Skip to content
2000
Volume 32, Issue 37
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Glioblastoma (GBM) is an aggressive malignancy. The inherent resistance of GBM to radiotherapy poses great challenges for clinical treatment.

Objectives

The primary objective of this study is to explore the molecular mechanisms of radiotherapy resistance in GBM and identify the key influencing factors that contribute to this phenomenon.

Methods

The single-cell RNA sequencing (scRNA-seq) data of GBM were downloaded from the Gene Expression Omnibus (GEO) database. Cells were clustered using the Seurat R package, and the clusters were annotated using the CellMarker database. Pseudotime analysis was conducted using Monocle2. Marker scores were calculated based on the RNA-seq data of GBM from the UCSC database, and the enrichment of Hallmark gene sets was measured with the AUCell package. Furthermore, the most frequently mutated genes were identified using the simple nucleotide variation data from The Cancer Genome Atlas (TCGA) applying the maftools package.

Results

This study identified two oligodendrocyte subsets (ODC3 and ODC4) as radiotherapy-resistant groups in GBM. Enrichment and Pseudotime analysis revealed that the inflammatory response and immune activation pathways were enriched in ODC3, while the cell division and interferon response pathways were enriched in ODC4. The enrichment scores of hallmark gene sets further confirmed that ODC3 and ODC4 subpopulations developed radiotherapy resistance distinct molecular mechanisms. Analysis of gene mutation frequencies showed that TP53 exhibited the most significant change in mutation frequency, indicating that it was an important risk factor involved in radiotherapy resistance in GBM.

Conclusion

We identified two ODC subpopulations that exhibited resistance to radiotherapy, providing a new perspective and potential targets for personalized treatment strategies for GBM.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673337314240911053946
2024-09-12
2025-11-03
Loading full text...

Full text loading...

References

  1. OstromQ.T. GittlemanH. TruittG. BosciaA. KruchkoC. Barnholtz-SloanJ.S. CBTRUS Statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015.Neuro-oncol.201820iv1iv8610.1093/neuonc/noy13130445539
    [Google Scholar]
  2. WirschingH.G. GalanisE. WellerM. Glioblastoma.Handb. Clin. Neurol.201613438139710.1016/B978‑0‑12‑802997‑8.00023‑226948367
    [Google Scholar]
  3. WellerM. WickW. AldapeK. BradaM. BergerM. PfisterS.M. NishikawaR. RosenthalM. WenP.Y. StuppR. ReifenbergerG. Glioma.Nat. Rev. Dis. Primers2015111501710.1038/nrdp.2015.1727188790
    [Google Scholar]
  4. ZhangJ. XuH. YangX. ZhaoY. XuX. ZhangL. XuanX. MaC. QianW. LiD. Deubiquitinase UCHL5 is elevated and associated with a poor clinical outcome in lung adenocarcinoma (LUAD).J. Cancer202011226675668510.7150/jca.4614633046988
    [Google Scholar]
  5. LouisD.N. PerryA. WesselingP. BratD.J. CreeI.A. Figarella-BrangerD. HawkinsC. NgH.K. PfisterS.M. ReifenbergerG. SoffiettiR. von DeimlingA. EllisonD.W. The 2021 WHO classification of tumors of the central nervous system: A summary.Neuro-oncol.20212381231125110.1093/neuonc/noab10634185076
    [Google Scholar]
  6. OstromQT. GittlemanH. LiaoP. RouseC. ChenY. DowlingJ. WolinskyY. KruchkoC. Barnholtz-SloanJ. CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2007-2011.Neuro. Oncol.201416iv1iv6310.1093/neuonc/nou223.
    [Google Scholar]
  7. OhgakiH. KleihuesP. Genetic alterations and signaling pathways in the evolution of gliomas.Cancer Sci.2009100122235224110.1111/j.1349‑7006.2009.01308.x19737147
    [Google Scholar]
  8. KantelhardtS.R. CaarlsW. de VriesA.H.B. HagenG.M. JovinT.M. Schulz-SchaefferW. RohdeV. GieseA. Arndt-JovinD.J. Specific visualization of glioma cells in living low-grade tumor tissue.PLoS One201056e1132310.1371/journal.pone.001132320614029
    [Google Scholar]
  9. CouturierC.P. AyyadhuryS. LeP.U. NadafJ. MonlongJ. RivaG. AllacheR. BaigS. YanX. BourgeyM. LeeC. WangY.C.D. Wee YongV. GuiotM.C. NajafabadiH. MisicB. AntelJ. BourqueG. RagoussisJ. PetreccaK. Single-cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy.Nat. Commun.2020111340610.1038/s41467‑020‑17186‑532641768
    [Google Scholar]
  10. HideT. KomoharaY. Oligodendrocyte progenitor cells in the tumor microenvironment.Adv. Exp. Med. Biol.2020123410712210.1007/978‑3‑030‑37184‑5_832040858
    [Google Scholar]
  11. DzambaD. HarantovaL. ButenkoO. AnderovaM. Glial cells - The Key elements of Alzheimers disease.Curr. Alzheimer Res.201613889491110.2174/156720501366616012909592426825092
    [Google Scholar]
  12. AlzoubiH. AlsabbahA. CaltabianoR. BroggiG. The integrated histopathologic and molecular approach to adult-type diffuse astrocytomas: Status of the art, based on the 2021 WHO classification of central nervous system tumors.Oncologie2022241516310.32604/oncologie.2022.020890
    [Google Scholar]
  13. HeF. SunY.E. Glial cells more than support cells?Int. J. Biochem. Cell Biol.200739466166510.1016/j.biocel.2006.10.02217141551
    [Google Scholar]
  14. KüspertM WegnerM. SomethiNG 2 talk about-Transcriptional regulation in embryonic and adult oligodendrocyte precursors.Brain Res2016163816718210.1016/j.brainres.2015.07.024
    [Google Scholar]
  15. EscartinC. GaleaE. LakatosA. O’CallaghanJ.P. PetzoldG.C. Serrano-PozoA. SteinhäuserC. VolterraA. CarmignotoG. AgarwalA. AllenN.J. AraqueA. BarbeitoL. BarzilaiA. BerglesD.E. BonventoG. ButtA.M. ChenW.T. Cohen-SalmonM. CunninghamC. DeneenB. De StrooperB. Díaz-CastroB. FarinaC. FreemanM. GalloV. GoldmanJ.E. GoldmanS.A. GötzM. GutiérrezA. HaydonP.G. HeilandD.H. HolE.M. HoltM.G. IinoM. KastanenkaK.V. KettenmannH. KhakhB.S. KoizumiS. LeeC.J. LiddelowS.A. MacVicarB.A. MagistrettiP. MessingA. MishraA. MolofskyA.V. MuraiK.K. NorrisC.M. OkadaS. OlietS.H.R. OliveiraJ.F. PanatierA. ParpuraV. PeknaM. PeknyM. PellerinL. PereaG. Pérez-NievasB.G. PfriegerF.W. PoskanzerK.E. QuintanaF.J. RansohoffR.M. Riquelme-PerezM. RobelS. RoseC.R. RothsteinJ.D. RouachN. RowitchD.H. SemyanovA. SirkoS. SontheimerH. SwansonR.A. VitoricaJ. WannerI.B. WoodL.B. WuJ. ZhengB. ZimmerE.R. ZorecR. SofroniewM.V. VerkhratskyA. Reactive astrocyte nomenclature, definitions, and future directions.Nat. Neurosci.202124331232510.1038/s41593‑020‑00783‑433589835
    [Google Scholar]
  16. PaolicelliR.C. SierraA. StevensB. TremblayM.E. AguzziA. AjamiB. AmitI. AudinatE. BechmannI. BennettM. BennettF. BessisA. BiberK. BilboS. Blurton-JonesM. BoddekeE. BritesD. BrôneB. BrownG.C. ButovskyO. CarsonM.J. CastellanoB. ColonnaM. CowleyS.A. CunninghamC. DavalosD. De JagerP.L. de StrooperB. DenesA. EggenB.J.L. EyoU. GaleaE. GarelS. GinhouxF. GlassC.K. GokceO. Gomez-NicolaD. GonzálezB. GordonS. GraeberM.B. GreenhalghA.D. GressensP. GreterM. GutmannD.H. HaassC. HenekaM.T. HeppnerF.L. HongS. HumeD.A. JungS. KettenmannH. KipnisJ. KoyamaR. LemkeG. LynchM. MajewskaA. MalcangioM. MalmT. MancusoR. MasudaT. MatteoliM. McCollB.W. MironV.E. MolofskyA.V. MonjeM. MracskoE. NadjarA. NeherJ.J. NeniskyteU. NeumannH. NodaM. PengB. PeriF. PerryV.H. PopovichP.G. PridansC. PrillerJ. PrinzM. RagozzinoD. RansohoffR.M. SalterM.W. SchaeferA. SchaferD.P. SchwartzM. SimonsM. SmithC.J. StreitW.J. TayT.L. TsaiL.H. VerkhratskyA. von BernhardiR. WakeH. WittamerV. WolfS.A. WuL.J. Wyss-CorayT. Microglia states and nomenclature: A field at its crossroads.Neuron2022110213458348310.1016/j.neuron.2022.10.02036327895
    [Google Scholar]
  17. MiraR.G. LiraM. CerpaW. Traumatic brain injury: Mechanisms of glial response.Front. Physiol.20211274093910.3389/fphys.2021.74093934744783
    [Google Scholar]
  18. JacquensA. NeedhamE.J. ZanierE.R. DegosV. GressensP. MenonD. Neuro-inflammation modulation and post-traumatic brain injury lesions: From bench to bed-side.Int. J. Mol. Sci.202223191119310.3390/ijms23191119336232495
    [Google Scholar]
  19. HughesE.G. KangS.H. FukayaM. BerglesD.E. Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain.Nat. Neurosci.201316666867610.1038/nn.339023624515
    [Google Scholar]
  20. PanagiotakosG. AlshamyG. ChanB. AbramsR. GreenbergE. SaxenaA. BradburyM. EdgarM. GutinP. TabarV. Long-term impact of radiation on the stem cell and oligodendrocyte precursors in the brain.PLoS One200727e58810.1371/journal.pone.000058817622341
    [Google Scholar]
  21. KharchenkoP.V. The triumphs and limitations of computational methods for scRNA-seq.Nat. Methods202118772373210.1038/s41592‑021‑01171‑x34155396
    [Google Scholar]
  22. Hernández MartínezA. MadurgaR. García-RomeroN. Ayuso-SacidoÁ. Unravelling glioblastoma heterogeneity by means of single-cell RNA sequencing.Cancer Lett.2022527667910.1016/j.canlet.2021.12.00834902524
    [Google Scholar]
  23. ZhangJ. SongC. TianY. YangX. Single-Cell RNA sequencing in lung cancer: Revealing phenotype shaping of stromal cells in the microenvironment.Front. Immunol.20221280208010.3389/fimmu.2021.80208035126365
    [Google Scholar]
  24. ChenN. FanB. HeZ. YuX. WangJ. Identification of HBEGF+ fibroblasts in the remission of rheumatoid arthritis by integrating single-cell RNA sequencing datasets and bulk RNA sequencing datasets.Arthritis Res. Ther.202224121510.1186/s13075‑022‑02902‑x36068607
    [Google Scholar]
  25. ChenY. WangH. YangQ. ZhaoW. ChenY. NiQ. LiW. ShiJ. ZhangW. LiL. XuY. ZhangH. MiaoD. XingL. SunW. Single-cell RNA landscape of the osteoimmunology microenvironment in periodontitis.Theranostics20221231074109610.7150/thno.6569435154475
    [Google Scholar]
  26. FangZ. LiJ. CaoF. LiF. Integration of scRNA-Seq and bulk RNA-Seq reveals molecular characterization of the immune microenvironment in acute pancreatitis.Biomolecules20221317810.3390/biom1301007836671463
    [Google Scholar]
  27. Navarro GonzalezJ. ZweigA.S. SpeirM.L. SchmelterD. RosenbloomK.R. RaneyB.J. PowellC.C. NassarL.R. MauldingN.D. LeeC.M. LeeB.T. HinrichsA.S. FyfeA.C. FernandesJ.D. DiekhansM. ClawsonH. CasperJ. Benet-PagèsA. BarberG.P. HausslerD. KuhnR.M. HaeusslerM. KentW.J. The UCSC Genome Browser database: 2021 update.Nucleic Acids Res.202149D1D1046D105710.1093/nar/gkaa107033221922
    [Google Scholar]
  28. DanaherP. WarrenS. LuR. SamayoaJ. SullivanA. PekkerI. WalldenB. MarincolaF.M. CesanoA. Pan- cancer adaptive immune resistance as defined by the Tumor Inflammation Signature (TIS): results from The Cancer Genome Atlas (TCGA).J. Immunother. Cancer2018616310.1186/s40425‑018‑0367‑129929551
    [Google Scholar]
  29. MayakondaA. LinD.C. AssenovY. PlassC. KoefflerH.P. Maftools: efficient and comprehensive analysis of somatic variants in cancer.Genome Res.201828111747175610.1101/gr.239244.11830341162
    [Google Scholar]
  30. Ali Abd Al-HameedK. Spearman’s correlation coefficient in statistical analysis.Int. J. Nonlinear. Anal.202213132493255
    [Google Scholar]
  31. WangS. WanL. RenH. XieZ. XieL. HuangJ. DengX. XieZ. LuoS. LiM. ZengT. ZhangY. ZhangM. Screening of interferon-stimulated genes against avian reovirus infection and mechanistic exploration of the antiviral activity of IFIT5.Front. Microbiol.20221399850510.3389/fmicb.2022.99850536187980
    [Google Scholar]
  32. MaW. LiaoY. GaoZ. ZhuW. LiuJ. SheW. Overexpression of LIMA1 indicates poor prognosis and promotes epithelial-mesenchymal transition in head and neck squamous cell carcinoma.Clin. Med. Insights Oncol.20221610.1177/1179554922110949335837368
    [Google Scholar]
  33. ArimotoK. MiyauchiS. TroutmanT.D. ZhangY. LiuM. StonerS.A. DavisA.G. FanJ.B. HuangY.J. YanM. GlassC.K. ZhangD.E. Expansion of interferon inducible gene pool via USP18 inhibition promotes cancer cell pyroptosis.Nat. Commun.202314125110.1038/s41467‑022‑35348‑536646704
    [Google Scholar]
  34. FangQ. LiQ. QiY. PanZ. FengT. XinW. ASPM promotes migration and invasion of anaplastic thyroid carcinoma by stabilizing KIF11.Cell Biol. Int.20234771209122110.1002/cbin.1201236883909
    [Google Scholar]
  35. HuangY. LiD. WangL. SuX. TangX. CENPF/CDK1 signaling pathway enhances the progression of adrenocortical carcinoma by regulating the G2/M-phase cell cycle.J. Transl. Med.20222017810.1186/s12967‑022‑03277‑y35123514
    [Google Scholar]
  36. GaoC.T. RenJ. YuJ. LiS.N. GuoX.F. ZhouY.Z. KIF23 enhances cell proliferation in pancreatic ductal adenocarcinoma and is a potent therapeutic target.Ann. Transl. Med.2020821139410.21037/atm‑20‑197033313139
    [Google Scholar]
  37. JacobF. SalinasR.D. ZhangD.Y. NguyenP.T.T. SchnollJ.G. WongS.Z.H. ThokalaR. SheikhS. SaxenaD. ProkopS. LiuD. QianX. PetrovD. LucasT. ChenH.I. DorseyJ.F. ChristianK.M. BinderZ.A. NasrallahM. BremS. O’RourkeD.M. MingG. SongH. A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity.Cell2020180118820410.1016/j.cell.2019.11.03631883794
    [Google Scholar]
  38. WuW. KlockowJ.L. ZhangM. LafortuneF. ChangE. JinL. WuY. Daldrup-LinkH.E. Glioblastoma multiforme (GBM): An overview of current therapies and mechanisms of resistance.Pharmacol. Res.202117110578010.1016/j.phrs.2021.10578034302977
    [Google Scholar]
  39. ShiZ. YuP. LinW.J. ChenS. HuX. ChenS. ChengJ. LiuQ. YangY. LiS. ZhangZ. XieJ. JiangJ. HeB. LiY. LiH. XuY. ZengJ. HuangJ. MeiJ. CaiJ. ChenJ. WuL.J. KoH. TangY. Microglia drive transient insult-induced brain injury by chemotactic recruitment of CD8+ T lymphocytes.Neuron2023111569671010.1016/j.neuron.2022.12.00936603584
    [Google Scholar]
  40. HempelN. CarricoP.M. MelendezJ.A. Manganese superoxide dismutase (Sod2) and redox-control of signaling events that drive metastasis.Anticancer. Agents Med. Chem.201111219120110.2174/18715201179525591121434856
    [Google Scholar]
  41. HempelN. YeH. AbessiB. MianB. MelendezJ. Altered redox status accompanies progression to metastatic human bladder cancer.Free Radic. Biol. Med.2009461425010.1016/j.freeradbiomed.2008.09.02018930813
    [Google Scholar]
  42. SalzmanR. KankováK. PácalL. TomandlJ. Horá-kováZ. KostricaR. Increased activity of superoxide dismutase in advanced stages of head and neck squamous cell carcinoma with locoregional metastases.Neoplasma200754432132517822322
    [Google Scholar]
  43. DuncanG.J. ManeshS.B. HiltonB.J. AssinckP. PlemelJ.R. TetzlaffW. The fate and function of oligodendrocyte progenitor cells after traumatic spinal cord injury.Glia202068222724510.1002/glia.2370631433109
    [Google Scholar]
  44. LandskronG. De la FuenteM. ThuwajitP. ThuwajitC. HermosoM.A. Chronic inflammation and cytokines in the tumor microenvironment.J. Immunol. Res.20142014111910.1155/2014/14918524901008
    [Google Scholar]
  45. LomelinoC.L. AndringJ.T. McKennaR. KilbergM.S. Asparagine synthetase: Function, structure, and role in disease.J. Biol. Chem.201729249199521995810.1074/jbc.R117.81906029084849
    [Google Scholar]
  46. YangH. HeX. ZhengY. FengW. XiaX. YuX. LinZ. Down-regulation of asparagine synthetase induces cell cycle arrest and inhibits cell proliferation of breast cancer.Chem. Biol. Drug Des.201484557858410.1111/cbdd.1234824775638
    [Google Scholar]
  47. YuQ. WangX. WangL. ZhengJ. WangJ. WangB. Knockdown of asparagine synthetase (ASNS) suppresses cell proliferation and inhibits tumor growth in gastric cancer cells.Scand. J. Gastroenterol.201651101220122610.1080/00365521.2016.119039927251594
    [Google Scholar]
  48. MondalD. MathurA. ChandraP.K. Tripping on TRIB3 at the junction of health, metabolic dysfunction and cancer.Biochimie2016124345210.1016/j.biochi.2016.02.00526855171
    [Google Scholar]
  49. LiK. WangF. CaoW.B. LvX.X. HuaF. CuiB. YuJ.J. ZhangX.W. ShangS. LiuS.S. YuJ.M. HanM.Z. HuangB. ZhangT.T. LiX. JiangJ.D. HuZ.W. TRIB3 promotes APL progression through stabilization of the oncoprotein PML-RARα and inhibition of p53- mediated senescence.Cancer Cell201731569771010.1016/j.ccell.2017.04.00628486108
    [Google Scholar]
  50. KaidaA. YamamotoS. ParralesA. YoungE.D. RanjanA. AlalemM.A. MoritaK. OikawaY. HaradaH. IkedaT. ThomasS.M. DiazF. IwakumaT. DNAJA1 promotes cancer metastasis through interaction with mutant p53.Oncogene202140315013502510.1038/s41388‑021‑01921‑334183772
    [Google Scholar]
  51. LoU.G. BaoJ. CenJ. YehH.C. LuoJ. TanW. HsiehJ.T. Interferon-induced IFIT5 promotes epithelial- to-mesenchymal transition leading to renal cancer invasion.Am. J. Clin. Exp. Urol.201971314530906803
    [Google Scholar]
  52. LiuW. GeX. ZhouZ. JiangD. RongY. WangJ. JiC. FanJ. YinG. CaiW. Deubiquitinase USP18 regulates reactive astrogliosis by stabilizing SOX9.Glia20216971782179810.1002/glia.2399233694203
    [Google Scholar]
  53. KatoT.A. OkayasuR. JeggoP.A. FujimoriA. ASPM influences DNA double-strand break repair and represents a potential target for radiotherapy.Int. J. Radiat. Biol.201187121189119510.3109/09553002.2011.62415221923303
    [Google Scholar]
  54. ZouP.A. YangZ.X. WangX. TaoZ.W. Upregulation of CENPF is linked to aggressive features of osteosarcoma.Oncol. Lett.202122364810.3892/ol.2021.1290934386070
    [Google Scholar]
  55. HuangY. YuanC. LiuQ. WangL. KIF23 promotes autophagy-induced imatinib resistance in chronic myeloid leukaemia through activating Wnt/β-catenin pathway.Clin. Exp. Pharmacol. Physiol.202249121334134110.1111/1440‑1681.1371836066385
    [Google Scholar]
  56. JianW. DengX.C. MunankarmyA. BorkhuuO. JiC.L. WangX.H. ZhengW.F. YuY.H. ZhouX.Q. FangL. KIF23 promotes triple negative breast cancer through activating epithelial-mesenchymal transition.Gland Surg.20211061941195010.21037/gs‑21‑1934268078
    [Google Scholar]
  57. YangC. ZhangJ. DingM. XuK. LiL. MaoL. ZhengJ. Ki67 targeted strategies for cancer therapy.Clin. Transl. Oncol.201820557057510.1007/s12094‑017‑1774‑3
    [Google Scholar]
  58. JinQ. ZhangW. QiuX.G. YanW. YouG. LiuY.W. JiangT. WangL. Gene expression profiling reveals Ki-67 associated proliferation signature in human glioblastoma.Chin. Med. J. (Engl.)2011124172584258822040407
    [Google Scholar]
  59. BajettoA. ThellungS. DellacasagrandeI. PaganoA. BarbieriF. FlorioT. Cross talk between mesenchymal and glioblastoma stem cells: Communication beyond controversies.Stem Cells Transl. Med.20209111310133010.1002/sctm.20‑016132543030
    [Google Scholar]
  60. MafiA. MannaniR. KhalilollahS. HedayatiN. SalamiR. RezaeeM. DehmordiR.M. GhorbanhosseiniS.S. AlimohammadiM. Akhavan-SigariR. The significant role of microRNAs in gliomas angiogenesis: A particular focus on molecular mechanisms and opportunities for clinical application.Cell. Mol. Neurobiol.20234373277329910.1007/s10571‑023‑01385‑x37414973
    [Google Scholar]
  61. AlimohammadiM. GholinezhadY. MousaviV. KahkeshS. RezaeeM. YaghoobiA. MafiA. AraghiM. Circular RNAs: Novel actors of Wnt signaling pathway in lung cancer progression.EXCLI J.20232264566937636026
    [Google Scholar]
  62. AlimohammadiM. RahimzadehP. KhorramiR. BonyadiM. DaneshiS. NabaviN. RaesiR. FaraniM.R. DehkhodaF. TaheriazamA. HashemiM. A comprehensive review of the PTEN/PI3K/Akt axis in multiple myeloma: From molecular interactions to potential therapeutic targets.Pathol. Res. Pract.202426015540110.1016/j.prp.2024.15540138936094
    [Google Scholar]
  63. Shahrajabian, M.H.; Sun, W.L. Survey on multi-omics, and multi-omics data analysis, integration and application. Current. Pharmaceutical. Analysis. 2023, 19(4), 267-281.10.2174/1573412919666230406100948
  64. HughesTK. WadsworthMH. GierahnTM. DoT. WeissD. AndradePR. MaF. de Andrade SilvaBJ. Ordovas-MontanesJ. ShaoS. Second-strand synthesis-based massively parallel scRNA-Seq reveals cellular states and molecular features of human inflammatory skin pathologies.Immunity202053487889410.1016/j.immuni.2020.09.015
    [Google Scholar]
  65. DeshmukhA.P. VasaikarS.V. TomczakK. TripathiS. den HollanderP. ArslanE. ChakrabortyP. SoundararajanR. JollyM.K. RaiK. LevineH. ManiS.A. Identification of EMT signaling cross-talk and gene regulatory networks by single-cell RNA sequencing.Proc. Natl. Acad. Sci. USA202111819e210205011810.1073/pnas.210205011833941680
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673337314240911053946
Loading
/content/journals/cmc/10.2174/0109298673337314240911053946
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test