Skip to content
2000
Volume 33, Issue 1
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Osteosarcoma (OS) is the most common primary bone malignancy in the world. Increasing studies indicate that long non-coding RNAs (lncRNAs) are involved in ferroptosis and OS progression. Therefore, this study aims to identify ferroptosis-related lncRNAs (FRlncRNAs), explore potential competing endogenous RNA (ceRNA) networks, and establish a new model for predicting OS prognosis.

Methods

Firstly, we downloaded data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), University of California, Santa Cruz (UCSC), and FerrDB, and screened for differentially expressed FRlncRNAs (DEFRlncRNAs) between OS patients and healthy controls. Then, we constructed the ceRNA network using the Lncbase 3.0, starBase, miRDB, miRTarBase, and TargetScan databases. Subsequently, prognosis-related DEFRlncRNAs were selected through Cox analysis, and a prognostic model was constructed. Next, the proportions of different immune cells in high and low-risk groups were quantified and evaluated using the “CIBERSORT” algorithm. Finally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed on prognosis-related DEFRlncRNAs to identify top-ranked biological processes and pathways.

Results

We identified 247 DEFRlncRNAs and constructed the ceRNA network comprising 37 lncRNAs, 84 microRNAs (miRNAs), and 865 messenger RNAs (mRNAs). Subsequently, we obtained 8 prognosis-related DEFRlncRNAs (AL645728.1, AL161785.1, LINC00539, AL590764.1, OLMALINC, AC110995.1, AC091180.2, and AL160006.1) and constructed a prognostic model, where metastasis and risk score were identified as important clinical factors for predicting OS prognosis. Additionally, only OLMALINC and AL160006.1 had corresponding target miRNAs in the prognosis-related ceRNA network. Lastly, we revealed the infiltration proportions of different immune cells in OS, with higher proportions of macrophages (M0 and M2 subgroups) and T cells (T cells CD4 memory resting and T cells CD8) observed.

Conclusion

This study explored the ferroptosis-related lncRNA-miRNA-mRNA regulatory network in OS, constructed a ferroptosis-related prognostic model, and characterized its association with immune infiltration, providing new insights into the pathological mechanisms and targeted therapy development for OS.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673322797241001054036
2024-12-27
2026-01-07
Loading full text...

Full text loading...

References

  1. BeirdH.C. BielackS.S. FlanaganA.M. GillJ. HeymannD. JanewayK.A. LivingstonJ.A. RobertsR.D. StraussS.J. GorlickR. Osteosarcoma.Nat. Rev. Dis. Primers2022817710.1038/s41572‑022‑00411‑436481743
    [Google Scholar]
  2. MirabelloL. TroisiR.J. SavageS.A. Osteosarcoma incidence and survival rates from 1973 to 2004.Cancer200911571531154310.1002/cncr.2412119197972
    [Google Scholar]
  3. BishopM.W. JanewayK.A. GorlickR. Future directions in the treatment of osteosarcoma.Curr. Opin. Pediatr.2016281263310.1097/MOP.000000000000029826626558
    [Google Scholar]
  4. OtoukeshB. BoddouhiB. MoghtadaeiM. KaghazianP. KaghazianM. Novel molecular insights and new therapeutic strategies in osteosarcoma.Cancer Cell Int.201818115810.1186/s12935‑018‑0654‑430349420
    [Google Scholar]
  5. BeirdH.C. BielackS.S. FlanaganA.M. GillJ. HeymannD. JanewayK.A. LivingstonJ.A. RobertsR.D. StraussS.J. GorlickR. Osteosarcoma.Nat. Rev. Dis. Primers202287710.1038/s41572‑022‑00409‑y36481668
    [Google Scholar]
  6. GillJ. GorlickR. Advancing therapy for osteosarcoma.Nat. Rev. Clin. Oncol.2021181060962410.1038/s41571‑021‑00519‑834131316
    [Google Scholar]
  7. LeiT. QianH. LeiP. HuY. Ferroptosis-related gene signature associates with immunity and predicts prognosis accurately in patients with osteosarcoma.Cancer Sci.2021112114785479810.1111/cas.1513134506683
    [Google Scholar]
  8. DixonS.J. LembergK.M. LamprechtM.R. SkoutaR. ZaitsevE.M. GleasonC.E. PatelD.N. BauerA.J. CantleyA.M. YangW.S. MorrisonB.III StockwellB.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death.Cell201214951060107210.1016/j.cell.2012.03.04222632970
    [Google Scholar]
  9. LiJ. CaoF. YinH. HuangZ. LinZ. MaoN. SunB. WangG. Ferroptosis: Past, present and future.Cell Death Dis.20201128810.1038/s41419‑020‑2298‑232015325
    [Google Scholar]
  10. XieY. HouW. SongX. YuY. HuangJ. SunX. KangR. TangD. Ferroptosis: Process and function.Cell Death Differ.201623336937910.1038/cdd.2015.15826794443
    [Google Scholar]
  11. CaiS. ZhangB. HuangC. DengY. WangC. YangY. XiangZ. NiY. WangZ. WangL. ZhangB. GuoX. HeJ. MaK. YuZ. CTRP6 protects against ferroptosis to drive lung cancer progression and metastasis by destabilizing SOCS2 and augmenting the xCT/GPX4 pathway.Cancer Lett.202357921646510.1016/j.canlet.2023.21646538084702
    [Google Scholar]
  12. SunG. WangJ. LiuF. ZhaoC. CuiS. WangZ. LiuZ. ZhangQ. XiangC. ZhangY. GalonsH. YuP. TengY. G-4 inhibits triple negative breast cancer by inducing cell apoptosis and promoting LCN2-dependent ferroptosis.Biochem. Pharmacol.202422211607710.1016/j.bcp.2024.11607738395264
    [Google Scholar]
  13. CuiW. GuoM. LiuD. XiaoP. YangC. HuangH. LiangC. YangY. FuX. ZhangY. LiuJ. ShiS. CongJ. HanZ. XuY. DuL. YinC. ZhangY. SunJ. GuW. ChaiR. ZhuS. ChuB. Gut microbial metabolite facilitates colorectal cancer development via ferroptosis inhibition.Nat. Cell Biol.202426112413710.1038/s41556‑023‑01314‑638168770
    [Google Scholar]
  14. IsaniG. BertocchiM. AndreaniG. FarruggiaG. CappadoneC. SalaroliR. ForniM. BernardiniC. Cytotoxic effects of Artemisia annua L. and pure artemisinin on the D-17 canine osteosarcoma cell line.Oxid. Med. Cell. Longev.201920191910.1155/2019/161575831354901
    [Google Scholar]
  15. LiuX. DuS. WangS. YeK. Ferroptosis in osteosarcoma: A promising future.Front. Oncol.202212103177910.3389/fonc.2022.103177936457488
    [Google Scholar]
  16. WangW. GreenM. ChoiJ.E. GijónM. KennedyP.D. JohnsonJ.K. LiaoP. LangX. KryczekI. SellA. XiaH. ZhouJ. LiG. LiJ. LiW. WeiS. VatanL. ZhangH. SzeligaW. GuW. LiuR. LawrenceT.S. LambC. TannoY. CieslikM. StoneE. GeorgiouG. ChanT.A. ChinnaiyanA. ZouW. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy.Nature2019569775527027410.1038/s41586‑019‑1170‑y31043744
    [Google Scholar]
  17. LiaoP. WangW. WangW. KryczekI. LiX. BianY. SellA. WeiS. GroveS. JohnsonJ.K. KennedyP.D. GijónM. ShahY.M. ZouW. CD8+ T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4.Cancer Cell2022404365378.e610.1016/j.ccell.2022.02.00335216678
    [Google Scholar]
  18. MorrisK.V. MattickJ.S. The rise of regulatory RNA.Nat. Rev. Genet.201415642343710.1038/nrg372224776770
    [Google Scholar]
  19. WangW. MinL. QiuX. WuX. LiuC. MaJ. ZhangD. ZhuL. Biological function of long non-coding RNA (LncRNA) xist.Front. Cell Dev. Biol.2021964564710.3389/fcell.2021.64564734178980
    [Google Scholar]
  20. SchmittAM ChangHY. Long noncoding RNAs in cancer pathways.Cancer Cell201645246310.1016/j.ccell.2016.03.010
    [Google Scholar]
  21. ThomsonD.W. DingerM.E. Endogenous microRNA sponges: Evidence and controversy.Nat. Rev. Genet.201617527228310.1038/nrg.2016.2027040487
    [Google Scholar]
  22. LinC. MiaoJ. HeJ. FengW. ChenX. JiangX. LiuJ. LiB. HuangQ. LiaoS. LiuY. The regulatory mechanism of LncRNA-mediated ceRNA network in osteosarcoma.Sci. Rep.2022121875610.1038/s41598‑022‑11371‑w35610231
    [Google Scholar]
  23. ZhangG.Z. WuZ.L. LiC.Y. RenE.H. YuanW.H. DengY.J. XieQ.Q. Development of a machine learning-based autophagy-related lncRNA signature to improve prognosis prediction in osteosarcoma patients.Front. Mol. Biosci.2021861508410.3389/fmolb.2021.61508434095215
    [Google Scholar]
  24. LiJ. LiY. WuX. LiY. Identification and validation of potential long non-coding RNA biomarkers in predicting survival of patients with head and neck squamous cell carcinoma.Oncol. Lett.20191765642565210.3892/ol.2019.1026131186787
    [Google Scholar]
  25. ZhangZ. ReinikainenJ. AdelekeK.A. PieterseM.E. Groothuis-OudshoornC.G.M. Time-varying covariates and coefficients in Cox regression models.Ann. Transl. Med.20186712110.21037/atm.2018.02.1229955581
    [Google Scholar]
  26. IsakoffM.S. BielackS.S. MeltzerP. GorlickR. Osteosarcoma: Current treatment and a collaborative pathway to success.J. Clin. Oncol.201533273029303510.1200/JCO.2014.59.489526304877
    [Google Scholar]
  27. LanduzziL. ManaraM.C. LolliniP.L. ScotlandiK. Patient derived xenografts for genome-driven therapy of osteosarcoma.Cells202110241610.3390/cells1002041633671173
    [Google Scholar]
  28. SchottC. ShahA.T. Sweet-CorderoE.A. Genomic complexity of osteosarcoma and its implication for preclinical and clinical targeted therapies.Adv. Exp. Med. Biol.2020125811910.1007/978‑3‑030‑43085‑6_132767231
    [Google Scholar]
  29. JiS. WangS. ZhaoX. LvL. Long noncoding RNA NEAT1 regulates the development of osteosarcoma through sponging miR-34a-5p to mediate HOXA13 expression as a competitive endogenous RNA.Mol. Genet. Genomic Med.201976e67310.1002/mgg3.67331044561
    [Google Scholar]
  30. ZhangY. LuoM. CuiX. O’ConnellD. YangY. Long noncoding RNA NEAT1 promotes ferroptosis by modulating the miR-362-3p/MIOX axis as a ceRNA.Cell Death Differ.20222991850186310.1038/s41418‑022‑00970‑935338333
    [Google Scholar]
  31. LiY. LinS. XieX. ZhuH. FanT. WangS. Highly enriched exosomal lncRNA OIP5-AS1 regulates osteosarcoma tumor angiogenesis and autophagy through miR-153 and ATG5.Am. J. Transl. Res.20211354211422334150009
    [Google Scholar]
  32. DaiJ. XuL. HuX. HanG. JiangH. SunH. ZhuG. TangX. Long noncoding RNA OIP5-AS1 accelerates CDK14 expression to promote osteosarcoma tumorigenesis via targeting miR-223.Biomed. Pharmacother.20181061441144710.1016/j.biopha.2018.07.10930119217
    [Google Scholar]
  33. YanY. LiuX. LiY. YanJ. ZhaoP. YangL. EPB41L4A-AS1 and UNC5B-AS1 have diagnostic and prognostic significance in osteosarcoma.J. Orthop. Surg. Res.202318126110.1186/s13018‑023‑03754‑036998043
    [Google Scholar]
  34. JinH. WangH. JinX. WangW. Long non-coding RNA H19 regulates LASP1 expression in osteosarcoma by competitively binding to miR-29a-3p.Oncol. Rep.202146320710.3892/or.2021.815834328197
    [Google Scholar]
  35. ZhangR. PanT. XiangY. ZhangM. XieH. LiangZ. ChenB. XuC. WangJ. HuangX. ZhuQ. ZhaoZ. GaoQ. WenC. LiuW. MaW. FengJ. SunX. DuanT. Lai-Han LeungE. XieT. WuQ. SuiX. Curcumenol triggered ferroptosis in lung cancer cells via lncRNA H19/miR-19b-3p/FTH1 axis.Bioact. Mater.202213233610.1016/j.bioactmat.2021.11.01335224289
    [Google Scholar]
  36. ShenB. ZhouN. HuT. ZhaoW. WuD. WangS. LncRNA MEG3 negatively modified osteosarcoma development through regulation of miR-361-5p and FoxM1.J. Cell. Physiol.20192348134641348010.1002/jcp.2802630624782
    [Google Scholar]
  37. ZhuC. ChenB. HeX. LiW. WangS. ZhuX. LiY. WanP. LiX. LncRNA MEG3 suppresses erastin-induced ferroptosis of chondrocytes via regulating miR-885-5p/SLC7A11 axis.Mol. Biol. Rep.202451113910.1007/s11033‑023‑09095‑938236340
    [Google Scholar]
  38. BianX. SunY.M. WangL.M. ShangY.L. ELK1-induced upregulation lncRNA LINC02381 accelerates the osteosarcoma tumorigenesis through targeting CDCA4 via sponging miR-503–5p.Biochem. Biophys. Res. Commun.202154811211910.1016/j.bbrc.2021.02.07233640603
    [Google Scholar]
  39. SongJ. WuX. LiuF. LiM. SunY. WangY. WangC. ZhuK. JiaX. WangB. MaX. Long non- coding RNA PVT1 promotes glycolysis and tumor progression by regulating miR-497/HK2 axis in osteosarcoma.Biochem. Biophys. Res. Commun.2017490221722410.1016/j.bbrc.2017.06.02428602700
    [Google Scholar]
  40. HeG.N. BaoN.R. WangS. XiM. ZhangT.H. ChenF.S. Ketamine induces ferroptosis of liver cancer cells by targeting lncRNA PVT1/miR-214-3p/GPX4.Drug Des. Devel. Ther.2021153965397810.2147/DDDT.S33284734566408
    [Google Scholar]
  41. FuD. LuC. QuX. LiP. ChenK. ShanL. ZhuX. LncRNA TTN-AS1 regulates osteosarcoma cell apoptosis and drug resistance via the miR-134-5p/MBTD1 axis.Aging201911198374838510.18632/aging.10232531600142
    [Google Scholar]
  42. LiS. LiuF. PeiY. WangW. ZhengK. ZhangX. Long noncoding RNA TTN-AS1 enhances the malignant characteristics of osteosarcoma by acting as a competing endogenous RNA on microRNA-376a thereby upregulating dickkopf-1.Aging201911187678769310.18632/aging.10228031525734
    [Google Scholar]
  43. MengX. ZhangZ. ChenL. WangX. ZhangQ. LiuS. Silencing of the long non-coding RNA TTN-AS1 attenuates the malignant progression of osteosarcoma cells by regulating the miR-16-1-3p/TFAP4 axis.Front. Oncol.20211165283510.3389/fonc.2021.65283534141611
    [Google Scholar]
  44. HuangS. ZhuX. KeY. XiaoD. LiangC. ChenJ. ChangY. LncRNA FTX inhibition restrains osteosarcoma proliferation and migration via modulating miR-320a/TXNRD1.Cancer Biol. Ther.202021437938710.1080/15384047.2019.170240531920141
    [Google Scholar]
  45. LiY. MaZ. LiW. XuX. ShenP. ZhangS. ChengB. XiaJ. PDPN+ CAFs facilitate the motility of OSCC cells by inhibiting ferroptosis via transferring exosomal lncRNA FTX.Cell Death Dis.2023141175910.1038/s41419‑023‑06280‑337993428
    [Google Scholar]
  46. MaQ. DaiX. LuW. QuX. LiuN. ZhuC. Silencing long non-coding RNA MEG8 inhibits the proliferation and induces the ferroptosis of hemangioma endothelial cells by regulating miR-497-5p/NOTCH2 axis.Biochem. Biophys. Res. Commun.2021556727810.1016/j.bbrc.2021.03.13233839417
    [Google Scholar]
  47. LiuC.W. LiuD. PengD. Long non-coding RNA ZFAS1 regulates NOB1 expression through interacting with miR-646 and promotes tumorigenesis in osteosarcoma.Eur. Rev. Med. Pharmacol. Sci.20192383206321610.26355/eurrev_201904_1767931081072
    [Google Scholar]
  48. YangY. TaiW. LuN. LiT. LiuY. WuW. LiZ. PuL. ZhaoX. ZhangT. DongZ. lncRNA ZFAS1 promotes lung fibroblast-to-myofibroblast transition and ferroptosis via functioning as a ceRNA through miR-150-5p/SLC38A1 axis.Aging202012109085910210.18632/aging.10317632453709
    [Google Scholar]
  49. YuX. JiangY. HuX. GeX. LINC00839/miR- 519d-3p/JMJD6 axis modulated cell viability, apoptosis, migration and invasiveness of lung cancer cells.Folia Histochem. Cytobiol.202159427128110.5603/FHC.a2021.002234734406
    [Google Scholar]
  50. ZhouX. ChangY. ZhuL. ShenC. QianJ. ChangR. LINC00839/miR-144-3p/WTAP (WT1 Associated protein) axis is involved in regulating hepatocellular carcinoma progression.Bioengineered2021122108491086110.1080/21655979.2021.199057834634995
    [Google Scholar]
  51. YangL. PeiL. YiJ. LINC00839 regulates proliferation, migration, invasion, apoptosis and glycolysis in neuroblastoma cells through miR-338-3p/GLUT1 axis.Neuropsychiatr. Dis. Treat.2021172027204010.2147/NDT.S30946734188473
    [Google Scholar]
  52. ZhangQ. WeiJ. LiN. LiuB. LINC00839 promotes neuroblastoma progression by sponging miR-454-3p to up-regulate NEUROD1.Neurochem. Res.20224782278229310.1007/s11064‑022‑03613‑035606572
    [Google Scholar]
  53. LiuP. FuR. ChenK. ZhangL. WangS. LiangW. ZouH. TaoL. JiaW. ETV5-mediated upregulation of lncRNA CTBP1-DT as a ceRNA facilitates HGSOC progression by regulating miR-188-5p/MAP3K3 axis.Cell Death Dis.20211212114610.1038/s41419‑021‑04256‑934887384
    [Google Scholar]
  54. YuJ. WangF. ZhangJ. LiJ. ChenX. HanG. LINC00667/miR-449b-5p/YY1 axis promotes cell proliferation and migration in colorectal cancer.Cancer Cell Int.202020132210.1186/s12935‑020‑01377‑732694944
    [Google Scholar]
  55. PanJ. ZangY. LINC00667 promotes progression of esophageal cancer cells by regulating miR-200b-3p/SLC2A3 axis.Dig. Dis. Sci.20226772936294710.1007/s10620‑021‑07145‑534313922
    [Google Scholar]
  56. LiaoB. YiY. ZengL. WangZ. ZhuX. LiuJ. XieB. LiuY. LINC00667 sponges miR-4319 to promote the development of nasopharyngeal carcinoma by increasing FOXQ1 expression.Front. Oncol.20211063281310.3389/fonc.2020.63281333569351
    [Google Scholar]
  57. YangY. LiS. CaoJ. LiY. HuH. WuZ. RRM2 regulated By LINC00667/miR-143-3p signal is responsible for non-small cell lung cancer cell progression.OncoTargets Ther.2019129927993910.2147/OTT.S22133931819489
    [Google Scholar]
  58. LongX. LiQ. ZhiL.J. LiJ.M. WangZ.Y. LINC00205 modulates the expression of EPHX1 through the inhibition of miR-184 in hepatocellular carcinoma as a ceRNA.J. Cell. Physiol.202023533013302110.1002/jcp.2920631566711
    [Google Scholar]
  59. ChengT. YaoY. ZhangS. ZhangX.N. ZhangA.H. YangW. LINC00205, a YY1-modulated lncRNA, serves as a sponge for miR-26a-5p facilitating the proliferation of hepatocellular carcinoma cells by elevating CDK6.Eur. Rev. Med. Pharmacol. Sci.2021256208621910.26355/eurrev_202110_26991
    [Google Scholar]
  60. XieH. ShiS. ChenQ. ChenZ. LncRNA TRG-AS1 promotes glioblastoma cell proliferation by competitively binding with miR-877-5p to regulate SUZ12 expression.Pathol. Res. Pract.2019215815247610.1016/j.prp.2019.15247631196742
    [Google Scholar]
  61. ZhuJ. DaiH. LiX. GuoL. SunX. ZhengZ. XuC. LncRNA TRG-AS1 inhibits bone metastasis of breast cancer by the miR-877–5p/WISP2 axis.Pathol. Res. Pract.202324315436010.1016/j.prp.2023.15436036801505
    [Google Scholar]
  62. ShiL. LuoB. DengL. ZhangQ. LiY. SunD. ZhangH. ZhuangL. The lncRNA TRG-AS1 promotes the growth of colorectal cancer cells through the regulation of P2RY10/GNA13.Scand. J. Gastroenterol.202459671072110.1080/00365521.2024.231836338357893
    [Google Scholar]
  63. ZhangM. ZhuW. HaeryfarM. JiangS. JiangX. ChenW. LiJ. Long non-coding RNA TRG-AS1 promoted proliferation and invasion of lung cancer cells through the miR-224-5p/SMAD4 axis.OncoTargets Ther.2021144415442610.2147/OTT.S29733634408438
    [Google Scholar]
  64. ChenQ. XieJ. YangY. Long non-coding RNA NRSN2-AS1 facilitates tumorigenesis and progression of ovarian cancer via miR-744-5p/PRKX axis.Biol. Reprod.2022106352653910.1093/biolre/ioab21234791059
    [Google Scholar]
  65. LiuZ. WangJ. TongH. WangX. ZhangD. FanQ. LINC00668 modulates SOCS5 expression through competitively sponging miR-518c-3p to facilitate glioma cell proliferation.Neurochem. Res.20204571614162510.1007/s11064‑020‑02988‑232279214
    [Google Scholar]
  66. XuanW. ZhouC. YouG. LncRNA LINC00668 promotes cell proliferation, migration, invasion ability and EMT process in hepatocellular carcinoma by targeting miR-532-5p/YY1 axis.Biosci. Rep.2020405BSR2019269710.1042/BSR2019269732249890
    [Google Scholar]
  67. LuZ. XiaoZ. WangQ. PanC. XiaY. WuW. ChenL. LINC00668 promoted non-small lung cancer progression by miR-518c-3p/TRIP4 axis.Cancer Biomark.202338337939110.3233/CBM‑23015437718780
    [Google Scholar]
  68. LiM. WangQ. XueF. WuY. lncRNA- CYTOR works as an oncogene through the CYTOR /miR-3679-5p/ MACC1 axis in colorectal cancer.DNA Cell Biol.201938657258210.1089/dna.2018.454831144988
    [Google Scholar]
  69. HuB. YangX.B. YangX. SangX.T. LncRNA CYTOR affects the proliferation, cell cycle and apoptosis of hepatocellular carcinoma cells by regulating the miR-125b-5p/KIAA1522 axis.Aging20211322626263910.18632/aging.20230633318318
    [Google Scholar]
  70. WangD. ZhuX. SiqinB. RenC. YiF. Long non- coding RNA CYTOR modulates cancer progression through miR-136-5p/MAT2B axis in renal cell carcinoma.Toxicol. Appl. Pharmacol.202244711606710.1016/j.taap.2022.11606735597301
    [Google Scholar]
  71. DongX. YangZ. YangH. LiD. QiuX. Long non- coding RNA MIR4435-2HG promotes colorectal cancer proliferation and metastasis through miR-206/YAP1 axis.Front. Oncol.20201016010.3389/fonc.2020.0016032154166
    [Google Scholar]
  72. GaoL.F. LiW. LiuY.G. ZhangC. GaoW.N. WangL. Inhibition of MIR4435-2HG on invasion, migration, and EMT of gastric carcinoma cells by mediating MiR-138-5p/Sox4 axis.Front. Oncol.20211166128810.3389/fonc.2021.66128834532282
    [Google Scholar]
  73. ShenW. ZhangJ. PanY. JinY. LncRNA MIR4435-2HG functions as a ceRNA against miR-125a-5p and promotes neuroglioma development by upregulating TAZ.J. Clin. Lab. Anal.20213512e2406610.1002/jcla.2406634714963
    [Google Scholar]
  74. MaD.M. SunD. WangJ. JinD.H. LiY. HanY.E. Long non-coding RNA MIR4435-2HG recruits miR-802 from FLOT2 to promote melanoma progression.Eur. Rev. Med. Pharmacol. Sci.20202452616262410.26355/eurrev_202003_2053032196611
    [Google Scholar]
  75. ZhaoY. ZhangX. WangJ. LiY. WuY. LiuJ. Long non-coding RNA ZSCAN16-AS1 promotes the malignant progression of melanoma through regulating the miR-503-5p/ARL2 axis.Clin. Cosmet. Investig. Dermatol.2023161821183110.2147/CCID.S40732337483470
    [Google Scholar]
  76. LvC. WanQ. ShenC. WuH. ZhouB. WangW. Long non-coding RNA ZSCAN16-AS1 promotes the malignant properties of hepatocellular carcinoma by decoying microRNA-451a and consequently increasing ATF2 expression.Mol. Med. Rep.202124578010.3892/mmr.2021.1242034498716
    [Google Scholar]
  77. ZhangR. LiJ. BadescuD. KaraplisA. RagoussisJ. KremerR. PTHrP regulates fatty acid metabolism via novel lncRNA in breast cancer initiation and progression models.Cancers20231515376310.3390/cancers1515376337568579
    [Google Scholar]
  78. LiaoT. LuY. LiW. WangK. ZhangY. LuoZ. JuY. OuyangM. Construction and validation of a glycolysis-related lncRNA signature for prognosis prediction in stomach adenocarcinoma.Front. Genet.20221379462110.3389/fgene.2022.79462136313430
    [Google Scholar]
  79. GongZ. LiQ. LiJ. XieJ. WangW. A novel signature based on autophagy-related lncRNA for prognostic prediction and candidate drugs for lung adenocarcinoma.Transl. Cancer Res.2022111142810.21037/tcr‑21‑155435261881
    [Google Scholar]
  80. ZengJ. LiM. DaiK. ZuoB. GuoJ. ZangL. A novel glycolysis-related long noncoding RNA signature for predicting overall survival in gastric cancer.Pathol. Oncol. Res.202228161064310.3389/pore.2022.161064336419649
    [Google Scholar]
  81. NiS. HongJ. LiW. YeM. LiJ. Construction of a cuproptosis-related lncRNA signature for predicting prognosis and immune landscape in osteosarcoma patients.Cancer Med.20231245009502410.1002/cam4.521436129020
    [Google Scholar]
  82. RenY. DaJ. RenJ. SongY. HanJ. An autophagy-related long non-coding RNA signature in tongue squamous cell carcinoma.BMC Oral Health202323112010.1186/s12903‑023‑02806‑536814212
    [Google Scholar]
  83. LinZ. WuZ. LuoW. Bulk and single-cell sequencing identified a prognostic model based on the macrophage and lipid metabolism related signatures for osteosarcoma patients.Heliyon2024104e2609110.1016/j.heliyon.2024.e2609138404899
    [Google Scholar]
  84. FengJ. WangJ. XuY. LuF. ZhangJ. HanX. ZhangC. WangG. Construction and validation of a novel cuproptosis-mitochondrion prognostic model related with tumor immunity in osteosarcoma.PLoS One2023187e028818010.1371/journal.pone.028818037405988
    [Google Scholar]
  85. ChenY. YanW. WangH. OuZ. ChenH. HuangZ. YangJ. LiuB. OuF. ZhangH. The prognostic model established by the differential expression genes based on CD8+ T cells to evaluate the prognosis and the response to immunotherapy in osteosarcoma.Mediators Inflamm.2023202311110.1155/2023/656360936816742
    [Google Scholar]
  86. NingB. LiuY. XuT. LiY. WeiD. HuangT. WeiY. Construction and validation of a prognostic model for osteosarcoma patients based on autophagy-related genes.Discov. Oncol.202213114610.1007/s12672‑022‑00608‑936586072
    [Google Scholar]
  87. ZhangZ. ZhangJ. DuanY. LiX. PanJ. WangG. ShenB. Identification of B cell marker genes based on single-cell sequencing to establish a prognostic model and identify immune infiltration in osteosarcoma.Front. Immunol.202213102670110.3389/fimmu.2022.102670136569871
    [Google Scholar]
  88. TongY. ZhangX. ZhouY. Integrated analysis of multi-omics data to establish a hypoxia-related prognostic model in osteosarcoma.Evol. Bioinform. Online2022181176934322112853710.1177/1176934322112853736325183
    [Google Scholar]
  89. YangJ. ZhangJ. NaS. WangZ. LiH. SuY. JiL. TangX. YangJ. XuL. Integration of single-cell RNA sequencing and bulk RNA sequencing to reveal an immunogenic cell death-related 5-gene panel as a prognostic model for osteosarcoma.Front. Immunol.20221399403410.3389/fimmu.2022.99403436225939
    [Google Scholar]
  90. ChenW. LinY. HuangJ. YanZ. CaoH. A novel risk score model based on glycolysis-related genes and a prognostic model for predicting overall survival of osteosarcoma patients.J. Orthop. Res.202240102372238110.1002/jor.2525934997639
    [Google Scholar]
  91. HuangH. YeZ. LiZ. WangB. LiK. ZhouK. CaoH. ZhengJ. WangG. Employing machine learning using ferroptosis-related genes to construct a prognosis model for patients with osteosarcoma.Front. Genet.202314109927210.3389/fgene.2023.109927236733341
    [Google Scholar]
  92. LiJ. WuF. XiaoX. SuL. GuoX. YaoJ. ZhuH. A novel ferroptosis-related gene signature to predict overall survival in patients with osteosarcoma.Am. J. Transl. Res.20221496082609436247280
    [Google Scholar]
  93. ZhengD. XiaK. WeiZ. WeiZ. GuoW. Identification of a novel gene signature with regard to ferroptosis, prognosis prediction, and immune microenvironment in osteosarcoma.Front. Genet.20221394497810.3389/fgene.2022.94497836330451
    [Google Scholar]
  94. LiG. LeiJ. XuD. YuW. BaiJ. WuG. Integrative analyses of ferroptosis and immune related biomarkers and the osteosarcoma associated mechanisms.Sci. Rep.2023131577010.1038/s41598‑023‑33009‑137031292
    [Google Scholar]
  95. LangX. GreenM.D. WangW. YuJ. ChoiJ.E. JiangL. LiaoP. ZhouJ. ZhangQ. DowA. SaripalliA.L. KryczekI. WeiS. SzeligaW. VatanL. StoneE.M. GeorgiouG. CieslikM. WahlD.R. MorganM.A. ChinnaiyanA.M. LawrenceT.S. ZouW. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11.Cancer Discov.20199121673168510.1158/2159‑8290.CD‑19‑033831554642
    [Google Scholar]
  96. ZeitounG. SissyC.E. KirilovskyA. AniteiG. TodosiA.M. MarliotF. HaicheurN. LagorceC. BergerA. ZinzindohouéF. GalonJ. ScripcariuV. PagèsF. The immunoscore in the clinical practice of patients with colon and rectal cancers.Chirurgia2019114215216110.21614/chirurgia.114.2.15231060646
    [Google Scholar]
  97. FridmanW.H. PagèsF. Sautès-FridmanC. GalonJ. The immune contexture in human tumours: Impact on clinical outcome.Nat. Rev. Cancer201212429830610.1038/nrc324522419253
    [Google Scholar]
  98. SakaguchiS. MikamiN. WingJ.B. TanakaA. IchiyamaK. OhkuraN. Regulatory T cells and human disease.Annu. Rev. Immunol.202038154156610.1146/annurev‑immunol‑042718‑04171732017635
    [Google Scholar]
  99. CampbellC. RudenskyA. Roles of regulatory T cells in tissue pathophysiology and metabolism.Cell Metab.2020311182510.1016/j.cmet.2019.09.01031607562
    [Google Scholar]
  100. CuadradoE. van den BiggelaarM. de KivitS. ChenY. SlotM. DoubalI. MeijerA. van LierR.A.W. BorstJ. AmsenD. Proteomic analyses of human regulatory T cells reveal adaptations in signaling pathways that protect cellular identity.Immunity201848510461059.e610.1016/j.immuni.2018.04.00829752063
    [Google Scholar]
  101. DuanM. HibbsM.L. ChenW. The contributions of lung macrophage and monocyte heterogeneity to influenza pathogenesis.Immunol. Cell Biol.201795322523510.1038/icb.2016.9727670791
    [Google Scholar]
  102. ByrneA.J. MaherT.M. LloydC.M. Pulmonary macrophages: A new therapeutic pathway in fibrosing lung disease?Trends Mol. Med.201622430331610.1016/j.molmed.2016.02.00426979628
    [Google Scholar]
  103. Shapouri-MoghaddamA. MohammadianS. VaziniH. TaghadosiM. EsmaeiliS.A. MardaniF. SeifiB. MohammadiA. AfshariJ.T. SahebkarA. Macrophage plasticity, polarization, and function in health and disease.J. Cell. Physiol.201823396425644010.1002/jcp.2642929319160
    [Google Scholar]
  104. PatelU. RajasinghS. SamantaS. CaoT. DawnB. RajasinghJ. Macrophage polarization in response to epigenetic modifiers during infection and inflammation.Drug Discov. Today201722118619310.1016/j.drudis.2016.08.00627554801
    [Google Scholar]
  105. MartinezF.O. SicaA. MantovaniA. LocatiM. Macrophage activation and polarization.Front. Biosci.2008131345346110.2741/269217981560
    [Google Scholar]
  106. GeR. HuangG.M. Targeting transforming growth factor beta signaling in metastatic osteosarcoma.J. Bone Oncol.20234310051310.1016/j.jbo.2023.10051338021074
    [Google Scholar]
  107. ZhengC. TangF. MinL. HornicekF. DuanZ. TuC. PTEN in osteosarcoma: Recent advances and the therapeutic potential.Biochim. Biophys. Acta Rev. Cancer20201874218840510.1016/j.bbcan.2020.18840532827577
    [Google Scholar]
  108. ZhangJ. YuX.H. YanY.G. WangC. WangW.J. PI3K/Akt signaling in osteosarcoma.Clin. Chim. Acta201544418219210.1016/j.cca.2014.12.04125704303
    [Google Scholar]
  109. YiJ. ZhuJ. WuJ. ThompsonC.B. JiangX. Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis.Proc. Natl. Acad. Sci. USA202011749311893119710.1073/pnas.201715211733229547
    [Google Scholar]
  110. WaliaM.K. HoP.M.W. TaylorS. NgA.J.M. GupteA. ChalkA.M. ZannettinoA.C.W. MartinT.J. WalkleyC.R. Activation of PTHrP-cAMP-CREB1 signaling following p53 loss is essential for osteosarcoma initiation and maintenance.eLife20165e1344610.7554/eLife.1344627070462
    [Google Scholar]
  111. CollinsS.E. WiegandM.E. WernerA.N. BrownI.N. MundoM.I. SwangoD.J. MouneimneG. CharestP.G. Ras-mediated activation of mTORC2 promotes breast epithelial cell migration and invasion.Mol. Biol. Cell2023342ar910.1091/mbc.E22‑06‑023636542482
    [Google Scholar]
  112. BeunkL. BrownK. NagtegaalI. FriedlP. WolfK. Cancer invasion into musculature: Mechanics, molecules and implications.Semin. Cell Dev. Biol.201993364510.1016/j.semcdb.2018.07.01430009945
    [Google Scholar]
  113. NeschadimA. SummerleeA.J.S. SilvertownJ.D. Targeting the relaxin hormonal pathway in prostate cancer.Int. J. Cancer2015137102287229510.1002/ijc.2907925043063
    [Google Scholar]
  114. XuM. HuX. XiaoZ. ZhangS. LuZ. Silencing KPNA2 promotes ferroptosis in laryngeal cancer by activating the FoxO signaling pathway.Biochem. Genet.20242010.1007/s10528‑023‑10655‑838379037
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673322797241001054036
Loading
/content/journals/cmc/10.2174/0109298673322797241001054036
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): ceRNA network; ferroptosis; immune infiltration; LncRNAs; Osteosarcoma; prognosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test