Skip to content
2000
Volume 33, Issue 1
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Introduction

Internal or external stress can induce cellular senescence, which reduces cell division. These metabolically active cells contribute to medication resistance. We examined the potential for edaravone (Eda) to cause apoptosis in dasatinib (Das)-induced senescent gastric adenocarcinoma cells (AGS). Our goal was to develop a new stomach cancer treatment.

Methods

All Eda doses evaluated were nontoxic to cells. Das decreased AGS cell survival in a dose-dependent manner. The study found that Das (5-10 μM) and Eda (100 μM) caused cell senescence in AGS cells. This was shown by increased β-galactosidase enzyme activity and reactive oxygen species levels and decreased telomerase enzyme activity. These are the biggest signs of aging.

Results

This combination therapy also upregulated the expression of cell-senescence genes p53, p16, p21, and p38. This resulted in increased expression of inflammation genes such as TNF-α, IL-1β, and IL-6.

Conclusion

The scratch assay showed that this combination medication down-regulated the cell migration-regulating matrix metalloproteinase-2 (MMP2) gene. Both Das and Eda decreased AGS cell proliferation, suggesting treatment with Eda may prevent metastasis.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673338322250211111422
2025-02-24
2026-02-22
Loading full text...

Full text loading...

References

  1. KongM. ChenH. ZhangR. ShengH. LiL. Overall survival advantage of omentum preservation over omentectomy for advanced gastric cancer: A systematic review and meta-analysis.World J. Surg.20224681952196110.1007/s00268‑022‑06562‑535462593
    [Google Scholar]
  2. KrenzienF. NevermannN. KrombholzA. BenzingC. HaberP. FehrenbachU. LurjeG. PelzerU. PratschkeJ. SchmelzleM. SchöningW. Treatment of intrahepatic cholangiocarcinoma-a multidisciplinary approach.Cancers202214236210.3390/cancers1402036235053523
    [Google Scholar]
  3. WagnerA.D. SynN.L. MoehlerM. GrotheW. YongW.P. TaiB.C. HoJ. UnverzagtS. Chemotherapy for advanced gastric cancer.Cochrane Database Syst. Rev.201788CD00406428850174
    [Google Scholar]
  4. KalmukJ. RinderD. HeltzelC. LockhartA.C. An overview of the preclinical discovery and development of trastuzumab deruxtecan: A novel gastric cancer therapeutic.Expert Opin. Drug Discov.202217542743610.1080/17460441.2022.205069235426752
    [Google Scholar]
  5. WuP.C. WangQ. GrobmanL. ChuE. WuD.Y. Accelerated cellular senescence in solid tumor therapy.Exp. Oncol.201234329830523070015
    [Google Scholar]
  6. KregelK.C. ZhangH.J. An integrated view of oxidative stress in aging: Basic mechanisms, functional effects, and pathological considerations.Am. J. Physiol. Regul. Integr. Comp. Physiol.20072921R18R3610.1152/ajpregu.00327.200616917020
    [Google Scholar]
  7. LinJ. EpelE. Stress and telomere shortening: Insights from cellular mechanisms.Ageing Res. Rev.20227310150710.1016/j.arr.2021.10150734736994
    [Google Scholar]
  8. LiaoZ. YeoH.L. WongS.W. ZhaoY. Cellular senescence: Mechanisms and therapeutic potential.Biomedicines2021912176910.3390/biomedicines912176934944585
    [Google Scholar]
  9. SanadaF. TaniyamaY. MuratsuJ. OtsuR. ShimizuH. RakugiH. MorishitaR. IGF binding protein-5 induces cell senescence.Front. Endocrinol.201895310.3389/fendo.2018.0005329515523
    [Google Scholar]
  10. MosieniakG. SliwinskaM.A. AlsterO. StrzeszewskaA. SunderlandP. PiechotaM. WasH. SikoraE. Polyploidy formation in doxorubicin-treated cancer cells can favor escape from senescence.Neoplasia2015171288289310.1016/j.neo.2015.11.00826696370
    [Google Scholar]
  11. WatanabeS. KawamotoS. OhtaniN. HaraE. Impact of senescence-associated secretory phenotype and its potential as a therapeutic target for senescence-associated diseases.Cancer Sci.2017108456356910.1111/cas.1318428165648
    [Google Scholar]
  12. CampisiJ. KimS. LimC.S. RubioM. Cellular senescence, cancer and aging: The telomere connection.Exp. Gerontol.200136101619163710.1016/S0531‑5565(01)00160‑711672984
    [Google Scholar]
  13. DemariaM. O’LearyM.N. ChangJ. ShaoL. LiuS. AlimirahF. KoenigK. LeC. MitinN. DealA.M. AlstonS. AcademiaE.C. KilmarxS. ValdovinosA. WangB. Bruind.A. KennedyB.K. MelovS. ZhouD. SharplessN.E. MussH. CampisiJ. Cellular senescence promotes adverse effects of chemotherapy and cancer relapse.Cancer Discov.20177216517610.1158/2159‑8290.CD‑16‑024127979832
    [Google Scholar]
  14. ShiM. LouB. JiJ. ShiH. ZhouC. YuY. LiuB. ZhuZ. ZhangJ. Synergistic antitumor effects of dasatinib and oxaliplatin in gastric cancer cells.Cancer Chemother. Pharmacol.2013721354410.1007/s00280‑013‑2166‑123712327
    [Google Scholar]
  15. WangX. XueQ. WuL. WangB. LiangH. Retracted: Dasatinib promotes TRAIL -mediated apoptosis by upregulating CHOP -dependent death receptor 5 in gastric cancer.FEBS Open Bio.20188573274210.1002/2211‑5463.1240429744288
    [Google Scholar]
  16. ChoiK.M. ChoE. BangG. LeeS.J. KimB. KimJ.H. ParkS.G. HanE.H. ChungY.H. KimJ.Y. KimE. KimJ.Y. Activity-based protein profiling reveals potential dasatinib targets in gastric cancer.Int. J. Mol. Sci.20202123927610.3390/ijms2123927633291786
    [Google Scholar]
  17. SongY. SunX. BaiW.L. JiW.Y. Antitumor effects of Dasatinib on laryngeal squamous cell carcinoma in vivo and in vitro.Eur. Arch. Otorhinolaryngol.201327041397140410.1007/s00405‑013‑2394‑323404469
    [Google Scholar]
  18. HegedüsL. SzücsK.D. KudlaM. HeidenreichJ. JendrossekV. Peña-LlopisS. GarayT. CzirokA. AignerC. PlönesT. Vega-Rubin-de-CelisS. HegedüsB. Nintedanib and dasatinib treatments induce protective autophagy as a potential resistance mechanism in mpm cells.Front. Cell Dev. Biol.20221085281210.3389/fcell.2022.85281235392170
    [Google Scholar]
  19. WitzelS. MaierA. SteinbachR. GrosskreutzJ. KochJ.C. SarikidiA. PetriS. GüntherR. WolfJ. HermannA. PrudloJ. CordtsI. LingorP. LöscherW.N. KohlZ. HagenackerT. RuckesC. KochB. SpittelS. GüntherK. MichelsS. DorstJ. MeyerT. LudolphA.C. Safety and effectiveness of long-term intravenous administration of edaravone for treatment of patients with amyotrophic lateral sclerosis.JAMA Neurol.202279212113010.1001/jamaneurol.2021.489335006266
    [Google Scholar]
  20. LuoL. SongZ. LiX. Huiwang ZengY. Qinwang Meiqi HeJ. Efficacy and safety of edaravone in treatment of amyotrophic lateral sclerosis—a systematic review and meta-analysis.Neurol. Sci.201940223524110.1007/s10072‑018‑3653‑230483992
    [Google Scholar]
  21. YangY. YiJ. PanM. HuB. DuanH. Edaravone alleviated propofol-induced neurotoxicity in developing hippocampus by mbdnf/trkb/pi3k pathway.Drug Des. Devel. Ther.2021151409142210.2147/DDDT.S29455733833500
    [Google Scholar]
  22. ZhaoX. ZhangE. RenX. BaiX. WangD. BaiL. LuoD. GuoZ. WangQ. YangJ. Edaravone alleviates cell apoptosis and mitochondrial injury in ischemia–reperfusion-induced kidney injury via the JAK/STAT pathway.Biol. Res.20205312810.1186/s40659‑020‑00297‑032620154
    [Google Scholar]
  23. RahimifardM. BaeeriM. BahadarH. Moini-NodehS. KhalidM. Haghi-AminjanH. MohammadianH. AbdollahiM. Therapeutic effects of gallic acid in regulating senescence and diabetes; an in vitro study.Molecules20202524587510.3390/molecules2524587533322612
    [Google Scholar]
  24. MahdizadeE. BaeeriM. HodjatM. RahimifardM. Navaei-NigjehM. Haghi-AminjanH. Moeini-NodehS. HassaniS. DehghanG. Hosseinpour-FeiziM.A. AbdollahiM. Impact of acrylamide on cellular senescence response and cell cycle distribution via an in-vitro study.Iran. J. Pharm. Res.202120416517735194437
    [Google Scholar]
  25. Nobakht-HaghighiN. RahimifardM. BaeeriM. RezvanfarM.A. NodehM.S. Haghi-AminjanH. HamurtekinE. AbdollahiM. Regulation of aging and oxidative stress pathways in aged pancreatic islets using alpha-lipoic acid.Mol. Cell. Biochem.20184491-226727610.1007/s11010‑018‑3363‑329696608
    [Google Scholar]
  26. BaeeriM. Mohammadi-NejadS. RahimifardM. Navaei-NigjehM. Moeini-NodehS. KhorasaniR. AbdollahiM. Molecular and biochemical evidence on the protective role of ellagic acid and silybin against oxidative stress-induced cellular aging.Mol. Cell. Biochem.20184411-2213310.1007/s11010‑017‑3172‑028887692
    [Google Scholar]
  27. BaeeriM. BahadarH. RahimifardM. Navaei-NigjehM. KhorasaniR. RezvanfarM.A. GholamiM. AbdollahiM. α-Lipoic acid prevents senescence, cell cycle arrest, and inflammatory cues in fibroblasts by inhibiting oxidative stress.Pharmacol. Res.201914121422310.1016/j.phrs.2019.01.00330611855
    [Google Scholar]
  28. MomtazS. BaeeriM. RahimifardM. Haghi-AminjanH. HassaniS. AbdollahiM. Manipulation of molecular pathways and senescence hallmarks by natural compounds in fibroblast cellsJ. Cell. Biochem.201912046209622210.1002/jcb.2790930474871
    [Google Scholar]
  29. HodjatM. BaeeriM. RezvanfarM.A. RahimifardM. GholamiM. AbdollahiM. On the mechanism of genotoxicity of ethephon on embryonic fibroblast cells.Toxicol. Mech. Methods201727317318010.1080/15376516.2016.127342527997273
    [Google Scholar]
  30. SarkhailP. NavidpourL. RahimifardM. HosseiniN.M. SouriE. Bioassay-guided fractionation and identification of wound healing active compound from Pistacia vera L. hull extract.J. Ethnopharmacol.202024811233510.1016/j.jep.2019.11233531654800
    [Google Scholar]
  31. NiazK. HassanF.I. MabqoolF. KhanF. MomtazS. BaeeriM. Navaei-NigjehM. RahimifardM. AbdollahiM. Effect of styrene exposure on plasma parameters, molecular mechanisms and gene expression in rat model islet cells.Environ. Toxicol. Pharmacol.201754627310.1016/j.etap.2017.06.02028688303
    [Google Scholar]
  32. GuptaS. PandaP.K. LuoW. HashimotoR.F. AhujaR. Network analysis reveals that the tumor suppressor lncRNA GAS5 acts as a double-edged sword in response to DNA damage in gastric cancer.Sci. Rep.20221211831210.1038/s41598‑022‑21492‑x36316351
    [Google Scholar]
  33. ShabanS. El-HussenyM.W.A. AbushoukA.I. SalemA.M.A. MamdouhM. Abdel-DaimM.M. Effects of antioxidant supplements on the survival and differentiation of stem cells.Oxid. Med. Cell. Longev.20172017503210210.1155/2017/5032102
    [Google Scholar]
  34. GuanL. CrastaK.C. MaierA.B. Assessment of cell cycle regulators in human peripheral blood cells as markers of cellular senescence.Ageing Res. Rev.20227810163410.1016/j.arr.2022.10163435460888
    [Google Scholar]
  35. KudlovaN. SanctisD.J.B. HajduchM. Cellular senescence: Molecular targets, biomarkers, and senolytic drugs.Int. J. Mol. Sci.2022238416810.3390/ijms2308416835456986
    [Google Scholar]
  36. FakhriS. MoradiZ.S. DeLibertoL.K. BishayeeA. Cellular senescence signaling in cancer: A novel therapeutic target to combat human malignancies.Biochem. Pharmacol.202219911498910.1016/j.bcp.2022.11498935288153
    [Google Scholar]
  37. FanT. DuY. ZhangM. ZhuA.R. ZhangJ. Senolytics cocktail dasatinib and quercetin alleviate human umbilical vein endothelial cell senescence via the traf6-mapk-nf-κb axis in a ythdf2-dependent manner.Gerontology202268892093410.1159/00052265635468611
    [Google Scholar]
  38. Sierra-RamirezA. López-AceitunoJ.L. Costa-MachadoL.F. PlazaA. BarradasM. Fernandez-MarcosP.J. Transient metabolic improvement in obese mice treated with navitoclax or dasatinib/quercetin.Aging20201212113371134810.18632/aging.10360732584785
    [Google Scholar]
  39. HicksonL.J. PrataL.L.G.P. BobartS.A. EvansT.K. GiorgadzeN. HashmiS.K. HerrmannS.M. JensenM.D. JiaQ. JordanK.L. KelloggT.A. KhoslaS. KoerberD.M. LagnadoA.B. LawsonD.K. LeBrasseurN.K. LermanL.O. McDonaldK.M. McKenzieT.J. PassosJ.F. PignoloR.J. PirtskhalavaT. SaadiqI.M. SchaeferK.K. TextorS.C. VictorelliS.G. VolkmanT.L. XueA. WentworthM.A. GerdesW.E.O. ZhuY. TchkoniaT. KirklandJ.L. Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease.EBioMedicine20194744645610.1016/j.ebiom.2019.08.06931542391
    [Google Scholar]
  40. RahimifardM. BaeeriM. MousaviT. AzarnezhadA. Haghi-AminjanH. AbdollahiM. Combination therapy of cisplatin and resveratrol to induce cellular aging in gastric cancer cells: Focusing on oxidative stress, and cell cycle arrest.Front. Pharmacol.202313106886310.3389/fphar.2022.106886336686661
    [Google Scholar]
  41. EwaldJ.A. DesotelleJ.A. WildingG. JarrardD.F. Therapy-induced senescence in cancer.J. Natl. Cancer Inst.2010102201536154610.1093/jnci/djq36420858887
    [Google Scholar]
  42. EngelandK. Cell cycle regulation: P53-p21-RB signaling.Cell Death Differ.202229594696010.1038/s41418‑022‑00988‑z35361964
    [Google Scholar]
  43. CheungC.T. KaulS.C. WadhwaR. Molecular bridging of aging and cancer.Ann. N. Y. Acad. Sci.20101197112913310.1111/j.1749‑6632.2009.05392.x20536841
    [Google Scholar]
  44. ChenJ. The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression.Cold Spring Harb. Perspect. Med.201663a02610410.1101/cshperspect.a02610426931810
    [Google Scholar]
  45. Tonnessen-MurrayC.A. LozanoG. JacksonJ.G. The regulation of cellular functions by the p53 protein: Cellular senescence.Cold Spring Harb. Perspect. Med.201772a02611210.1101/cshperspect.a02611227881444
    [Google Scholar]
  46. MijitM. CaraccioloV. MelilloA. AmicarelliF. GiordanoA. Role of p53 in the regulation of cellular senescence.Biomolecules202010342010.3390/biom1003042032182711
    [Google Scholar]
  47. KumariR. JatP. Mechanisms of cellular senescence: Cell cycle arrest and senescence associated secretory phenotype.Front. Cell Dev. Biol.2021964559310.3389/fcell.2021.64559333855023
    [Google Scholar]
  48. PassosJ.F. NelsonG. WangC. RichterT. SimillionC. ProctorC.J. MiwaS. OlijslagersS. HallinanJ. WipatA. SaretzkiG. RudolphK.L. KirkwoodT.B.L. Zglinickiv.T. Feedback between p21 and reactive oxygen production is necessary for cell senescence.Mol. Syst. Biol.20106134710.1038/msb.2010.520160708
    [Google Scholar]
  49. KimH.S. KimY. LimM.J. ParkY.G. ParkS.I. SohnJ. The p38-activated ER stress-ATF6α axis mediates cellular senescence.FASEB J.20193322422243410.1096/fj.201800836R30260700
    [Google Scholar]
  50. RahmanI. MarwickJ. KirkhamP. Redox modulation of chromatin remodeling: Impact on histone acetylation and deacetylation, NF-κB and pro-inflammatory gene expression.Biochem. Pharmacol.20046861255126710.1016/j.bcp.2004.05.04215313424
    [Google Scholar]
  51. AkhterN. WilsonA. ThomasR. Al-RashedF. KochumonS. Al-RoubA. ArefanianH. Al-MadhounA. Al- MullaF. AhmadR. SindhuS. ROS/TNF-α crosstalk triggers the expression of il-8 and mcp-1 in human monocytic thp-1 cells via the NF-κB and ERK1/2 mediated signaling.Int. J. Mol. Sci.202122191051910.3390/ijms22191051934638857
    [Google Scholar]
  52. ZhaoH. WangY. LiuY. YinK. WangD. LiB. YuH. XingM. ROS-induced hepatotoxicity under cypermethrin: Involvement of the crosstalk between nrf2/keap1 and nf-κb/iκb-α pathways regulated by proteasome.Environ. Sci. Technol.20215596171618310.1021/acs.est.1c0051533843202
    [Google Scholar]
  53. ChattopadhyayM. KodelaR. SantiagoG. LeT.T.C. NathN. KashfiK. NOSH-aspirin (NBS-1120) inhibits pancreatic cancer cell growth in a xenograft mouse model: Modulation of FoxM1, p53, NF-κB, iNOS, caspase-3 and ROS.Biochem. Pharmacol.202017611385710.1016/j.bcp.2020.11385732061771
    [Google Scholar]
  54. BringoldF. SerranoM. Tumor suppressors and oncogenes in cellular senescence.Exp. Gerontol.200035331732910.1016/S0531‑5565(00)00083‑810832053
    [Google Scholar]
  55. OhtaY. NomuraE. ShangJ. FengT. HuangY. LiuX. ShiX. NakanoY. HishikawaN. SatoK. TakemotoM. YamashitaT. AbeK. Enhanced oxidative stress and the treatment by edaravone in mice model of amyotrophic lateral sclerosis.J. Neurosci. Res.201997560761910.1002/jnr.2436830565312
    [Google Scholar]
  56. HashemiG. AdhamiH-R. RahimifardM. BaeeriM. SarkhailP. Investigation of in vitro Wound Healing Activity of Polygonatum orientale Desf. Rhizome.Tehran, IranTraditional and Integrative Medicine2022231243
    [Google Scholar]
  57. KirklandJ.L. TchkoniaT. Senolytic drugs: From discovery to translation.J. Intern. Med.2020288551853610.1111/joim.1314132686219
    [Google Scholar]
  58. Paez-RibesM. González-GualdaE. DohertyG.J. Muñoz-EspínD. Targeting senescent cells in translational medicine.EMBO Mol. Med.20191112e1023410.15252/emmm.20181023431746100
    [Google Scholar]
  59. WyldL. BellantuonoI. TchkoniaT. MorganJ. TurnerO. FossF. GeorgeJ. DansonS. KirklandJ.L. Senescence and cancer: A review of clinical implications of senescence and senotherapies.Cancers2020128213410.3390/cancers1208213432752135
    [Google Scholar]
  60. MongiardiM.P. PellegriniM. PalliniR. LeviA. FalchettiM.L. Cancer response to therapy-induced senescence: A matter of dose and timing.Cancers202113348410.3390/cancers1303048433513872
    [Google Scholar]
  61. VyasD. LaputG. VyasA. Chemotherapy-enhanced inflammation may lead to the failure of therapy and metastasis.OncoTargets Ther.201471015102310.2147/OTT.S6011424959088
    [Google Scholar]
  62. AggarwalV. TuliH. VarolA. ThakralF. YererM. SakK. VarolM. JainA. KhanM. SethiG. Role of reactive oxygen species in cancer progression: Molecular mechanisms and recent advancements.Biomolecules201991173510.3390/biom911073531766246
    [Google Scholar]
  63. ChuL. QuY. AnY. HouL. LiJ. LiW. FanG. SongB.L. LiE. ZhangL. QiW. Induction of senescence-associated secretory phenotype underlies the therapeutic efficacy of PRC2 inhibition in cancer.Cell Death Dis.202213215510.1038/s41419‑022‑04601‑635169119
    [Google Scholar]
  64. ChienM.H. LinC.W. ChengC.W. WenY.C. YangS.F. Matrix metalloproteinase-2 as a target for head and neck cancer therapy.Expert Opin. Ther. Targets201317220321610.1517/14728222.2013.74001223252422
    [Google Scholar]
  65. AziziG. GoudarzvandM. AfraeiS. SedaghatR. MirshafieyA. Therapeutic effects of dasatinib in mouse model of multiple sclerosis.Immunopharmacol. Immunotoxicol.201537328729410.3109/08923973.2015.102807425975582
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673338322250211111422
Loading
/content/journals/cmc/10.2174/0109298673338322250211111422
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Antioxidant; cell senescence; chemotherapy; dasatinib; edaravone; gastric cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test