Skip to content
2000
Volume 32, Issue 37
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Resistance to lenvatinib poses a serious threat to the therapy of patients with Hepatocellular Carcinoma (HCC). The mechanism by which HCC develops resistance to lenvatinib is currently unknown.

Objective

The aim of this study was to identify key genes and pathways involved in lenvatinib resistance in HCC using bioinformatic analysis and experimental validation.

Methods

Differentially expressed genes (DEGs) were identified from the GSE186191 gene expression profile, comparing HCC cell lines with lenvatinib-resistant HCC cell lines. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were then carried out using DAVID. A protein-protein interaction network was constructed to visualize DEGs and identify hub genes. The expression and prognostic significance of these hub genes were further examined. Additionally, genomic enrichment analysis (GSEA) was utilized to investigate the potential functions of key genes. Following this, the presence of AHSG was validated in both the original Huh7 cells and the lenvatinib-resistant Huh7 (Huh7LR) cells resistant to lenvatinib through the utilization of quantitative real-time PCR (qRT-PCR).

Results

A total of 232 DEGs were identified between HCC cell lines and those that are resistant to lenvatinib. These DEGs were significantly associated with arrhythmogenic right ventricular cardiomyopathy, hypertrophic cardiomyopathy, dilated cardiomyopathy, and mucin-type O-glycan biosynthesis. Three hub genes, including AHSG, C6, and ORM1, were identified. The low expression of AHSG showed a poorer prognosis in HCC. GSEA demonstrated a significant correlation between low AHSG expression and pathways involving fatty acid metabolism, ribosome function, glycine, serine, and threonine metabolism, peroxisome activity, and bile acid biosynthesis. The expression of AHSG was notably reduced in Huh7LR cells ( = 0.006) compared to Huh7 cells.

Conclusion

Diminished AHSG expression is strongly associated with lenvatinib resistance in HCC, suggesting that it may have implications for developing effective strategies to overcome this resistance.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673329991241111111941
2025-01-20
2025-11-01
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. YangJ.D. HainautP. GoresG.J. AmadouA. PlymothA. RobertsL.R. A global view of hepatocellular carcinoma: trends, risk, prevention and management.Nat. Rev. Gastroenterol. Hepatol.2019161058960410.1038/s41575‑019‑0186‑y31439937
    [Google Scholar]
  3. LlovetJ.M. MontalR. SiaD. FinnR.S. Molecular therapies and precision medicine for hepatocellular carcinoma.Nat. Rev. Clin. Oncol.2018151059961610.1038/s41571‑018‑0073‑430061739
    [Google Scholar]
  4. ZhouS. XuH. WeiT. Inhibition of stress proteins TRIB3 and STC2 potentiates sorafenib sensitivity in hepatocellular carcinoma.Heliyon202396e1729510.1016/j.heliyon.2023.e1729537389061
    [Google Scholar]
  5. KudoM. FinnR.S. QinS. HanK.H. IkedaK. PiscagliaF. BaronA. ParkJ.W. HanG. JassemJ. BlancJ.F. VogelA. KomovD. EvansT.R.J. LopezC. DutcusC. GuoM. SaitoK. KraljevicS. TamaiT. RenM. ChengA.L. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial.Lancet2018391101261163117310.1016/S0140‑6736(18)30207‑129433850
    [Google Scholar]
  6. FlynnM.J. SayedA.A. SharmaR. SiddiqueA. PinatoD.J. Challenges and opportunities in the clinical development of immune checkpoint inhibitors for hepatocellular carcinoma.Hepatology20196952258227010.1002/hep.3033730382576
    [Google Scholar]
  7. RizzoA. RicciA.D. BrandiG. Trans-arterial chemoembolization plus systemic treatments for hepatocellular carcinoma: An update.J. Pers. Med.20221211178810.3390/jpm1211178836579504
    [Google Scholar]
  8. RizzoA. RicciA.D. Challenges and future trends of hepatocellular carcinoma immunotherapy.Int. J. Mol. Sci.202223191136310.3390/ijms23191136336232663
    [Google Scholar]
  9. RizzoA. SantoniM. MollicaV. LogulloF. RoselliniM. MarchettiA. FaloppiL. BattelliN. MassariF. Peripheral neuropathy and headache in cancer patients treated with immunotherapy and immuno-oncology combinations: The MOUSEION-02 study.Expert Opin. Drug Metab. Toxicol.202117121455146610.1080/17425255.2021.202940535029519
    [Google Scholar]
  10. GuvenD.C. ErulE. KaygusuzY. AkagunduzB. KilickapS. De LucaR. RizzoA. Immune checkpoint inhibitor-related hearing loss: A systematic review and analysis of individual patient data.Support Care Cancer2023311262410.1007/s00520‑023‑08083‑w37819422
    [Google Scholar]
  11. SahinT.K. RizzoA. AksoyS. GuvenD.C. Prognostic significance of the royal marsden hospital (RMH) score in patients with cancer: Aa systematic review and meta-analysis.Cancers20241610183510.3390/cancers1610183538791914
    [Google Scholar]
  12. BoW. ChenY. Lenvatinib resistance mechanism and potential ways to conquer.Front. Pharmacol.202314115399110.3389/fphar.2023.115399137153782
    [Google Scholar]
  13. UeharaY. IkedaS. KimK.H. LimH.J. AdashekJ.J. PershaH.E. OkamuraR. LeeS. SicklickJ.K. KatoS. KurzrockR. Targeting the FGF/FGFR axis and its co-alteration allies.ESMO Open20227610064710.1016/j.esmoop.2022.10064736455506
    [Google Scholar]
  14. MuraishiN. KawamuraY. AkutaN. ShindohJ. MatsumuraM. OkuboS. FujiyamaS. HosakaT. SaitohS. SezakiH. SuzukiF. SuzukiY. IkedaK. AraseY. HashimotoM. YasudaI. KumadaH. The impact of lenvatinib on tumor blood vessel shrinkage of hepatocellular carcinoma during treatment: An imaging-based analysis.Oncology2023101213414410.1159/00052697636103864
    [Google Scholar]
  15. ChenZ. MaY. GuoZ. SongD. ChenZ. SunM. Ubiquitin-specific protease 1 acts as an oncogene and promotes lenvatinib efficacy in hepatocellular carcinoma by stabilizing c-kit.Ann. Hepatol.202227210066910.1016/j.aohep.2022.10066935045360
    [Google Scholar]
  16. HegdeA. Andreev-DrakhlinA.Y. RoszikJ. HuangL. LiuS. HessK. CabanillasM. HuM.I. BusaidyN.L. ShermanS.I. DaduR. GrubbsE.G. AliS.M. LeeJ. ElaminY.Y. SimonG.R. BlumenscheinG.R.Jr PapadimitrakopoulouV.A. HongD. Meric-BernstamF. HeymachJ. SubbiahV. Responsiveness to immune checkpoint inhibitors versus other systemic therapies in RET-aberrant malignancies.ESMO Open202055e00079910.1136/esmoopen‑2020‑00079933097651
    [Google Scholar]
  17. MotzerR.J. HutsonT.E. GlenH. MichaelsonM.D. MolinaA. EisenT. JassemJ. ZolnierekJ. MarotoJ.P. MelladoB. MelicharB. TomasekJ. KremerA. KimH.J. WoodK. DutcusC. LarkinJ. Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: a randomised, phase 2, open-label, multicentre trial.Lancet Oncol.201516151473148210.1016/S1470‑2045(15)00290‑926482279
    [Google Scholar]
  18. WirthL.J. TaharaM. RobinsonB. FrancisS. BroseM.S. HabraM.A. NewboldK. KiyotaN. DutcusC.E. MathiasE. GuoM. ShermanS.I. SchlumbergerM. Treatment-emergent hypertension and efficacy in the phase 3 Study of (E7080) lenvatinib in differentiated cancer of the thyroid (SELECT).Cancer2018124112365237210.1002/cncr.3134429656442
    [Google Scholar]
  19. HuL. ZhengY. LinJ. ShiX. WangA. Comparison of the effects of lenvatinib and sorafenib on survival in patients with advanced hepatocellular carcinoma: A systematic review and meta-analysis.Clin. Res. Hepatol. Gastroenterol.202347110206110.1016/j.clinre.2022.10206136473632
    [Google Scholar]
  20. PersanoM. Casadei-GardiniA. BurgioV. ScartozziM. CascinuS. RiminiM. Five years of lenvatinib in hepatocellular carcinoma: are there any predictive and/or prognostic factors?Expert Rev. Anticancer Ther.2023231192710.1080/14737140.2023.215634036472371
    [Google Scholar]
  21. SuC.W. TengW. LinP.T. JengW.J. ChenK.A. HsiehY.C. ChenW.T. HoM.M. HsiehC.H. WangC.T. ChaiP.M. LinC.C. LinC.Y. LinS.M. Similar efficacy and safety between lenvatinib versus atezolizumab plus bevacizumab as the first-line treatment for unresectable hepatocellular carcinoma.Cancer Med.20231267077708910.1002/cam4.550636468578
    [Google Scholar]
  22. WassermannJ. BagnisC.I. LeenhardtL. EderhyS. BuffetC. Pre-therapeutic evaluation and practical management of cardiovascular and renal toxicities in patients with metastatic radioiodine-refractory thyroid cancer treated with lenvatinib.Expert Opin. Drug Saf.202221111401141010.1080/14740338.2022.215311536458701
    [Google Scholar]
  23. LiM. WangX. LiuJ. MaoX. LiD. WangZ. TangY. WuS. Identification of core prognosis-related candidate genes in chinese gastric cancer population based on integrated bioinformatics.BioMed Res. Int.2020202011410.1155/2020/885982633381592
    [Google Scholar]
  24. WangY. ZhangM. GongY. WuQ. ZhangL. JiaoS. Bioinformatic analysis of hepatocellular carcinoma cell lines to the efficacy of nimotuzumab.Int. J. Gen. Med.2021142611262110.2147/IJGM.S31277034168487
    [Google Scholar]
  25. TaoY. ShanL. XuX. JiangH. ChenR. QianZ. YangZ. LiangB. ZhenH. CaiF. YuY. MaL. Huaier augmented the chemotherapeutic sensitivity of oxaliplatin via downregulation of yap in hepatocellular carcinoma.J. Cancer20189213962397010.7150/jca.2590930410600
    [Google Scholar]
  26. WangY. ZhengB. XuM. CaiS. YounseoJ. ZhangC. JiangB. Prediction and analysis of hub genes in renal cell carcinoma based on CFS gene selection method combined with adaboost algorithm.Med. Chem.202016565466310.2174/157340641566619100410074431584378
    [Google Scholar]
  27. ChenY.C. LiD.B. WangD.L. PengH. Comprehensive analysis of distal-less homeobox family gene expression in colon cancer.World J. Gastrointest. Oncol.20231561019103510.4251/wjgo.v15.i6.101937389108
    [Google Scholar]
  28. LyuG. LiD. XiongH. XiaoL. TongJ. NingC. WangP. LiS. Quantitative proteomic analyses identify STO/BBX24 -related proteins induced by UV-B.Int. J. Mol. Sci.2020217249610.3390/ijms2107249632260266
    [Google Scholar]
  29. LiD.B. LyuG.Z. LyuJ.P. NiuH.B. WangX. YinJ. Cloning and characterization of a wheat RING finger gene TaRHA2b whose expression is up-regulated by ABA treatment.Appl. Ecol. Environ. Res.20197495751010.15666/aeer/1704_74957510
    [Google Scholar]
  30. YangD. LiuM. JiangJ. LuoY. WangY. ChenH. LiD. WangD. YangZ. ChenH. Comprehensive analysis of dmrt3 as a potential biomarker associated with the immune infiltration in a pan-cancer analysis and validation in lung adenocarcinoma.Cancers20221424622010.3390/cancers1424622036551704
    [Google Scholar]
  31. RuiS. WangD. HuangY. XuJ. ZhouH. ZhangH. Prognostic value of SLC4A4 and its correlation with the microsatellite instability in colorectal cancer.Front. Oncol.202313117912010.3389/fonc.2023.117912037152025
    [Google Scholar]
  32. LiF. MiaoJ. LiuR. ZhangR. HeA. Pan-cancer analysis of DDIT4 identifying its prognostic value and function in acute myeloid leukemia.J. Cancer Res. Clin. Oncol.2024150314410.1007/s00432‑024‑05676‑838507057
    [Google Scholar]
  33. QianB. LiuQ. WangC. LuS. KeS. YinB. LiX. YuH. WuY. MaY. Identification of MIR600HG/hsa-miR-342-3p/ANLN network as a potential prognosis biomarker associated with lmmune infiltrates in pancreatic cancer.Sci. Rep.20231311591910.1038/s41598‑023‑43174‑y37741887
    [Google Scholar]
  34. DingY. WangH. LiuJ. JiangH. GongA. XuM. MBD3 as a potential biomarker for colon cancer: Implications for epithelial-mesenchymal transition (EMT) pathways.Cancers20231512318510.3390/cancers1512318537370795
    [Google Scholar]
  35. YangY. GuX. LiZ. ZhengC. WangZ. ZhouM. ChenZ. LiM. LiD. XiangJ. Whole-exome sequencing of rectal cancer identifies locally recurrent mutations in the Wnt pathway.Aging20211319232622328310.18632/aging.20361834642262
    [Google Scholar]
  36. LiangW. LuY. PanX. ZengY. ZhengW. LiY. NieY. LiD. WangD. Decreased expression of a novel lncRNA FAM181A-AS1 is associated with poor prognosis and immune infiltration in lung adenocarcinoma.Pharm. Genomics Pers. Med.20221598599810.2147/PGPM.S38490136482943
    [Google Scholar]
  37. HanQ. CuiZ. WangQ. PangF. LiD. WangD. Upregulation of OTX2-AS1 is associated with immune infiltration and predicts prognosis of gastric cancer.Technol. Cancer Res. Treat.202322p. 1533033823115409110.1177/1533033823115409136740995
    [Google Scholar]
  38. LinZ. HuangW. YiY. LiD. XieZ. LiZ. YeM. LncRNA ADAMTS9-AS2 is a prognostic biomarker and correlated with immune infiltrates in lung adenocarcinoma.Int. J. Gen. Med.2021148541855510.2147/IJGM.S34068334849000
    [Google Scholar]
  39. YiW. ShenH. SunD. XuY. FengY. LiD. WangC. Low expression of long noncoding RNA SLC26A4 antisense RNA 1 is an independent prognostic biomarker and correlate of immune infiltrates in breast cancer.Med. Sci. Monit.202127e93452234880202
    [Google Scholar]
  40. ChenB. LuX. ZhouQ. ChenQ. ZhuS. LiG. LiuH. PAXIP1-AS1 is associated with immune infiltration and predicts poor prognosis in ovarian cancer.PLoS One2023188e029003110.1371/journal.pone.029003137582104
    [Google Scholar]
  41. LeeH. SainiN. ParrisA. ZhaoM. YangX. Ganetespib induces G2/M cell cycle arrest and apoptosis in gastric cancer cells through targeting of receptor tyrosine kinase signaling.Int. J. Oncol.201751396797410.3892/ijo.2017.407328713919
    [Google Scholar]
  42. LiZ. FanY. MaY. MengN. LiD. WangD. LianJ. HuC. Identification of crucial genes and signaling pathways in alectinib-resistant lung adenocarcinoma using bioinformatic analysis.Mol. Biotechnol.202311610.1007/s12033‑023‑00973‑y38142454
    [Google Scholar]
  43. YanY.C. MengG.X. YangC.C. YangY.F. TanS.Y. YanL.J. DingZ.N. MaY.L. DongZ.R. LiT. Diacylglycerol lipase alpha promotes hepatocellular carcinoma progression and induces lenvatinib resistance by enhancing YAP activity.Cell Death Dis.202314740410.1038/s41419‑023‑05919‑537414748
    [Google Scholar]
  44. HuangM. LongJ. YaoZ. ZhaoY. ZhaoY. LiaoJ. LeiK. XiaoH. DaiZ. PengS. LinS. XuL. KuangM. METTL1-mediated m7G tRNA modification promotes lenvatinib resistance in hepatocellular carcinoma.Cancer Res.20238318910210.1158/0008‑5472.CAN‑22‑096336102722
    [Google Scholar]
  45. PanJ. ZhangM. DongL. JiS. ZhangJ. ZhangS. LinY. WangX. DingZ. QiuS. GaoD. ZhouJ. FanJ. GaoQ. Genome-Scale CRISPR screen identifies LAPTM5 driving lenvatinib resistance in hepatocellular carcinoma.Autophagy20231941184119810.1080/15548627.2022.211789336037300
    [Google Scholar]
  46. HeX. HikibaY. SuzukiY. NakamoriY. KanemaruY. SugimoriM. SatoT. NozakiA. ChumaM. MaedaS. EGFR inhibition reverses resistance to lenvatinib in hepatocellular carcinoma cells.Sci. Rep.2022121800710.1038/s41598‑022‑12076‑w35568782
    [Google Scholar]
  47. ZhaoZ. ZhangD. WuF. TuJ. SongJ. XuM. JiJ. Sophoridine suppresses lenvatinib-resistant hepatocellular carcinoma growth by inhibiting RAS/MEK/ERK axis via decreasing VEGFR2 expression.J. Cell. Mol. Med.202125154956010.1111/jcmm.1610833210432
    [Google Scholar]
  48. ChenL. HuM. ChenL. PengY. ZhangC. WangX. LiX. YaoY. SongQ. LiJ. PeiH. Targeting O-GlcNAcylation in cancer therapeutic resistance: The sugar saga continues.Cancer Lett.202458821674210.1016/j.canlet.2024.21674238401884
    [Google Scholar]
  49. ShiF. WuH. QuK. SunQ. LiF. ShiC. LiY. XiongX. QinQ. YuT. JinX. ChengL. WeiQ. LiY. SheJ. Identification of serum proteins AHSG, FGA and APOA-I as diagnostic biomarkers for gastric cancer.Clin. Proteomics20181511810.1186/s12014‑018‑9194‑029719494
    [Google Scholar]
  50. ThompsonP.D. SakweA. KoumangoyeR. YarbroughW.G. OchiengJ. MarshallD.R. Alpha-2 heremans schmid glycoprotein (AHSG) modulates signaling pathways in head and neck squamous cell carcinoma cell line SQ20B.Exp. Cell Res.2014321212313210.1016/j.yexcr.2013.12.00324332981
    [Google Scholar]
  51. LiX. MaC. Alpha-2-heremans-schmid-glycoprotein (AHSG) a potential biomarker associated with prognosis of chromophobe renal cell carcinoma: The propolis study.Health Sci. Rep.202256e87810.1002/hsr2.87836262809
    [Google Scholar]
  52. YiJ.K. ChangJ.W. HanW. LeeJ.W. KoE. KimD.H. BaeJ.Y. YuJ. LeeC. YuM.H. NohD.Y. Autoantibody to tumor antigen, alpha 2-HS glycoprotein: A novel biomarker of breast cancer screening and diagnosis.Cancer Epidemiol. Biomarkers Prev.20091851357136410.1158/1055‑9965.EPI‑08‑069619423516
    [Google Scholar]
  53. DongY. DingD. GuJ. ChenM. LiS. Alpha-2 heremans schmid glycoprotein (AHSG) promotes the proliferation of bladder cancer cells by regulating the TGF-β signalling pathway.Bioengineered2022136142821429810.1080/21655979.2022.208146535746836
    [Google Scholar]
  54. DasS. ChattopadhyayD. ChatterjeeS.K. MondalS.A. MajumdarS.S. MukhopadhyayS. SahaN. VelayuthamR. BhattacharyaS. MukherjeeS. Increase in PPARγ inhibitory phosphorylation by Fetuin: A through the activation of Ras-MEK-ERK pathway causes insulin resistance.Biochim. Biophys. Acta Mol. Basis Dis.20211867416605010.1016/j.bbadis.2020.16605033359696
    [Google Scholar]
  55. LiY. YangW. ZhengY. DaiW. JiJ. WuL. ChengZ. ZhangJ. LiJ. XuX. WuJ. YangM. FengJ. GuoC. Targeting fatty acid synthase modulates sensitivity of hepatocellular carcinoma to sorafenib via ferroptosis.J. Exp. Clin. Cancer Res.2023421610.1186/s13046‑022‑02567‑z36604718
    [Google Scholar]
  56. ChenM.Y. HsuC.H. SetiawanS.A. TzengD.T.W. MaH.P. OngJ.R. ChuY.C. HsiehM.S. WuA.T.H. TzengY.M. YehC.T. Ovatodiolide and antrocin synergistically inhibit the stemness and metastatic potential of hepatocellular carcinoma via impairing ribosome biogenesis and modulating ERK/Akt-mTOR signaling axis.Phytomedicine202310815447810.1016/j.phymed.2022.15447836265255
    [Google Scholar]
  57. Martínez-LópezN. García-RodríguezJ.L. Varela-ReyM. GutiérrezV. Fernández-RamosD. BerazaN. AransayA.M. SchlangenK. LozanoJ.J. AspichuetaP. LukaZ. WagnerC. EvertM. CalvisiD.F. LuS.C. MatoJ.M. Martínez-ChantarM.L. Hepatoma cells from mice deficient in glycine N-methyltransferase have increased RAS signaling and activation of liver kinase B1.Gastroenterology20121433787798.e1310.1053/j.gastro.2012.05.05022687285
    [Google Scholar]
  58. LiuT. YuanZ. WangH. WangJ. XueL. Peroxisome-related genes in hepatocellular carcinoma correlated with tumor metabolism and overall survival.Clin. Res. Hepatol. Gastroenterol.2022461010183510.1016/j.clinre.2021.10183534798303
    [Google Scholar]
  59. WangC. YangM. ZhaoJ. LiX. XiaoX. ZhangY. JinX. LiaoM. Bile salt (glycochenodeoxycholate acid) induces cell survival and chemoresistance in hepatocellular carcinoma.J. Cell. Physiol.20192347108991090610.1002/jcp.2790530548625
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673329991241111111941
Loading
/content/journals/cmc/10.2174/0109298673329991241111111941
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test