Skip to content
2000
Volume 32, Issue 31
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Cancer is one of the most devastating illnesses in the world, impacting millions of individuals every year. Despite various therapies, the final effect is unsatisfactory. Chemotherapy currently dominates as the primary option of treatment. However, its severe adverse effects, limited efficacy, and resistance to drugs undermine its potential. Growing evidence suggests that ginsenoside Rg3, a natural compound obtained from the ginseng plant (), holds significant promise in cancer therapy. Its proposed mechanisms primarily involve the enhancement of immunity, retardation of cancer cellular proliferation and metastasis, triggering apoptosis, angiogenesis, epigenetic modification, and Regulation of transition of epithelial mesenchyma (EMT) and miRNAs/lncRNA. Furthermore, Rg3-ginsenoside potentiates the effectiveness of conventional treatments of cancer and reduces the adverse effects through synergistic interactions. Ginsenoside Rg3's present status in cancer research is thoroughly reviewed in this article, shedding light on its intricate mechanisms and potential to revolutionize cancer therapy through combinatorial and nano-based targeted therapy.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673333781240924024342
2025-01-14
2025-10-23
Loading full text...

Full text loading...

References

  1. Cancer.2022Available from: https://www.who.int/news-room/fact-sheets/detail/cancer
  2. ChakrabortyS. RahmanT. The difficulties in cancer treatment.Ecancermedicalscience20126ed1610.3332/ecancer.2012.ed1624883085
    [Google Scholar]
  3. DebelaD.T. MuzazuS.G.Y. HeraroK.D. NdalamaM.T. MeseleB.W. HaileD.C. KituiS.K. ManyazewalT. New approaches and procedures for cancer treatment: Current perspectives.SAGE Open Med.20219p. 2050312121103436610.1177/2050312121103436634408877
    [Google Scholar]
  4. ZargarA. ChangS. KothariA. SnijdersA.M. MaoJ.H. WangJ. HernándezA.C. KeaslingJ.D. BivonaT.G. Overcoming the challenges of cancer drug resistance through bacterial-mediated therapy.Chronic Dis. Transl. Med.20195425826610.1016/j.cdtm.2019.11.00132055785
    [Google Scholar]
  5. WangY. LiG. ChenT. WuW. YanZ. LiX. Anticancer effect and molecular mechanism of ginsenoside Rg3 in various cancer types.Intelligent Pharmacy202312526310.1016/j.ipha.2023.04.012
    [Google Scholar]
  6. MiaoX.S. MetcalfeC.D. HaoC. MarchR.E. Electrospray ionization mass spectrometry of ginsenosides.J. Mass Spectrom.200237549550610.1002/jms.30912112755
    [Google Scholar]
  7. HouM. WangR. ZhaoS. WangZ. Ginsenosides in Panax genus and their biosynthesis.Acta Pharm. Sin. B20211171813183410.1016/j.apsb.2020.12.01734386322
    [Google Scholar]
  8. LeungK. WongA. Pharmacology of ginsenosides: A literature review.Chin. Med.2010512010.1186/1749‑8546‑5‑2020537195
    [Google Scholar]
  9. NakhjavaniM. PalethorpeH.M. TomitaY. SmithE. PriceT.J. YoolA.J. PeiJ.V. TownsendA.R. HardinghamJ.E. Stereoselective anti-cancer activities of ginsenoside Rg3 on triple negative breast cancer cell models.Pharmaceuticals (Basel)201912311710.3390/ph12030117
    [Google Scholar]
  10. NakhjavaniM. HardinghamJ.E. PalethorpeH.M. TomitaY. SmithE. PriceT.J. TownsendA.R. Ginsenoside Rg3: Potential molecular targets and therapeutic indication in metastatic breast cancer.Medicines (Basel)2019611710.3390/medicines601001730678106
    [Google Scholar]
  11. LeluJ.K. LiuQ. AlolgaR.N. FanY. XiaoW.L. QiL.W. LiP. A new two-dimensional chromatographic method for separation of saponins from steamed Panax notoginseng .J. Pharm. Biomed. Anal.201612535535910.1016/j.jpba.2016.04.01927107214
    [Google Scholar]
  12. JoS.K. KimI.S. YoonK.S. YoonH.H. YooH.H. Preparation of ginsenosides Rg3, Rk1, and Rg5-selectively enriched ginsengs by a simple steaming process.Eur. Food Res. Technol.2015240125125610.1007/s00217‑014‑2370‑1
    [Google Scholar]
  13. LiuL. ZhuX.M. WangQ.J. ZhangD.L. FangZ.M. WangC.Y. WangZ. SunB.S. WuH. SungC.K. Enzymatic preparation of 20(S, R)-protopanaxadiol by transformation of 20(S, R)-Rg3 from black ginseng.Phytochemistry201071131514152010.1016/j.phytochem.2010.05.00720576280
    [Google Scholar]
  14. FanJ. ZhangM. AiZ. HuangJ. WangY. XiaoS. WangY. Highly regioselective hydrolysis of the glycosidic bonds in ginsenosides catalyzed by snailase.Process Biochem.202110311412210.1016/j.procbio.2021.02.013
    [Google Scholar]
  15. ChengL.Q. NaJ.R. BangM.H. KimM.K. YangD.C. Conversion of major ginsenoside Rb1 to 20(S)- ginsenoside Rg3 by Microbacterium sp. GS514.Phytochemistry200869121822410.1016/j.phytochem.2007.06.03517764709
    [Google Scholar]
  16. XuJ. YangT.J. HuH. The Ginseng Genome (Compendium of Plant Genomes)2021
    [Google Scholar]
  17. LiG. ZhangX. LinL. LiuX. MaC. LiJ. WangC. Preparation of ginsenoside Rg3 and protection against H2O2 -Induced oxidative stress in human neuroblastoma SK-N-SH cells.J. Chem.201420141610.1155/2014/848571
    [Google Scholar]
  18. NakhjavaniM. SmithE. YeoK. PalethorpeH.M. TomitaY. PriceT.J. TownsendA.R. HardinghamJ.E. Anti-angiogenic properties of ginsenoside Rg3 epimers: In vitro assessment of single and combination treatments.Cancers (Basel)2021139222310.3390/cancers1309222334066403
    [Google Scholar]
  19. SoriceM. Crosstalk of autophagy and apoptosis.Cells2022119147910.3390/cells1109147935563785
    [Google Scholar]
  20. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell2011144564667410.1016/j.cell.2011.02.01321376230
    [Google Scholar]
  21. LiY. LuJ. BaiF. XiaoY. GuoY. DongZ. Ginsenoside Rg3 suppresses proliferation and induces apoptosis in human osteosarcoma.BioMed Res. Int.201820181910.1155/2018/430657929750154
    [Google Scholar]
  22. HwangS.K. JeongY.J. ChoH.J. ParkY.Y. SongK.H. ChangY.C. Rg3-enriched red ginseng extract promotes lung cancer cell apoptosis and mitophagy by ROS production.J. Ginseng Res.202246113814610.1016/j.jgr.2021.05.00535058730
    [Google Scholar]
  23. ZhangF. LiM. WuX. HuY. CaoY. WangX. XiangS. LiH. JiangL. TanZ. LuW. WengH. ShuY. GongW. WangX. ZhangY. ShiW. DongP. GuJ. LiuY. 20(S)-Ginsenoside Rg3 promotes senescence and apoptosis in gallbladder cancer cells via the p53 pathway [Corrigendum].Drug Des. Devel. Ther.2019133527352810.2147/DDDT.S23083531631976
    [Google Scholar]
  24. BianS. ZhaoY. LiF. LuS. WangS. BaiX. LiuM. ZhaoD. WangJ. GuoD. 20(S)-Ginsenoside Rg3 promotes hela cell apoptosis by regulating autophagy.Molecules20192420365510.3390/molecules24203655
    [Google Scholar]
  25. KimB.M. KimD.H. ParkJ.H. SurhY.J. NaH.K. Ginsenoside Rg3 inhibits constitutive activation of NF-κB signaling in human breast cancer (MDA-MB-231) cells: ERK and Akt as potential upstream targets.J. Cancer Prev.2014191233010.15430/JCP.2014.19.1.2325337569
    [Google Scholar]
  26. WuK. HuangJ. LiN. XuT. CaiW. YeZ. Antitumor effect of ginsenoside Rg3 on gallbladder cancer by inducing endoplasmic reticulum stress-mediated apoptosis in vitro and in vivo. Oncol. Lett.20181655687569610.3892/ol.2018.933130344724
    [Google Scholar]
  27. AzizF. WangX. LiuJ. YanQ. Ginsenoside Rg3 induces FUT4-mediated apoptosis in H. pylori CagA-treated gastric cancer cells by regulating SP1 and HSF1 expressions.Toxicol. In Vitro20163115816610.1016/j.tiv.2015.09.02526427350
    [Google Scholar]
  28. PlatiniF. Pérez-TomásR. AmbrosioS. TessitoreL. Understanding autophagy in cell death control.Curr. Pharm. Des.201016110111310.2174/13816121078994181020214621
    [Google Scholar]
  29. ZhengX. ChenW. HouH. LiJ. LiH. SunX. ZhaoL. LiX. Ginsenoside 20(S)-Rg3 induced autophagy to inhibit migration and invasion of ovarian cancer.Biomed. Pharmacother.20178562062610.1016/j.biopha.2016.11.07227899249
    [Google Scholar]
  30. ChenQ.-F. QiuY. WangL. LiuB.-L. ZhaoM. Ginsenosides Rh2 and Rg3 exert their anti-cancer effects on non-small cell lung cancer by regulating cell autophagy and choline-phosphatidylcholine metabolism.Europe PMC202310.21203/rs.3.rs‑3128429/v1
    [Google Scholar]
  31. FeitelsonM.A. ArzumanyanA. KulathinalR.J. BlainS.W. HolcombeR.F. MahajnaJ. MarinoM. Martinez-ChantarM.L. NawrothR. Sanchez-GarciaI. SharmaD. SaxenaN.K. SinghN. VlachostergiosP.J. GuoS. HonokiK. FujiiH. GeorgakilasA.G. BilslandA. AmedeiA. NiccolaiE. AminA. AshrafS.S. BoosaniC.S. GuhaG. CirioloM.R. AquilanoK. ChenS. MohammedS.I. AzmiA.S. BhaktaD. HalickaD. KeithW.N. NowsheenS. Sustained proliferation in cancer: Mechanisms and novel therapeutic targets.Semin. Cancer Biol.201535S25S5410.1016/j.semcancer.2015.02.00625892662
    [Google Scholar]
  32. LiuH. XieT. LiuY. Ginsenoside Rg3 inhibits the malignant progression of cervical cancer cell by regulating AKT2 expression.Heliyon202398e1904510.1016/j.heliyon.2023.e1904537664735
    [Google Scholar]
  33. ZhangW. WangQ. DuH. JiangS. CRISPR/Cas9-mediated overexpression of long non-coding RNA SRY-box transcription factor 21 antisense divergent transcript 1 regulates the proliferation of osteosarcoma by increasing the expression of mechanistic target of rapamycin kinase and Kruppel-like factor 4.Bioengineered20221336677668610.1080/21655979.2021.199510634696664
    [Google Scholar]
  34. PuZ. GeF. WangY. JiangZ. ZhuS. QinS. DaiQ. LiuH. HuaH. Ginsenoside-Rg3 inhibits the proliferation and invasion of hepatoma carcinoma cells via regulating long non-coding RNA HOX antisense intergenic.Bioengineered20211212398240910.1080/21655979.2021.193221134130594
    [Google Scholar]
  35. MaoX. JinY. FengT. WangH. LiuD. ZhouZ. YanQ. YangH. YangJ. YangJ. YeY. SuY. ZuoG. Ginsenoside Rg3 inhibits the growth of osteosarcoma and attenuates metastasis through the Wnt/ β -Catenin and EMT signaling pathway.Evid. Based Complement. Alternat. Med.202020201606512410.1155/2020/606512432733585
    [Google Scholar]
  36. LiangY. ZhangT. JingS. ZuoP. LiT. WangY. XingS. ZhangJ. WeiZ. 20(S)-Ginsenoside Rg3 inhibits lung cancer cell proliferation by targeting EGFR-mediated Ras/Raf/MEK/ERK pathway.Am. J. Chin. Med.202149375376510.1142/S0192415X2150035X33641655
    [Google Scholar]
  37. BeroukhimR. MermelC.H. PorterD. WeiG. RaychaudhuriS. DonovanJ. BarretinaJ. BoehmJ.S. DobsonJ. UrashimaM. Mc HenryK.T. PinchbackR.M. LigonA.H. ChoY.J. HaeryL. GreulichH. ReichM. WincklerW. LawrenceM.S. WeirB.A. TanakaK.E. ChiangD.Y. BassA.J. LooA. HoffmanC. PrensnerJ. LiefeldT. GaoQ. YeciesD. SignorettiS. MaherE. KayeF.J. SasakiH. TepperJ.E. FletcherJ.A. TaberneroJ. BaselgaJ. TsaoM.S. DemichelisF. RubinM.A. JanneP.A. DalyM.J. NuceraC. LevineR.L. EbertB.L. GabrielS. RustgiA.K. AntonescuC.R. LadanyiM. LetaiA. GarrawayL.A. LodaM. BeerD.G. TrueL.D. OkamotoA. PomeroyS.L. SingerS. GolubT.R. LanderE.S. GetzG. SellersW.R. MeyersonM. The landscape of somatic copy-number alteration across human cancers.Nature2010463728389990510.1038/nature0882220164920
    [Google Scholar]
  38. KalkatM. De MeloJ. HickmanK. LourencoC. RedelC. ResetcaD. TamachiA. TuW. PennL. MYC deregulation in primary human cancers.Genes (Basel)20178615110.3390/genes806015128587062
    [Google Scholar]
  39. NingJ.Y. ZhangZ.H. ZhangJ. LiuY.M. LiG.C. WangA.M. LiY. ShanX. WangJ.H. ZhangX. ZhaoY. Ginsenoside Rg3 decreases breast cancer stem- like phenotypes through impairing MYC mRNA stability.Am. J. Cancer Res.202414260161510.62347/GYXE774138455405
    [Google Scholar]
  40. AnsariM.J. BokovD. MarkovA. JalilA.T. ShalabyM.N. SuksatanW. ChupraditS. AL-GhamdiH.S. ShomaliN. ZamaniA. MohammadiA. DadashpourM. Cancer combination therapies by angiogenesis inhibitors; A comprehensive review.Cell Commun. Signal.20222014910.1186/s12964‑022‑00838‑y35392964
    [Google Scholar]
  41. LvQ. XiaZ. HuangY. RuanZ. WangJ. HuangZ. Ginsenoside Rg3 alleviates the migration, invasion, and angiogenesis of lung cancer cells by inhibiting the expressions of cyclooxygenase-2 and vascular endothelial growth factor.Chem. Biol. Drug Des.2023101493795110.1111/cbdd.1420336593682
    [Google Scholar]
  42. ZengZ. NianQ. ChenN. ZhaoM. ZhengQ. ZhangG. ZhaoZ. ChenY. WangJ. ZengJ. GongD. TangJ. Ginsenoside Rg3 inhibits angiogenesis in gastric precancerous lesions through downregulation of Glut1 and Glut4.Biomed. Pharmacother.202214511208610.1016/j.biopha.2021.11208634799220
    [Google Scholar]
  43. TangY.C. ZhangY. ZhouJ. ZhiQ. WuM.Y. GongF.R. ShenM. LiuL. TaoM. ShenB. GuD-M. YuJ. XuM-D. GaoY. LiW. Ginsenoside Rg3 targets cancer stem cells and tumor angiogenesis to inhibit colorectal cancer progression in vivo .Int. J. Oncol.201710.3892/ijo.2017.418329115601
    [Google Scholar]
  44. MaZ. ZuoY. WangW. Ginsenoside Rg3 inhibits renal cell carcinoma cell migration, invasion, colony formation, and tube formation and enhances apoptosis through promoting the DNA demethylation and histone acetylation.J. Pharm. Pharmacol.2023751768610.1093/jpp/rgac07236264186
    [Google Scholar]
  45. WangT. ZhangC. WangS. Ginsenoside Rg3 inhibits osteosarcoma progression by reducing circ_0003074 expression in a miR-516b-5p/KPNA4-dependent manner.J. Orthop. Surg. Res.202116172410.1186/s13018‑021‑02868‑734930332
    [Google Scholar]
  46. LeeS.G. KangY.J. NamJ.O. Anti-metastasis effects of ginsenoside Rg3 in B16F10 cells.J. Microbiol. Biotechnol.201525121997200610.4014/jmb.1506.0600226370799
    [Google Scholar]
  47. SunM.Y. SongY.N. ZhangM. ZhangC.Y. ZhangL.J. ZhangH. Ginsenoside Rg3 inhibits the migration and invasion of liver cancer cells by increasing the protein expression of ARHGAP9.Oncol. Lett.201817196597310.3892/ol.2018.970130655855
    [Google Scholar]
  48. SongJ.H. EumD.Y. ParkS.Y. JinY.H. ShimJ.W. ParkS.J. KimM.Y. ParkS.J. HeoK. ChoiY.J. Inhibitory effect of ginsenoside Rg3 on cancer stemness and mesenchymal transition in breast cancer via regulation of myeloid-derived suppressor cells.PLoS One20201510e024053310.1371/journal.pone.024053333091036
    [Google Scholar]
  49. NakhjavaniM. SmithE. PalethorpeH.M. TomitaY. YeoK. PriceT.J. TownsendA.R. HardinghamJ.E. Anti-cancer effects of an optimised combination of ginsenoside Rg3 epimers on triple negative breast cancer models.Pharmaceuticals (Basel)202114763310.3390/ph1407063334208799
    [Google Scholar]
  50. YangQ. CaiN. CheD. ChenX. WangD. Ginsenoside Rg3 inhibits the biological activity of SGC-7901.Food Sci. Nutr.2020884151415810.1002/fsn3.170732884696
    [Google Scholar]
  51. LvS. ChenX. ChenY. GongD. MaoG. ShenC. XiaT. ChengJ. LuoZ. ChengY. LiW. ZengJ. Ginsenoside Rg3 induces apoptosis and inhibits proliferation by down-regulating TIGAR in rats with gastric precancerous lesions.BMC Complement. Med. Ther.202222118810.1186/s12906‑022‑03669‑z35840932
    [Google Scholar]
  52. WangD. WuC. LiuD. ZhangL. LongG. HuG. SunW. Ginsenoside Rg3 inhibits migration and invasion of nasopharyngeal carcinoma cells and suppresses epithelial mesenchymal transition.BioMed Res. Int.2019201911110.1155/2019/840768330915362
    [Google Scholar]
  53. PetroniG. BuquéA. ZitvogelL. KroemerG. GalluzziL. Immunomodulation by targeted anticancer agents.Cancer Cell202139331034510.1016/j.ccell.2020.11.00933338426
    [Google Scholar]
  54. FerreiraS.S. PassosC.P. MadureiraP. VilanovaM. CoimbraM.A. Structure–function relationships of immunostimulatory polysaccharides: A review.Carbohydr. Polym.201513237839610.1016/j.carbpol.2015.05.07926256362
    [Google Scholar]
  55. Valdés-GonzálezJ.A. SánchezM. Moratilla-RiveraI. IglesiasI. Gómez-SerranillosM.P. Immunomodulatory, anti-inflammatory, and anti-cancer properties of Ginseng: A pharmacological update.Molecules2023289386310.3390/molecules2809386337175273
    [Google Scholar]
  56. LeeY. ParkA. ParkY.J. JungH. KimT.D. NohJ.Y. ChoiI. LeeS. Ran YoonS. Ginsenoside 20(R)-Rg3 enhances natural killer cell activity by increasing activating receptor expression through the MAPK/ERK signaling pathway.Int. Immunopharmacol.202210710861810.1016/j.intimp.2022.10861835219164
    [Google Scholar]
  57. WuR. RuQ. ChenL. MaB. LiC. Stereospecificity of ginsenoside Rg3 in the promotion of cellular immunity in hepatoma H22-bearing mice.J. Food Sci.2014797H1430H143510.1111/1750‑3841.1251825041540
    [Google Scholar]
  58. XiaJ. MaS. ZhuX. ChenC. ZhangR. CaoZ. ChenX. ZhangL. ZhuY. ZhangS. LiS. GuG. WeiX. YuK. WangJ. Versatile ginsenoside Rg3 liposomes inhibit tumor metastasis by capturing circulating tumor cells and destroying metastatic niches.Sci. Adv.202286eabj126210.1126/sciadv.abj126235148178
    [Google Scholar]
  59. Serrano-GomezS.J. MaziveyiM. AlahariS.K. Regulation of epithelial-mesenchymal transition through epigenetic and post-translational modifications.Mol. Cancer20161511810.1186/s12943‑016‑0502‑x26905733
    [Google Scholar]
  60. LiX. LiuW. GengC. LiT. LiY. GuoY. WangC. Ginsenoside Rg3 suppresses epithelial-mesenchymal transition via downregulating notch-Hes1 signaling in colon cancer cells.Am. J. Chin. Med.202149121723510.1142/S0192415X2150012933371813
    [Google Scholar]
  61. ZengX. LiuS. YangH. JiaM. LiuW. ZhuW. Synergistic anti-tumour activity of ginsenoside Rg3 and doxorubicin on proliferation, metastasis and angiogenesis in osteosarcoma by modulating mTOR/HIF-1α/VEGF and EMT signalling pathways.J. Pharm. Pharmacol.202375111405141710.1093/jpp/rgad07037498992
    [Google Scholar]
  62. HuG. LuoN. GuoQ. WangD. PengP. LiuD. LiuS. ZhangL. LongG. SunW. Ginsenoside Rg3 sensitizes nasopharyngeal carcinoma cells to radiation by suppressing epithelial mesenchymal transition.Radiat. Res.2023199546046710.1667/RADE‑22‑00183.136946792
    [Google Scholar]
  63. DengX. WangJ. LuC. ZhouY. ShenL. GeA. FanH. LiuL. Updating the therapeutic role of ginsenosides in breast cancer: A bibliometrics study to an in-depth review.Front. Pharmacol.202314122662910.3389/fphar.2023.122662937818185
    [Google Scholar]
  64. KimH. JiH.W. KimH.W. YunS.H. ParkJ.E. KimS.J. Ginsenoside Rg3 prevents oncogenic long noncoding RNA ATXN8OS from inhibiting tumor-suppressive microRNA-424-5p in breast cancer cells.Biomolecules202111111810.3390/biom1101011833477683
    [Google Scholar]
  65. Jun Wang ZhaoL. GaoX. Ginsenoside Rg3 induces low expression of lncRNA ATXN8OS to inhibit colon cancer metastasis.Russ. J. Bioorganic Chem.202349356257010.1134/S106816202303024X
    [Google Scholar]
  66. SchnekenburgerM. FloreanC. DicatoM. DiederichM. Epigenetic alterations as a universal feature of cancer hallmarks and a promising target for personalized treatments.Curr. Top. Med. Chem.201516774577610.2174/156802661566615082514133026303418
    [Google Scholar]
  67. HamJ. LeeS. LeeH. JeongD. ParkS. KimS.J. Genome-wide methylation analysis identifies NOX4 and KDM5A as key regulators in inhibiting breast cancer cell proliferation by ginsenoside Rg3.Am. J. Chin. Med.20184661333135510.1142/S0192415X1850070230149757
    [Google Scholar]
  68. WangL. HanX. ZhengX. ZhouY. HouH. ChenW. LiX. ZhaoL. Ginsenoside 20(S)-Rg3 upregulates tumor suppressor VHL gene expression by suppressing DNMT3A-mediated promoter methylation in ovarian cancer cells.Nan Fang Yi Ke Da Xue Xue Bao202141110010610.12122/j.issn.1673‑4254.2021.01.1433509760
    [Google Scholar]
  69. HamJ. JeongD. ParkS. KimH.W. KimH. KimS.J. Ginsenoside Rg3 and Korean Red Ginseng extract epigenetically regulate the tumor-related long noncoding RNAs RFX3-AS1 and STXBP5-AS1.J. Ginseng Res.201943462563410.1016/j.jgr.2019.02.00431700260
    [Google Scholar]
  70. LiuW. ZhangS.X. AiB. PanH.F. ZhangD. JiangY. HuL.H. SunL.L. ChenZ.S. LinL.Z. Ginsenoside Rg3 promotes cell growth through activation of mTORC1.Front. Cell Dev. Biol.2021973030910.3389/fcell.2021.73030934589493
    [Google Scholar]
  71. SunM. YeY. XiaoL. DuanX. ZhangY. ZhangH. Anticancer effects of ginsenoside Rg3 (Review).Int. J. Mol. Med.201739350751810.3892/ijmm.2017.285728098857
    [Google Scholar]
  72. PaekI.B. MoonY. KimJ. JiH.Y. KimS.A. SohnD.H. KimJ.B. LeeH.S. Pharmacokinetics of a ginseng saponin metabolite compound K in rats.Biopharm. Drug Dispos.2006271394510.1002/bdd.48116302287
    [Google Scholar]
  73. XiongJ. YuanH. FeiS. YangS. YouM. LiuL. The preventive role of the red gingeng ginsenoside Rg3 in the treatment of lung tumorigenesis induced by benzo(a)pyrene.Sci. Rep.2023131452810.1038/s41598‑023‑31710‑936941308
    [Google Scholar]
  74. BaeS.H. ParkJ.B. ZhengY.F. JangM.J. KimS.O. KimJ.Y. YooY.H. YoonK.D. OhE. BaeS.K. Pharmacokinetics and tissue distribution of ginsenoside Rh2 and Rg3 epimers after oral administration of BST204, a purified ginseng dry extract, in rats.Xenobiotica201444121099110710.3109/00498254.2014.92919224933530
    [Google Scholar]
  75. LiK. ChenX. XuJ. LiX. ZhongD. Liquid chromatography/tandem mass spectrometry for pharmacokinetic studies of 20( R )-ginsenoside Rg3 in dog.Rapid Commun. Mass Spectrom.200519681381710.1002/rcm.186215714599
    [Google Scholar]
  76. CaiZ. QianT. WongR.N.S. JiangZ.H. Liquid chromatography–electrospray ionization mass spectrometry for metabolism and pharmacokinetic studies of ginsenoside Rg3.Anal. Chim. Acta20034921-228329310.1016/S0003‑2670(03)00719‑0
    [Google Scholar]
  77. KebedeL. Masoomi DezfooliS. SeyfoddinA. Medicinal cannabis pharmacokinetics and potential methods of delivery.Pharm. Dev. Technol.202227220221410.1080/10837450.2022.203574835084279
    [Google Scholar]
  78. HasanpoorA. AkaberiM. KesharwaniP. SobhaniZ. SahebkarA. Drug interactions with Cannabis sativa : Mechanisms and clinical implication.Toxicologie Analytique et Clinique202436213114410.1016/j.toxac.2023.10.004
    [Google Scholar]
  79. PalrasuM. WrightL. PatelM. LeechL. BranchS. HarrelsonS. KhanS. Perspectives on challenges in Cannabis drug delivery systems: Where are we?Med. Cannabis Cannabinoids20225110211910.1159/00052562936467783
    [Google Scholar]
  80. YuS.E. MwesigeB. YiY.S. YooB.C. Ginsenosides: the need to move forward from bench to clinical trials.J. Ginseng Res.201943336136710.1016/j.jgr.2018.09.00131308807
    [Google Scholar]
  81. LiY. WangY. NiuK. ChenX. XiaL. LuD. KongR. ChenZ. DuanY. SunJ. Clinical benefit from EGFR-TKI plus ginsenoside Rg3 in patients with advanced non-small cell lung cancer harboring EGFR active mutation.Oncotarget2016743705357054510.18632/oncotarget.1205927655708
    [Google Scholar]
  82. HuangJ.Y. SunY. FanQ.X. ZhangY.Q. Efficacy of Shenyi Capsule combined with gemcitabine plus cisplatin in treatment of advanced esophageal cancer: A randomized controlled trial.J. Chin. Integr. Med.20097111047105110.3736/jcim2009110519912736
    [Google Scholar]
  83. ChenZ-J. ChengJ. HuangY-P. HanS-L. LiuN-X. ZhuG-B. YaoJ-G. Effect of adjuvant chemotherapy of ginsenoside Rg3 combined with mitomycin C and tegafur in advanced gastric cancer.Zhonghua Wei Chang Wai Ke Za Zhi2007101646617253178
    [Google Scholar]
  84. ZhouB. YanZ. LiuR. ShiP. QianS. QuX. ZhuL. ZhangW. WangJ. Prospective study of Transcatheter Arterial Chemoembolization (TACE) with ginsenoside Rg3 versus TACE alone for the treatment of patients with advanced hepatocellular carcinoma.Radiology2016280263063910.1148/radiol.201615071926885681
    [Google Scholar]
  85. XiaogeK. DongliangL. XiaoruiL. Observation of treating advanced breast cancer with ginsenoside Rg3 combining with capecitabine.Zhongliu Fangzhi Yanjiu2011
    [Google Scholar]
  86. HayesC. Cellular immunotherapies for cancer.Ir. J. Med. Sci.20211901415710.1007/s11845‑020‑02264‑w32607912
    [Google Scholar]
  87. WonH.J. KimH.I. ParkT. KimH. JoK. JeonH. HaS.J. HyunJ.M. JeongA. KimJ.S. ParkY.J. EoY.H. LeeJ. Non-clinical pharmacokinetic behavior of ginsenosides.J. Ginseng Res.201943335436010.1016/j.jgr.2018.06.00131308806
    [Google Scholar]
  88. ZhaoJ. DuanZ. MaX. LiuY. FanD. Recent advances in systemic and local delivery of ginsenosides using nanoparticles and nanofibers.Chin. J. Chem. Eng.20213029130010.1016/j.cjche.2020.11.012
    [Google Scholar]
  89. WangH. ZhengY. SunQ. ZhangZ. ZhaoM. PengC. ShiS. Ginsenosides emerging as both bifunctional drugs and nanocarriers for enhanced antitumor therapies.J. Nanobiotechnology202119132210.1186/s12951‑021‑01062‑534654430
    [Google Scholar]
  90. AshiqueS. UpadhyayA. KumarS. MishraN. GargA. RaiS. AltamimiM.A. HussainA. RihanM. Advancement of nanocarriers-based therapeutics for effective management of colorectal cancer.Curr Indian Sci20231e24022321400310.2174/2210299X01666230224095321
    [Google Scholar]
  91. LiuP. ChenG. ZhangJ. A Review of liposomes as a drug delivery system: Current status of approved products, regulatory environments, and future perspectives.Molecules2022274137210.3390/molecules2704137235209162
    [Google Scholar]
  92. YuH. TengL. MengQ. LiY. SunX. LuJ. J LeeR. TengL. Development of liposomal Ginsenoside Rg3: formulation optimization and evaluation of its anticancer effects.Int. J. Pharm.20134501-225025810.1016/j.ijpharm.2013.04.06523628402
    [Google Scholar]
  93. RahimiS. van LeeuwenD. RoshanzamirF. PanditS. ShiL. SasanianN. NielsenJ. EsbjörnerE.K. MijakovicI. Ginsenoside Rg3 reduces the toxicity of graphene oxide used for pH-responsive delivery of doxorubicin to liver and breast cancer cells.Pharmaceutics202315239110.3390/pharmaceutics1502039136839713
    [Google Scholar]
  94. MiaoL. MaH. DongT. ZhaoC. GaoT. WuT. XuH. ZhangJ. Ginsenoside Rg3 liposomes regulate tumor microenvironment for the treatment of triple negative breast cancer.Drug Dev. Ind. Pharm.202349113914810.1080/03639045.2023.218807836881020
    [Google Scholar]
  95. XiaJ. ZhangS. ZhangR. WangA. ZhuY. DongM. MaS. HongC. LiuS. WangD. WangJ. Targeting therapy and tumor microenvironment remodeling of triple-negative breast cancer by ginsenoside Rg3 based liposomes.J. Nanobiotechnology202220141410.1186/s12951‑022‑01623‑236109762
    [Google Scholar]
  96. LiuZ. XiangY. ZhengY. KangX. Advancing immune checkpoint blockade in colorectal cancer therapy with nanotechnology.Front. Immunol.202213102712410.3389/fimmu.2022.102712436341334
    [Google Scholar]
  97. SunD. ZouY. SongL. HanS. YangH. ChuD. DaiY. MaJ. O’DriscollC.M. YuZ. GuoJ. A cyclodextrin-based nanoformulation achieves co-delivery of ginsenoside Rg3 and quercetin for chemo-immunotherapy in colorectal cancer.Acta Pharm. Sin. B202212137839310.1016/j.apsb.2021.06.00535127393
    [Google Scholar]
  98. TangL. ZhangM. LiuC. Advances in nanotechnology-based immunotherapy for glioblastoma.Front. Immunol.20221388225710.3389/fimmu.2022.88225735651605
    [Google Scholar]
  99. LiJ. WangX. GuoY. ZhangY. ZhuA. ZengW. DiL. WangR. Ginsenoside Rg3-engineered exosomes as effective delivery platform for potentiated chemotherapy and photoimmunotherapy of glioblastoma.Chem. Eng. J.202347114469210.1016/j.cej.2023.144692
    [Google Scholar]
  100. ZhaoX. WuJ. ZhangK. GuoD. HongL. ChenX. WangB. SongY. The synthesis of a nanodrug using metal-based nanozymes conjugated with ginsenoside Rg3 for pancreatic cancer therapy.Nanoscale Adv.20214119019910.1039/D1NA00697E36132964
    [Google Scholar]
  101. ZuoS. WangJ. AnX. WangZ. ZhengX. ZhangY. Fabrication of ginsenoside-based nanodrugs for enhanced antitumor efficacy on triple-negative breast cancer.Front. Bioeng. Biotechnol.20221094547210.3389/fbioe.2022.94547236032706
    [Google Scholar]
  102. HuangL. ZhaoS. FangF. XuT. LanM. ZhangJ. Advances and perspectives in carrier-free nanodrugs for cancer chemo-monotherapy and combination therapy.Biomaterials202126812055710.1016/j.biomaterials.2020.12055733260095
    [Google Scholar]
  103. WuH. WeiG. LuoL. LiL. GaoY. TanX. WangS. ChangH. LiuY. WeiY. SongJ. ZhangZ. HuoJ. Ginsenoside Rg3 nanoparticles with permeation enhancing based chitosan derivatives were encapsulated with doxorubicin by thermosensitive hydrogel and anti-cancer evaluation of peritumoral hydrogel injection combined with PD-L1 antibody.Biomater. Res.20222617710.1186/s40824‑022‑00329‑836494759
    [Google Scholar]
  104. NarayanR.S. MolenaarP. TengJ. CornelissenF.M.G. RoelofsI. MenezesR. DikR. LagerweijT. BroersmaY. PetersenN. Marin SotoJ.A. BrandsE. van KuikenP. LeccaM.C. LenosK.J. In ’t VeldS.G.J.G. van WieringenW. LangF.F. SulmanE. VerhaakR. BaumertB.G. StalpersL.J.A. VermeulenL. WattsC. BaileyD. SlotmanB.J. VersteegR. NoskeD. SminiaP. TannousB.A. WurdingerT. KosterJ. WestermanB.A. A cancer drug atlas enables synergistic targeting of independent drug vulnerabilities.Nat. Commun.2020111293510.1038/s41467‑020‑16735‑232523045
    [Google Scholar]
  105. JohannessenC.M. BoehmJ.S. KimS.Y. ThomasS.R. WardwellL. JohnsonL.A. EmeryC.M. StranskyN. CogdillA.P. BarretinaJ. CaponigroG. HieronymusH. MurrayR.R. Salehi-AshtianiK. HillD.E. VidalM. ZhaoJ.J. YangX. AlkanO. KimS. HarrisJ.L. WilsonC.J. MyerV.E. FinanP.M. RootD.E. RobertsT.M. GolubT. FlahertyK.T. DummerR. WeberB.L. SellersW.R. SchlegelR. WargoJ.A. HahnW.C. GarrawayL.A. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation.Nature2010468732696897210.1038/nature0962721107320
    [Google Scholar]
  106. GayvertK.M. AlyO. PlattJ. BosenbergM.W. SternD.F. ElementoO. A computational approach for identifying synergistic drug combinations.PLOS Comput. Biol.2017131e100530810.1371/journal.pcbi.100530828085880
    [Google Scholar]
  107. JaaksP. CokerE.A. VisD.J. EdwardsO. CarpenterE.F. LetoS.M. DwaneL. SassiF. LightfootH. BarthorpeS. van der MeerD. YangW. BeckA. MironenkoT. HallC. HallJ. MaliI. RichardsonL. TolleyC. MorrisJ. ThomasF. LleshiE. AbenN. BenesC.H. BertottiA. TrusolinoL. WesselsL. GarnettM.J. Effective drug combinations in breast, colon and pancreatic cancer cells.Nature2022603789916617310.1038/s41586‑022‑04437‑235197630
    [Google Scholar]
  108. SunW. SandersonP.E. ZhengW. Drug combination therapy increases successful drug repositioning.Drug Discov. Today20162171189119510.1016/j.drudis.2016.05.01527240777
    [Google Scholar]
  109. LiJ. YangB. Ginsenoside Rg3 enhances the radiosensitivity of lung cancer A549 and H1299 cells via the PI3K/AKT signaling pathway.In Vitro Cell. Dev. Biol. Anim.2023591193010.1007/s11626‑023‑00749‑336790693
    [Google Scholar]
  110. WeiQ. RenY. ZhengX. YangS. LuT. JiH. HuaH. ShanK. Ginsenoside Rg3 and sorafenib combination therapy relieves the hepatocellular carcinomaprogression through regulating the HK2-mediated glycolysis and PI3K/Akt signaling pathway.Bioengineered2022135139191392810.1080/21655979.2022.207461635719058
    [Google Scholar]
  111. YinY. LiQ. ZhangY. Ginsenoside Rg3 regulates sensitization effect of superoxide dismutase on thyroid cancer photodynamic therapy via antioxidant response element signaling pathway.Materials Express20231391555156210.1166/mex.2023.2491
    [Google Scholar]
  112. DingM. ChenH. WangT. WuL. ShaoK. HanL. KongX. ShiJ. “Cocktail” anti-tumor strategy through enhanced antigen exposure with photothermal/chemodynamic therapy.Chem. Eng. J.202345614109110.1016/j.cej.2022.141091
    [Google Scholar]
  113. HongK.T. KangY.J. ChoiJ.Y. YunY.J. ChangI.M. ShinH.Y. KangH.J. LeeW.W. Effects of Korean red ginseng on T-cell repopulation after autologous hematopoietic stem cell transplantation in childhood cancer patients.J. Ginseng Res.2024481687610.1016/j.jgr.2023.09.00138223820
    [Google Scholar]
  114. LuS.L. WangY.H. LiuG.F. WangL. LiY. GuoZ.Y. ChengC. Graphene oxide nanoparticle–loaded ginsenoside rg3 improves photodynamic therapy in inhibiting malignant progression and stemness of osteosarcoma.Front. Mol. Biosci.2021866308910.3389/fmolb.2021.66308933968991
    [Google Scholar]
  115. PengZ. WuW.W. YiP. The efficacy of ginsenoside Rg3 combined with first-line chemotherapy in the treatment of advanced non-small cell lung cancer in China: A systematic review and meta-analysis of randomized clinical trials.Front. Pharmacol.20211163082510.3389/fphar.2020.63082533815097
    [Google Scholar]
  116. XiaD. WangS. WuK. LiN. FanW. Ginsenosides and tumors: A Comprehensive and visualized analysis of research hotspots and antitumor mechanisms.J. Cancer202415367168410.7150/jca.8878338213735
    [Google Scholar]
  117. WuQ. WangQ. FuJ. RenR. Polysaccharides derived from natural sources regulate triglyceride and cholesterol metabolism: A review of the mechanisms.Food Funct.20191052330233910.1039/C8FO02375A31049523
    [Google Scholar]
  118. JiangR. FangZ. ZhangH. XuJ. ZhuJ. ChenK. WangW. JiangX. WangX. Ginsenosides: Changing the basic hallmarks of cancer cells to achieve the purpose of treating breast cancer.Chin. Med.202318112510.1186/s13020‑023‑00822‑937749560
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673333781240924024342
Loading
/content/journals/cmc/10.2174/0109298673333781240924024342
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): chemotherapy; combinatorial therapy; ginseng; Ginsenoside Rg3; sensitivity; toxicity
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test