effect of curcumin (Standard & Supplements) and Zinc on the concentrations of glucose, insulin, HOMA-IR, and anti-mullerian hormone in pcos-model rats.Baghdad Sci.J.2024212042810.21123/bsj.2023.8187.
    [Google Scholar]
  89. Fazel TorshiziF. ChamaniM. KhodaeiH.R. SadeghiA.A. HejaziS.H. Majidzadeh HeraviR. Therapeutic effects of organic zinc on reproductive hormones, insulin resistance and mTOR expression, as a novel component, in a rat model of Polycystic ovary syndrome.Iran. J. Basic Med. Sci.2020231364532405346
    [Google Scholar]
  90. MusadakA. ZearahS.A. Effects of serotonin, melatonin, and zinc levels on prolactin hormone in hyperprolactinemic patients in Basrah Governorate, Iraq.Trop. J. Nat. Prod. Res.202265740744
    [Google Scholar]
  91. Pokorska-NiewiadaK. BrodowskaA. SzczukoM. The content of minerals in the PCOS group and the correlation with the parameters of metabolism.Nutrients2021137221410.3390/nu1307221434203167
    [Google Scholar]
  92. WangD. WangT. WangR. ZhangX. WangL. XiangZ. ZhuangL. ShenS. WangH. GaoQ. WangY. Suppression of p66Shc prevents hyperandrogenism-induced ovarian oxidative stress and fibrosis.J. Transl. Med.20201818410.1186/s12967‑020‑02249‑432066482
    [Google Scholar]
  93. RudnickaE. DuszewskaA.M. KucharskiM. TyczyńskiP. SmolarczykR. OXIDATIVE STRESS AND REPRODUCTIVE FUNCTION: Oxidative stress in polycystic ovary syndrome.Reproduction20221646F145F15410.1530/REP‑22‑015236279177
    [Google Scholar]
  94. VatsP. SagarN. SinghT.P. BanerjeeM. Association of Superoxide dismutases (SOD1 and SOD2) and Glutathione peroxidase 1 (GPx1) gene polymorphisms with Type 2 diabetes mellitus.Free Radic. Res.2015491172410.3109/10715762.2014.97178225283363
    [Google Scholar]
  95. SabuncuT. VuralH. HarmaM. HarmaM. Oxidative stress in polycystic ovary syndrome and its contribution to the risk of cardiovascular disease.Clin. Biochem.200134540741310.1016/S0009‑9120(01)00245‑411522279
    [Google Scholar]
  96. HilaliN. VuralM. CamuzcuogluH. CamuzcuogluA. AksoyN. Increased prolidase activity and oxidative stress in PCOS. Clin. Endocrinol. (Oxf.)201379110511010.1111/cen.1211023163753
    [Google Scholar]
  97. BradfordP.G. Curcumin and obesity.Biofactors2013391788710.1002/biof.107423339049
    [Google Scholar]
  98. MohammadiS. KayedpoorP. Karimzadeh-BardeiL. NabiuniM. The effect of curcumin on TNF-α, IL-6 and CRP expression in a model of polycystic ovary syndrome as an inflammation state.J. Reprod. Infertil.201718435236029201665
    [Google Scholar]
  99. MohammadiS. Karimzadeh BardeiL. HojatiV. GhorbaniA.G. NabiuniM. Anti-inflammatory effects of curcumin on insulin resistance index, levels of interleukin-6, C-reactive protein, and liver histology in polycystic ovary syndrome-induced rats.Cell J.201719342543328836404
    [Google Scholar]
  100. ZhangY. WengY. WangD. WangR. WangL. ZhouJ. ShenS. WangH. WangY. Curcumin in combination with aerobic exercise improves follicular dysfunction via inhibition of the hyperandrogen-induced IRE1 α /XBP1 endoplasmic reticulum stress pathway in PCOS-like rats.Oxid. Med. Cell. Longev.202120211738290010.1155/2021/738290034987702
    [Google Scholar]
  101. ZhangY. WangL. WengY. WangD. WangR. WangL. WangH. ShenS. WangY. LiY. Curcumin inhibits hyperandrogen-induced IRE1α-XBP1 pathway activation by activating the PI3K/AKT signaling in ovarian granulosa cells of PCOS model rats.Oxid Med Cell Longev20222022211329310.1155/2022/2113293.
    [Google Scholar]
  102. DuanH. YangS. YangS. ZengJ. YanZ. ZhangL. MaX. DongW. ZhangY. ZhaoX. HuJ. XiaoL. The mechanism of curcumin to protect mouse ovaries from oxidative damage by regulating AMPK/mTOR mediated autophagy.Phytomedicine202412815546810.1016/j.phymed.2024.15546838471315
    [Google Scholar]
  103. RepaciA. GambineriA. PasqualiR. The role of low- grade inflammation in the polycystic ovary syndrome.Mol. Cell. Endocrinol.20113351304110.1016/j.mce.2010.08.00220708064
    [Google Scholar]
  104. XuX. DuC. ZhengQ. PengL. SunY. Effect of metformin on serum interleukin-6 levels in polycystic ovary syndrome: a systematic review.BMC Womens Health20141419310.1186/1472‑6874‑14‑9325096410
    [Google Scholar]
  105. Tarkunİ. ArslanB.Ç. CantürkZ. TüremenE. Şahı̇nT. DumanC. Endothelial dysfunction in young women with polycystic ovary syndrome: relationship with insulin resistance and low-grade chronic inflammation.J. Clin. Endocrinol. Metab.200489115592559610.1210/jc.2004‑075115531516
    [Google Scholar]
  106. WangX.N. ZhangC.J. DiaoH.L. ZhangY. Protective effects of curcumin against sodium arsenite-induced ovarian oxidative injury in a mouse model.Chin. Med. J. (Engl.)201713091026103210.4103/0366‑6999.20492728469096
    [Google Scholar]
  107. shahM.Z.H. ShrivastavaV.K. Turmeric extract alleviates endocrine-metabolic disturbances in letrozole-induced PCOS by increasing adiponectin circulation: A comparison with Metformin.Metab. Open20221310016010.1016/j.metop.2021.10016035005596
    [Google Scholar]
  108. von FrankenbergA.D. do NascimentoF.V. GatelliL.E. NedelB.L. GarciaS.P. de OliveiraC.S.V. Saddi-RosaP. ReisA.F. CananiL.H. GerchmanF. Major components of metabolic syndrome and adiponectin levels: a cross-sectional study.Diabetol. Metab. Syndr.2014612610.1186/1758‑5996‑6‑2624568287
    [Google Scholar]
  109. ZhaoX. XiongY. ShenY. Leptin plays a role in the multiplication of and inflammation in ovarian granulosa cells in polycystic ovary syndrome through the JAK1/STAT3 pathway.Clinics (São Paulo)20237810026510.1016/j.clinsp.2023.10026537562217
    [Google Scholar]
  110. RoyV.K. VermaR. KrishnaA. Carnitine-mediated antioxidant enzyme activity and Bcl2 expression involves peroxisome proliferator-activated receptor-γ coactivator-1α in mouse testis.Reprod. Fertil. Dev.20172961057106310.1071/RD1533627064025
    [Google Scholar]
  111. ReddyT.V. GovatatiS. DeenadayalM. ShivajiS. BhanooriM. Polymorphisms in the TFAM and PGC1-α genes and their association with polycystic ovary syndrome among South Indian women.Gene201864112913610.1016/j.gene.2017.10.01029030253
    [Google Scholar]
  112. ChenL. TaoX. GeS. CaiL. DengX. Explore the Relationship between Insulin Resistance and PGC1&α; in PCOS Mice.Open J. Endocr. Metab. Dis.201883718010.4236/ojemd.2018.83008
    [Google Scholar]
  113. CorrieL. SinghH. GulatiM. VishwasS. ChellappanD.K. GuptaG. Paiva-SantosA.C. VeigaF. AlotaibiF. AlamA. EriR.D. PrasherP. AdamsJ. PaudelK.R. DuaK. SinghS.K. Polysaccharide-fecal microbiota-based colon-targeted self-nanoemulsifying drug delivery system of curcumin for treating polycystic ovarian syndrome.Naunyn Schmiedebergs Arch. Pharmacol.202412310.1007/s00210‑024‑03029‑338507103
    [Google Scholar]
  114. SomuP. PaulS. Surface conjugation of curcumin with self-assembled lysozyme nanoparticle enhanced its bioavailability and therapeutic efficacy in multiple cancer cells.J. Mol. Liq.202133811662310.1016/j.molliq.2021.116623
    [Google Scholar]
  115. DeyS. SreenivasanK. Conjugation of curcumin onto alginate enhances aqueous solubility and stability of curcumin.Carbohydr. Polym.20149949950710.1016/j.carbpol.2013.08.06724274536
    [Google Scholar]
  116. DarwishS. MozaffariS. ParangK. TiwariR. Cyclic peptide conjugate of curcumin and doxorubicin as an anticancer agent.Tetrahedron Lett.201758494617462210.1016/j.tetlet.2017.10.065
    [Google Scholar]
  117. KumarB. MalikA.H. SharmaP. RatheeH. PrakashT. BhatiaA. Validated reversed-phase high-performance liquid chromatography method for simultaneous estimation of curcumin and duloxetine hydrochloride in tablet and self-nanoemulsifying drug delivery systems.J. Pharm. Res.2017111166
    [Google Scholar]
  118. CorrieL. AwasthiA. KaurJ. VishwasS. GulatiM. KaurI.P. GuptaG. KommineniN. DuaK. SinghS.K. Interplay of gut microbiota in polycystic ovarian syndrome: role of gut microbiota, mechanistic pathways and potential treatment strategies.Pharmaceuticals (Basel)202316219710.3390/ph1602019737259345
    [Google Scholar]
  119. WahyuniA. MudigdoA. SoetrisnoS. WasitaB. BudiU.R. WidyaningsihV. Beneficial effects of self-nanoemulsifying drug delivery system extract of Curcuma longa on polycystic ovary syndrome rats model through insulin sensitization activity.Tropical Journal of Natural Product Research.20248365636569
    [Google Scholar]
  120. KaziM. Al-SwairiM. AhmadA. RaishM. AlanaziF.K. BadranM.M. KhanA.A. AlanaziA.M. HussainM.D. Evaluation of self-nanoemulsifying drug delivery systems (SNEDDS) for poorly water-soluble talinolol: Preparation, in vitro and in vivo assessment.Front. Pharmacol.20191045910.3389/fphar.2019.0045931118895
    [Google Scholar]
  121. RusminingsihE. SusantoH AfifahD.N. MartienR. SubagyoH.W. Effectiveness of moringa oleifera nanoparticles (self nano emulsifying drug delivery system) on insulin resistance in the prediabetes Rattus norvegicus model.Trop. J. Nat. Prod. Res2023711
    [Google Scholar]
  122. AhmedK. LiY. McClementsD.J. XiaoH. Nanoemulsion- and emulsion-based delivery systems for curcumin: Encapsulation and release properties.Food Chem.2012132279980710.1016/j.foodchem.2011.11.03922868161
    [Google Scholar]
  123. Javid-NaderiM.J. MahmoudiA. KesharwaniP. JamialahmadiT. SahebkarA. Recent advances of nanotechnology in the treatment and diagnosis of polycystic ovary syndrome.J. Drug Deliv. Sci. Technol.20237910401410.1016/j.jddst.2022.104014
    [Google Scholar]
  124. RajaM.A. MaldonadoM. ChenJ. ZhongY. GuJ. Development and evaluation of curcumin encapsulated self-assembled nanoparticles as potential remedial treatment for PCOS in a female rat model.Int. J. Nanomedicine2021166231624710.2147/IJN.S30216134531655
    [Google Scholar]
  125. FranksS. StarkJ. HardyK. Follicle dynamics and anovulation in polycystic ovary syndrome.Hum. Reprod. Update200814436737810.1093/humupd/dmn01518499708
    [Google Scholar]
  126. Fatemi AbhariS.M. KhanbabaeiR. Hayati RoodbariN. ParivarK. YaghmaeiP. Curcumin-loaded super-paramagnetic iron oxide nanoparticle affects on apoptotic factors expression and histological changes in a prepubertal mouse model of polycystic ovary syndrome-induced by dehydroepiandrosterone - a molecular and stereological study.Life Sci.202024911751510.1016/j.lfs.2020.11751532147428
    [Google Scholar]
  127. MahmoudiM. HosseinkhaniH. HosseinkhaniM. BoutryS. SimchiA. JourneayW.S. SubramaniK. LaurentS. Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine.Chem. Rev.2011111225328010.1021/cr100183221077606
    [Google Scholar]
  128. HooshmandS. HayatS.M.G. GhorbaniA. KhatamiM. PakravananK. DarroudiM. Preparation and applications of superparamagnetic iron oxide nanoparticles in novel drug delivery systems: an overview.Curr. Med. Chem.202128477779910.2174/1875533XMTAz7ODcs431971104
    [Google Scholar]
  129. JustinC. SamrotA.V. PD.S. SahithyaC.S. BhavyaK.S. SaipriyaC. Preparation, characterization and utilization of coreshell super paramagnetic iron oxide nanoparticles for curcumin delivery.PLoS One2018137e020044010.1371/journal.pone.020044030021002
    [Google Scholar]
  130. CortajarenaA.L. OrtegaD. OcampoS.M. Gonzalez- GarcíaA. CouleaudP. MirandaR. Belda-IniestaC. Ayuso-SacidoA. Engineering iron oxide nanoparticles for clinical settings.Nanobiomedicine (Rij)20141210.5772/5884130023013
    [Google Scholar]
  131. YadavR. JeeB. AwasthiS.K. Curcumin suppresses the production of pro-inflammatory cytokine interleukin-18 in lipopolysaccharide stimulated murine macrophage-like cells.Indian J. Clin. Biochem.201530110911210.1007/s12291‑014‑0452‑225646051
    [Google Scholar]
  132. LiM. XinM. GuoC. LinG. WuX. New nanomicelle curcumin formulation for ocular delivery: improved stability, solubility, and ocular anti-inflammatory treatment.Drug Dev. Ind. Pharm.201743111846185710.1080/03639045.2017.134978728665151
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673320502241002075427
Loading
/content/journals/cmc/10.2174/0109298673320502241002075427
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test