Skip to content
2000
image of Natural Anticancer Drugs: Efficacy, Safety, and Future Challenges

Abstract

The investigation of naturally derived anticancer drugs has gained prominence in cancer therapy research. Within a broad context, this review seeks to elucidate the molecular foundations and diverse mechanisms underlying these compounds to understand their pivotal role in advancing effective interventions. Additionally by employing a systematic approach, this study examined the interplay between cellular components, signaling pathways, and genetic factors, providing valuable insights into the regulatory networks governing the efficacy of these drugs. Categorization based on sources (plants, animals, marine organisms, and microbes) revealed unique bioactive constituents and therapeutic potential. Mechanistic investigations have revealed the ability of these compounds to induce apoptosis, inhibit angiogenesis, modulate metabolic processes, stimulate the immune system, and arrest the cell cycle. This overview encompasses both approved drugs and those undergoing clinical trials, highlighting their heightened efficacy and reduced toxicity compared to their synthetic counterparts. However, challenges persist in terms of standardization, quality control, and large-scale production. In conclusion, this review examined the potential of naturally derived anticancer drugs to contribute to advancements in cancer treatment and enhance patient outcomes. In addition to their effectiveness, natural anticancer drugs are generally less toxic and have fewer harmful side effects than conventional chemotherapies. This emphasizes the need for continued research, collaborative efforts, and addressing the regulatory and intellectual property challenges associated with natural products. This review provides a balanced perspective on the mechanisms, advantages, and prospects.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673344501250109210447
2025-01-27
2025-09-06
Loading full text...

Full text loading...

References

  1. Arrieche D. Cabrera-Pardo J.R. San-Martin A. Carrasco H. Taborga L. Natural products from chilean and antarctic marine fungi and their biomedical relevance. Mar. Drugs 2023 21 2 98
    [Google Scholar]
  2. Jamieson C.S. Misa J. Tang Y. Billingsley J.M. Biosynthesis and synthetic biology of psychoactive natural products. Chem. Soc. Rev. 2021 50 12 6950 7008 10.1039/D1CS00065A 33908526
    [Google Scholar]
  3. Weaver B.A. How Taxol/paclitaxel kills cancer cells. Mol. Biol. Cell 2014 25 18 2677 2681 10.1091/mbc.e14‑04‑0916 25213191
    [Google Scholar]
  4. Leung J.C. Cassimeris L. Reorganization of paclitaxel-stabilized microtubule arrays at mitotic entry: Roles of depolymerizing kinesins and severing proteins. Cancer Biol. Ther. 2019 20 10 1337 1347 10.1080/15384047.2019.1638678 31345098
    [Google Scholar]
  5. Wall M.E. Wani M.C. Camptothecin and taxol: From discovery to clinic. J. Ethnopharmacol. 1996 51 1-3 239 254 10.1016/0378‑8741(95)01367‑9 9213622
    [Google Scholar]
  6. Naeem A. Hu P. Yang M. Zhang J. Liu Y. Zhu W. Zheng Q. Natural products as anticancer agents: Current status and future perspectives. Molecules 2022 27 23 8367 10.3390/molecules27238367 36500466
    [Google Scholar]
  7. Erhirhie E.O. Ihekwereme C.P. Ilodigwe E.E. Advances in acute toxicity testing: Strengths, weaknesses and regulatory acceptance. Interdiscip. Toxicol. 2018 11 1 5 12 10.2478/intox‑2018‑0001 30181707
    [Google Scholar]
  8. Stielow M. Witczyńska A. Kubryń N. Fijałkowski Ł. Nowaczyk J. Nowaczyk A. The bioavailability of drugs—The current state of knowledge. Molecules 2023 28 24 8038 10.3390/molecules28248038 38138529
    [Google Scholar]
  9. Sharifi-Rad J. Quispe C. Patra J.K. Singh Y.D. Panda M.K. Das G. Adetunji C.O. Michael O.S. Sytar O. Polito L. Živković J. Cruz-Martins N. Klimek-Szczykutowicz M. Ekiert H. Choudhary M.I. Ayatollahi S.A. Tynybekov B. Kobarfard F. Muntean A.C. Grozea I. Daştan S.D. Butnariu M. Szopa A. Calina D. Paclitaxel: Application in modern oncology and nanomedicine-Based cancer therapy. Oxid. Med. Cell. Longev. 2021 2021 1 3687700 10.1155/2021/3687700 34707776
    [Google Scholar]
  10. Lin S.R. Chang C.H. Hsu C.F. Tsai M.J. Cheng H. Leong M.K. Sung P.J. Chen J.C. Weng C.F. Natural compounds as potential adjuvants to cancer therapy: Preclinical evidence. Br. J. Pharmacol. 2020 177 6 1409 1423 10.1111/bph.14816 31368509
    [Google Scholar]
  11. Martin S.F. Natural products and their mimics as targets of opportunity for discovery. J. Org. Chem. 2017 82 20 10757 10794 10.1021/acs.joc.7b01368 28738152
    [Google Scholar]
  12. Chaudhry G.S. Md Akim A. Sung Y.Y. Sifzizul T.M.T. Cancer and apoptosis: The apoptotic activity of plant and marine natural products and their potential as targeted cancer therapeutics. Front. Pharmacol. 2022 13 842376 10.3389/fphar.2022.842376 36034846
    [Google Scholar]
  13. Elekofehinti O.O. Iwaloye O. Olawale F. Ariyo E.O. Saponins in cancer treatment: Current progress and future prospects. Pathophysiology 2021 28 2 250 272 10.3390/pathophysiology28020017 35366261
    [Google Scholar]
  14. Marshall C.M. Federice J.G. Bell C.N. Cox P.B. Njardarson J.T. An update on the nitrogen heterocycle compositions and properties of U.S. FDA-approved pharmaceuticals (2013–2023). J. Med. Chem. 2024 67 14 11622 11655 10.1021/acs.jmedchem.4c01122 38995264
    [Google Scholar]
  15. Lahiri C. Pawar S. Mishra R. Precision medicine and future of cancer treatment. Precis. Cancer Med. 2019 2 33 10.21037/pcm.2019.09.01
    [Google Scholar]
  16. Yuan Z. Yao J. Harnessing computational spatial omics to explore the spatial biology intricacies. Semin. Cancer Biol. 2023 95 25 41 10.1016/j.semcancer.2023.06.006 37400044
    [Google Scholar]
  17. Min L. Han J.C. Zhang W. Gu C.C. Zou Y.P. Li C.C. Strategies and lessons learned from total synthesis of taxol. Chem. Rev. 2023 123 8 4934 4971 10.1021/acs.chemrev.2c00763 36917457
    [Google Scholar]
  18. Galúcio J.M. Monteiro E.F. de Jesus D.A. Costa C.H. Siqueira R.C. Santos G.B. Lameira J. Costa K.S. In silico identification of natural products with anticancer activity using a chemo-structural database of Brazilian biodiversity. Comput. Biol. Chem. 2019 83 107102 10.1016/j.compbiolchem.2019.107102 31487609
    [Google Scholar]
  19. Rosales-Hernandez M.C. Bermúdez-Lugo J. Garcia J. Trujillo-Ferrara J. Correa-Basurto J. Molecular modeling applied to anti-cancer drug development. Anticancer. Agents Med. Chem. 2009 9 2 230 238 10.2174/187152009787313819 19199867
    [Google Scholar]
  20. Mishra K. Talapatra S.N. Prediction of toxicity, pharmacokinetics of selected phytochemicals of leaf of drumstick (Moringa Sp.) and molecular docking studies on two receptors as insulin tyrosine kinase for antidiabetic potential. Int. J. Adv. Sci. Res. 2022 13 02 67 75
    [Google Scholar]
  21. Chehelgerdi M. Chehelgerdi M. Allela O.Q.B. Pecho R.D.C. Jayasankar N. Rao D.P. Thamaraikani T. Vasanthan M. Viktor P. Lakshmaiya N. Saadh M.J. Amajd A. Abo-Zaid M.A. Castillo-Acobo R.Y. Ismail A.H. Amin A.H. Akhavan-Sigari R. Progressing nanotechnology to improve targeted cancer treatment: overcoming hurdles in its clinical implementation. Mol. Cancer 2023 22 1 169 10.1186/s12943‑023‑01865‑0 37814270
    [Google Scholar]
  22. Floyd Z.E. Ribnicky D.M. Raskin I. Hsia D.S. Rood J.C. Gurley B.J. Designing a clinical study with dietary supplements: It’s all in the details. Front. Nutr. 2022 8 779486 10.3389/fnut.2021.779486 35118104
    [Google Scholar]
  23. Khalifa S.A.M. Elias N. Farag M.A. Chen L. Saeed A. Hegazy M.E.F. Moustafa M.S. Abd El-Wahed A. Al-Mousawi S.M. Musharraf S.G. Chang F.R. Iwasaki A. Suenaga K. Alajlani M. Göransson U. El-Seedi H.R. Marine natural products: A source of novel anticancer drugs. Mar. Drugs 2019 17 9 491 10.3390/md17090491 31443597
    [Google Scholar]
  24. Asma S.T. Acaroz U. Imre K. Morar A. Shah S.R.A. Hussain S.Z. Arslan-Acaroz D. Demirbas H. Hajrulai-Musliu Z. Istanbullugil F.R. Soleimanzadeh A. Morozov D. Zhu K. Herman V. Ayad A. Athanassiou C. Ince S. Natural products/bioactive compounds as a source of anticancer drugs. Cancers 2022 14 24 6203 10.3390/cancers14246203 36551687
    [Google Scholar]
  25. Olofinsan K. Abrahamse H. George B.P. In. Molecules 2023 Vol. 28
    [Google Scholar]
  26. Khan T. Ali M. Khan A. Nisar P. Jan S.A. Afridi S. Shinwari Z.K. Anticancer plants: A review of the active phytochemicals, applications in animal models, and regulatory aspects. Biomolecules 2019 10 1 47
    [Google Scholar]
  27. Ramakrishna W. Kumari A. Rahman N. Mandave P. Anticancer activities of plant secondary metabolites: Rice callus suspension culture as a new paradigm. Rice Sci. 2021 28 1 13 30 10.1016/j.rsci.2020.11.004
    [Google Scholar]
  28. Deshpande A. Dhadi S.R. Hager E.J. Ramakrishna W. Anticancer activity of rice callus suspension culture. Phytother. Res. 2012 26 7 1075 1081 10.1002/ptr.3699 22213212
    [Google Scholar]
  29. Nkwe D.O. In Applications in Plant Biotechnology. CRC Press 2022 61 73 10.1201/9781003008866‑4
    [Google Scholar]
  30. Cocetta V. Quagliariello V. Fiorica F. Berretta M. Montopoli M. Resveratrol as chemosensitizer agent: State of art and future perspectives. Int. J. Mol. Sci. 2021 22 4 2049 10.3390/ijms22042049 33669559
    [Google Scholar]
  31. Pfeffer C. Singh A. Apoptosis: A target for anticancer therapy. Int. J. Mol. Sci. 2018 19 2 448 10.3390/ijms19020448 29393886
    [Google Scholar]
  32. Atanasov A.G. Zotchev S.B. Dirsch V.M. Supuran C.T. Banach M. Rollinger J.M. Barreca D. Weckwerth W. Bauer R. Bayer E.A. Majeed M. Bishayee A. Bochkov V. Bonn G.K. Braidy N. Bucar F. Cifuentes A. D’Onofrio G. Bodkin M. Diederich M. Dinkova-Kostova A.T. Efferth T. El Bairi K. Arkells N. Fan T-P. Fiebich B.L. Freissmuth M. Georgiev M.I. Gibbons S. Godfrey K.M. Gruber C.W. Heer J. Huber L.A. Ibanez E. Kijjoa A. Kiss A.K. Lu A. Macias F.A. Miller M.J.S. Mocan A. Müller R. Nicoletti F. Perry G. Pittalà V. Rastrelli L. Ristow M. Russo G.L. Silva A.S. Schuster D. Sheridan H. Skalicka-Woźniak K. Skaltsounis L. Sobarzo-Sánchez E. Bredt D.S. Stuppner H. Sureda A. Tzvetkov N.T. Vacca R.A. Aggarwal B.B. Battino M. Giampieri F. Wink M. Wolfender J-L. Xiao J. Yeung A.W.K. Lizard G. Popp M.A. Heinrich M. Berindan-Neagoe I. Stadler M. Daglia M. Verpoorte R. Supuran C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021 20 3 200 216 10.1038/s41573‑020‑00114‑z 33510482
    [Google Scholar]
  33. Minami H. Kiyota N. Kimbara S. Ando Y. Shimokata T. Ohtsu A. Fuse N. Kuboki Y. Shimizu T. Yamamoto N. Nishio K. Kawakami Y. Nihira S. Sase K. Nonaka T. Takahashi H. Komori Y. Kiyohara K. Guidelines for clinical evaluation of anti-cancer drugs. Cancer Sci. 2021 112 7 2563 2577 10.1111/cas.14967 33990993
    [Google Scholar]
  34. Sharifi-Rad J. Ozleyen A. Boyunegmez Tumer T. Oluwaseun Adetunji C. El Omari N. Balahbib A. Taheri Y. Bouyahya A. Martorell M. Martins N. Cho W.C. Natural products and synthetic analogs as a source of antitumor drugs. Biomolecules 2019 9 11 679 10.3390/biom9110679 31683894
    [Google Scholar]
  35. Dehelean C.A. Marcovici I. Soica C. Mioc M. Coricovac D. Iurciuc S. Cretu O.M. Pinzaru I. Plant-derived anticancer compounds as new perspectives in drug discovery and alternative therapy. Molecules 2021 26 4 1109 10.3390/molecules26041109 33669817
    [Google Scholar]
  36. Vaou N. Stavropoulou E. Voidarou C.C. Tsakris Z. Rozos G. Tsigalou C. Bezirtzoglou E. Interactions between medical plant-derived bioactive compounds: focus on antimicrobial combination effects. Antibiotics 2022 11 8 1014 10.3390/antibiotics11081014 36009883
    [Google Scholar]
  37. Ratovitski E. Anticancer natural compounds: Molecular mechanisms and functions. Part I). Curr. Genomics 2016 18 1 2 10.2174/138920291801161215204143 28503086
    [Google Scholar]
  38. Shakeri A. Ward N. Panahi Y. Sahebkar A. Anti-angiogenic activity of curcumin in cancer therapy: A narrative review. Curr. Vasc. Pharmacol. 2019 17 3 262 269 10.2174/1570161116666180209113014 29424316
    [Google Scholar]
  39. Jan R. Chaudhry G.S. Understanding apoptosis and apoptotic pathways targeted cancer therapeutics. Adv. Pharm. Bull. 2019 9 2 205 218 10.15171/apb.2019.024 31380246
    [Google Scholar]
  40. Riley R.S. June C.H. Langer R. Mitchell M.J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov. 2019 18 3 175 196 10.1038/s41573‑018‑0006‑z 30622344
    [Google Scholar]
  41. Law J.W.F. Law L.N.S. Letchumanan V. Tan L.T.H. Wong S.H. Chan K.G. Ab Mutalib N.S. Lee L.H. Anticancer drug discovery from microbial sources: The unique mangrove streptomycetes. Molecules 2020 25 22 5365 10.3390/molecules25225365 33212836
    [Google Scholar]
  42. Singh S. Kachhawaha K. Singh S.K. Comprehensive approaches to preclinical evaluation of monoclonal antibodies and their next-generation derivatives. Biochem. Pharmacol. 2024 225 116303 10.1016/j.bcp.2024.116303 38797272
    [Google Scholar]
  43. Pucci C. Martinelli C. Ciofani G. Innovative approaches for cancer treatment: Current perspectives and new challenges. Ecancermedicalscience 2019 13 961 10.3332/ecancer.2019.961 31537986
    [Google Scholar]
  44. Ioele G. Chieffallo M. Occhiuzzi M.A. De Luca M. Garofalo A. Ragno G. Grande F. Anticancer drugs: Recent strategies to improve stability profile, pharmacokinetic and pharmacodynamic properties. Molecules 2022 27 17 5436 10.3390/molecules27175436 36080203
    [Google Scholar]
  45. Abdoul-Latif F.M. Ainane A. Houmed Aboubaker I. Mohamed J. Ainane T. Exploring the potent anticancer activity of essential oils and their bioactive compounds: Mechanisms and prospects for future cancer therapy. Pharmaceutics 2023 16 8 1086
    [Google Scholar]
  46. Wu J. Li Y. He Q. Yang X. Exploration of the use of natural compounds in combination with chemotherapy drugs for tumor treatment. Molecules 2023 28 3 1022 10.3390/molecules28031022 36770689
    [Google Scholar]
  47. Czabotar P.E. Garcia-Saez A.J. Mechanisms of BCL-2 family proteins in mitochondrial apoptosis. Nat. Rev. Mol. Cell Biol. 2023 24 10 732 748 10.1038/s41580‑023‑00629‑4 37438560
    [Google Scholar]
  48. Barillé-Nion S. Lohard S. Juin P.P. Targeting of BCL-2 family members during anticancer treatment: A necessary compromise between individual cell and ecosystemic responses? Biomolecules 2020 10 8 1109 10.3390/biom10081109 32722518
    [Google Scholar]
  49. Cao Y. Wang X. Jin T. Tian Y. Dai C. Widarma C. Song R. Xu F. Immune checkpoint molecules in natural killer cells as potential targets for cancer immunotherapy. Signal Transduct. Target. Ther. 2020 5 1 250 10.1038/s41392‑020‑00348‑8 33122640
    [Google Scholar]
  50. Mushtaq S. Abbasi B.H. Uzair B. Abbasi R. Natural products as reservoirs of novel therapeutic agents. EXCLI J. 2018 17 420 451 29805348
    [Google Scholar]
  51. Sati P. Sharma E. Dhyani P. Attri D.C. Rana R. Kiyekbayeva L. Büsselberg D. Samuel S.M. Sharifi-Rad J. Paclitaxel and its semi-synthetic derivatives: Comprehensive insights into chemical structure, mechanisms of action, and anticancer properties. Eur. J. Med. Res. 2024 29 1 90 10.1186/s40001‑024‑01657‑2 38291541
    [Google Scholar]
  52. Dhyani P. Quispe C. Sharma E. Bahukhandi A. Sati P. Attri D.C. Szopa A. Sharifi-Rad J. Docea A.O. Mardare I. Calina D. Cho W.C. Anticancer potential of alkaloids: A key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine. Cancer Cell Int. 2022 22 1 206 10.1186/s12935‑022‑02624‑9 35655306
    [Google Scholar]
  53. Wang T.H. Wang H.S. Soong Y.K. Paclitaxel-induced cell death. Cancer 2000 88 11 2619 2628 10.1002/1097‑0142(20000601)88:11<2619::AID‑CNCR26>3.0.CO;2‑J 10861441
    [Google Scholar]
  54. Giordano A. Tommonaro G. Curcumin and Cancer. Nutrients 2019 11 10 2376 10.3390/nu11102376 31590362
    [Google Scholar]
  55. Fuloria S. Mehta J. Chandel A. Sekar M. Rani N.N.I.M. Begum M.Y. Subramaniyan V. Chidambaram K. Thangavelu L. Nordin R. Wu Y.S. Sathasivam K.V. Lum P.T. Meenakshi D.U. Kumarasamy V. Azad A.K. Fuloria N.K. A comprehensive review on the therapeutic potential of Curcuma longa Linn. in relation to its major active constituent curcumin. Front. Pharmacol. 2022 13 820806 10.3389/fphar.2022.820806 35401176
    [Google Scholar]
  56. Radha R. Paul V. Anjum S. Bouakaz A. Pitt W.G. Husseini G.A. Enhancing Curcumin’s therapeutic potential in cancer treatment through ultrasound mediated liposomal delivery. Sci. Rep. 2024 14 1 10499 10.1038/s41598‑024‑61278‑x 38714740
    [Google Scholar]
  57. Masyita A. Mustika Sari R. Dwi Astuti A. Yasir B. Rahma Rumata N. Emran T.B. Nainu F. Simal-Gandara J. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chem. X 2022 13 100217 10.1016/j.fochx.2022.100217 35498985
    [Google Scholar]
  58. James J.T. Dubery I.A. Pentacyclic triterpenoids from the medicinal herb, Centella asiatica (L.) Urban. Molecules 2009 14 10 3922 3941 10.3390/molecules14103922 19924039
    [Google Scholar]
  59. Zhou Y. Zheng J. Li Y. Xu D.P. Li S. Chen Y.M. Li H.B. Natural polyphenols for prevention and treatment of cancer. Nutrients 2016 8 8 515 10.3390/nu8080515 27556486
    [Google Scholar]
  60. Almatroodi S.A. Almatroudi A. Khan A.A. Alhumaydhi F.A. Alsahli M.A. Rahmani A.H. Potential therapeutic targets of epigallocatechin gallate (EGCG), the most abundant catechin in green tea, and its role in the therapy of various types of cancer. Molecules 2020 25 14 3146 10.3390/molecules25143146 32660101
    [Google Scholar]
  61. Printz C. A “natural” in the hunt for anticancer compounds. Cancer 2010 116 23 5341 5342 10.1002/cncr.25779 21171231
    [Google Scholar]
  62. Škubník J. Pavlíčková V. Ruml T. Rimpelová S. Current perspectives on taxanes: Focus on their bioactivity, delivery and combination therapy. Plants 2021 10 3 569 10.3390/plants10030569 33802861
    [Google Scholar]
  63. Liu J.C.T. De La Peña R. Tocol C. Sattely E.S. Reconstitution of early paclitaxel biosynthetic network. Nat. Commun. 2024 15 1 1419 10.1038/s41467‑024‑45574‑8 38360800
    [Google Scholar]
  64. Moudi M. Go R. Yien C.Y. Nazre M. Vinca alkaloids. Int. J. Prev. Med. 2013 4 11 1231 1235 24404355
    [Google Scholar]
  65. Banyal A. Tiwari S. Sharma A. Chanana I. Patel S.K.S. Kulshrestha S. Kumar P. Vinca alkaloids as a potential cancer therapeutics: Recent update and future challenges 3 Biotech 2023 13 6 211
    [Google Scholar]
  66. Khaiwa N. Maarouf N.R. Darwish M.H. Alhamad D.W.M. Sebastian A. Hamad M. Omar H.A. Orive G. Al-Tel T.H. Camptothecin’s journey from discovery to WHO Essential Medicine: Fifty years of promise. Eur. J. Med. Chem. 2021 223 113639 10.1016/j.ejmech.2021.113639 34175539
    [Google Scholar]
  67. Dancey J. Eisenhauer E.A. Current perspectives on camptothecins in cancer treatment. Br. J. Cancer 1996 74 3 327 338 10.1038/bjc.1996.362 8695345
    [Google Scholar]
  68. Refaat S. Fikry E. Tawfeek N. El-Sayed A.S.A. El-Domiaty M.M. El-Shafae A.M. Production and bioprocessing of epothilone B from Aspergillus niger, an endophyte of Latania loddegesii, with a conceivable biosynthetic stability: Anticancer, anti-wound healing activities and cell cycle analysis. Microb. Cell Fact. 2024 23 1 229 10.1186/s12934‑024‑02495‑x 39152399
    [Google Scholar]
  69. Duta-Bratu C.G. Nitulescu G.M. Mihai D.P. Olaru O.T. Resveratrol and other natural oligomeric stilbenoid compounds and their therapeutic applications. Plants 2023 12 16 2935 10.3390/plants12162935 37631147
    [Google Scholar]
  70. Nunes Y.C. Mendes N.M. Pereira de Lima E. Chehadi A.C. Lamas C.B. Haber J.F.S. dos Santos Bueno M. Araújo A.C. Catharin V.C.S. Detregiachi C.R.P. Laurindo L.F. Tanaka M. Barbalho S.M. Marin M.J.S. Curcumin: A golden approach to healthy aging: A systematic review of the evidence. Nutrients 2024 16 16 2721 10.3390/nu16162721 39203857
    [Google Scholar]
  71. Emadi S.A. Ghasemzadeh Rahbardar M. Mehri S. Hosseinzadeh H. A review of therapeutic potentials of milk thistle (Silybum marianum L.) and its main constituent, silymarin, on cancer, and their related patents. Iran. J. Basic Med. Sci. 2022 25 10 1166 1176 36311193
    [Google Scholar]
  72. Michala A.S. Pritsa A. Quercetin: A molecule of great biochemical and clinical value and its beneficial effect on diabetes and cancer. Diseases 2022 10 3 37 10.3390/diseases10030037 35892731
    [Google Scholar]
  73. Darband S.G. Kaviani M. Yousefi B. Sadighparvar S. Pakdel F.G. Attari J.A. Mohebbi I. Naderi S. Majidinia M. Quercetin: A functional dietary flavonoid with potential chemo-preventive properties in colorectal cancer. J. Cell. Physiol. 2018 233 9 6544 6560 10.1002/jcp.26595 29663361
    [Google Scholar]
  74. Musial C. Kuban-Jankowska A. Gorska-Ponikowska M. Beneficial properties of green tea catechins. Int. J. Mol. Sci. 2020 21 5 1744 10.3390/ijms21051744 32143309
    [Google Scholar]
  75. Farhan M. Green tea catechins: Nature’s way of preventing and treating cancer. Int. J. Mol. Sci. 2022 23 18 10713 10.3390/ijms231810713 36142616
    [Google Scholar]
  76. Huang J.D. Wang C.F. Lian C.L. Huang M.Y. Zhang C. Liu J.Q. Isolation and identification of five new diterpenoids from Jatropha curcas. Phytochem. Lett. 2020 40 37 41 10.1016/j.phytol.2020.09.006
    [Google Scholar]
  77. Jiang W. Li X. Dong S. Zhou W. Betulinic acid in the treatment of tumour diseases: Application and research progress. Biomed. Pharmacother. 2021 142 111990 10.1016/j.biopha.2021.111990 34388528
    [Google Scholar]
  78. Oliveira-Costa J.F. Meira C.S. Neves M.V.G. Dos Reis B.P.Z.C. Soares M.B.P. Anti-inflammatory activities of betulinic acid: A review. Front. Pharmacol. 2022 13 883857 10.3389/fphar.2022.883857 35677426
    [Google Scholar]
  79. Shilpashree H.B. Sudharshan S.J. Shasany A.K. Nagegowda D.A. Molecular characterization of three CYP450 genes reveals their role in withanolides formation and defense in Withania somnifera, the Indian Ginseng. Sci. Rep. 2022 12 1 1602 10.1038/s41598‑022‑05634‑9 35102209
    [Google Scholar]
  80. Dhar N. Razdan S. Rana S. Bhat W.W. Vishwakarma R. Lattoo S.K. A decade of molecular understanding of withanolide biosynthesis and in vitro studies in Withania somnifera (L.) Dunal: Prospects and perspectives for pathway engineering. Front. Plant Sci. 2015 6 1031 10.3389/fpls.2015.01031 26640469
    [Google Scholar]
  81. Shah Z. Gohar U.F. Jamshed I. Mushtaq A. Mukhtar H. Zia-UI-Haq M. Toma S.I. Manea R. Moga M. Popovici B. Podophyllotoxin: History, recent advances and future prospects. Biomolecules 2021 11 4 603 10.3390/biom11040603 33921719
    [Google Scholar]
  82. Miranda-Vera C. Hernández Á.P. García-García P. Díez D. García P.A. Castro M.Á. Podophyllotoxin: Recent advances in the development of hybridization strategies to enhance its antitumoral profile. Pharmaceutics 2023 15 12 2728 10.3390/pharmaceutics15122728 38140069
    [Google Scholar]
  83. Urošević M. Nikolić L. Gajić I. Nikolić V. Dinić A. Miljković V. Curcumin: Biological activities and modern pharmaceutical forms. Antibiotics 2022 11 2 135 10.3390/antibiotics11020135 35203738
    [Google Scholar]
  84. Tomeh M.A. Hadianamrei R. Zhao X. A review of curcumin and its derivatives as anticancer agents. Int. J. Mol. Sci. 2019 20 5 1033 10.3390/ijms20051033 30818786
    [Google Scholar]
  85. Fu Y.S. Chen T.H. Weng L. Huang L. Lai D. Weng C.F. Pharmacological properties and underlying mechanisms of curcumin and prospects in medicinal potential. Biomed. Pharmacother. 2021 141 111888 10.1016/j.biopha.2021.111888 34237598
    [Google Scholar]
  86. Ullah I. Khan J.A. Shahid M. Khan A. Adhikari A. Hannan P.A. Javed I. Shakeel F. Farooq U. Pharmacological screening of Monotheca buxifolia (Falc.) A. DC. for antinociceptive, anti-inflammatory and antipyretic activities. BMC Complement. Altern. Med. 2016 16 1 273 10.1186/s12906‑016‑1257‑z 27495801
    [Google Scholar]
  87. Raposo F. Borja R. Cacho J.A. Mumme J. Mohedano Á.F. Battimelli A. Bolzonella D. Schuit A.D. Noguerol-Arias J. Frigon J.C. Peñuela G.A. Muehlenberg J. Sambusiti C. Harmonization of the quantitative determination of volatile fatty acids profile in aqueous matrix samples by direct injection using gas chromatography and high-performance liquid chromatography techniques: Multi-laboratory validation study. J. Chromatogr. A 2015 1413 94 106 10.1016/j.chroma.2015.08.008 26306912
    [Google Scholar]
  88. Canbolat M. Çalışır Ü. Çiçek B. Microwave-assisted synthesis of aromatic thiadiazol crown ethers and determination of complexation properties with metal ions by application of job′s plot method to conductometry. ChemistrySelect 2022 7 29 e202200944 10.1002/slct.202200944
    [Google Scholar]
  89. Jeyaleela G.D. Vimala J.R. Senthil R. Anandagopu P. Manjula K. Isolation, characterization, molecular docking and in vitro studies of inhibitory effect on the growth of struvite crystal derived from melia dubia leaf extract. Asian J. Chem. 2019 31 11 2628 2634 10.14233/ajchem.2019.22217
    [Google Scholar]
  90. Oladimeji A.V. Valan M.F. HPLC techniques for phytochemistry. IJCS 2020 8 6 2590 2596
    [Google Scholar]
  91. Porras G. Chassagne F. Lyles J.T. Marquez L. Dettweiler M. Salam A.M. Samarakoon T. Shabih S. Farrokhi D.R. Quave C.L. Ethnobotany and the role of plant natural products in antibiotic drug discovery. Chem. Rev. 2021 121 6 3495 3560 10.1021/acs.chemrev.0c00922 33164487
    [Google Scholar]
  92. Ashrafizadeh M. Zarrabi A. Hashemi F. Zabolian A. Saleki H. Bagherian M. Azami N. Bejandi A.K. Hushmandi K. Ang H.L. Makvandi P. Khan H. Kumar A.P. Polychemotherapy with curcumin and doxorubicin via biological nanoplatforms: Enhancing antitumor activity. Pharmaceutics 2020 12 11 1084 10.3390/pharmaceutics12111084 33187385
    [Google Scholar]
  93. Majnooni M.B. Fakhri S. Shokoohinia Y. Kiyani N. Stage K. Mohammadi P. Gravandi M.M. Farzaei M.H. Echeverría J. Phytochemicals: Potential therapeutic interventions against coronavirus-associated lung injury. Front. Pharmacol. 2020 11 588467 10.3389/fphar.2020.588467 33658931
    [Google Scholar]
  94. Zhang Y.J. Gan R.Y. Li S. Zhou Y. Li A.N. Xu D.P. Li H.B. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules 2015 20 12 21138 21156 10.3390/molecules201219753 26633317
    [Google Scholar]
  95. Wang H. Oo Khor T. Shu L. Su Z.Y. Fuentes F. Lee J.H. Tony Kong A-N. Plants vs. cancer: A review on natural phytochemicals in preventing and treating cancers and their druggability. Anticancer. Agents Med. Chem. 2012 12 10 1281 1305 10.2174/187152012803833026 22583408
    [Google Scholar]
  96. Burns J. Buck A.C. D’ Souza S. Dube A. Bardien S. Nanophytomedicines as therapeutic agents for parkinson’s disease. ACS Omega 2023 8 45 42045 42061 10.1021/acsomega.3c04862 38024675
    [Google Scholar]
  97. Singh P.K. Singh J. Medhi T. Kumar A. Phytochemical screening, quantification, FT-IR analysis, and in silico characterization of potential bio-active compounds identified in HR-LC/MS analysis of the polyherbal formulation from Northeast India. ACS Omega 2022 7 37 33067 33078 10.1021/acsomega.2c03117 36157760
    [Google Scholar]
  98. Quintieri L. Mani S. Lentini G. Maisetta G. Editorial: Advances in the discovery of natural molecules and their analogues against microbial infection-related biofilms. Front. Microbiol. 2022 13 1092209 10.3389/fmicb.2022.1092209 36504771
    [Google Scholar]
  99. Biswas S. Mita M.A. Afrose S. Hasan M.R. Islam M.T. Rahman M.A. Ara M.J. Chowdhury M.B.A. Meem H.N. Mamunuzzaman M. Ahammad T. Ashik I.U. Ibrahim M.M. Imam M.T. Hossain M.A. Saleh M.A. Integrated computational approaches for inhibiting sex hormone-binding globulin in male infertility by screening potent phytochemicals. Life 2023 13 2 476 10.3390/life13020476 36836833
    [Google Scholar]
  100. Chen R.P. Chavda V.P. Patel A.B. Chen Z.S. Phytochemical delivery through transferosome (phytosome): An advanced transdermal drug delivery for complementary medicines. Front. Pharmacol. 2022 13 850862 10.3389/fphar.2022.850862 35281927
    [Google Scholar]
  101. Belobrajdic D.P. Bird A.R. The potential role of phytochemicals in wholegrain cereals for the prevention of type-2 diabetes. Nutr. J. 2013 12 1 62 10.1186/1475‑2891‑12‑62 23679924
    [Google Scholar]
  102. Chen C. Yu L.T. Cheng B.R. Xu J.L. Cai Y. Jin J.L. Feng R.L. Xie L. Qu X.Y. Li D. Liu J. Li Y. Cui X.Y. Lu J.J. Zhou K. Lin Q. Wan J. Promising therapeutic candidate for myocardial ischemia/reperfusion injury: What are the possible mechanisms and roles of phytochemicals? Front. Cardiovasc. Med. 2022 8 792592 10.3389/fcvm.2021.792592 35252368
    [Google Scholar]
  103. Imam S.S. Alshehri S. Ghoneim M.M. Zafar A. Alsaidan O.A. Alruwaili N.K. Gilani S.J. Rizwanullah M. Recent advancement in chitosan-based nanoparticles for improved oral bioavailability and bioactivity of phytochemicals: Challenges and perspectives. Polymers 2021 13 22 4036 10.3390/polym13224036 34833334
    [Google Scholar]
  104. Lim X.Y. Chan J.S.W. Japri N. Lee J.C. Tan T.Y.C. Carica papaya L. Leaf: A systematic scoping review on biological safety and herb-drug interactions. Evid. Based Complement. Alternat. Med. 2021 2021 1 21 10.1155/2021/5511221 34040647
    [Google Scholar]
  105. Hayes A.W. Li R. Hoeng J. Iskandar A. Peistch M.C. Dourson M.L. New approaches to risk assessment of chemical mixtures. Toxicol. Res. Appl. 2019 3 2397847318820768 10.1177/2397847318820768
    [Google Scholar]
  106. Al-Nour M.Y. Ibrahim M.M. Elsaman T. Ellagic acid, Kaempferol, and Quercetin from Acacia nilotica: Promising combined drug with multiple mechanisms of action. Curr. Pharmacol. Rep. 2019 5 4 255 280 10.1007/s40495‑019‑00181‑w 32226726
    [Google Scholar]
  107. Singh V.K. Arora D. Ansari M.I. Sharma P.K. Phytochemicals based chemopreventive and chemotherapeutic strategies and modern technologies to overcome limitations for better clinical applications. Phytother. Res. 2019 33 12 3064 3089 10.1002/ptr.6508 31515899
    [Google Scholar]
  108. Thilakarathna S. Rupasinghe H. Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients 2013 5 9 3367 3387 10.3390/nu5093367 23989753
    [Google Scholar]
  109. Aldrich L.N. Burdette J.E. Carcache de Blanco E. Coss C.C. Eustaquio A.S. Fuchs J.R. Kinghorn A.D. MacFarlane A. Mize B.K. Oberlies N.H. Orjala J. Pearce C.J. Phelps M.A. Rakotondraibe L.H. Ren Y. Soejarto D.D. Stockwell B.R. Yalowich J.C. Zhang X. Discovery of anticancer agents of diverse natural origin. J. Nat. Prod. 2022 85 3 702 719 10.1021/acs.jnatprod.2c00036 35213158
    [Google Scholar]
  110. Ruiz-Torres V. Encinar J. Herranz-López M. Pérez-Sánchez A. Galiano V. Barrajón-Catalán E. Micol V. An updated review on marine anticancer compounds: The use of virtual screening for the discovery of small-molecule cancer drugs. Molecules 2017 22 7 1037 10.3390/molecules22071037 28644406
    [Google Scholar]
  111. De Souza M.V.N. (+)-discodermolide: A marine natural product against cancer. ScientificWorldJournal 2004 4 415 436 10.1100/tsw.2004.96 15243683
    [Google Scholar]
  112. Nigam M. Suleria H.A.R. Farzaei M.H. Mishra A.P. Marine anticancer drugs and their relevant targets: A treasure from the ocean. Daru 2019 27 1 491 515 10.1007/s40199‑019‑00273‑4 31165439
    [Google Scholar]
  113. Rapôso C. Scorpion and spider venoms in cancer treatment: State of the art, challenges, and perspectives. J. Clin. Transl. Res. 2017 3 2 233 249 10.18053/jctres.03.201702.002 30873475
    [Google Scholar]
  114. Ali S. Alam M. Abbasi A. Undheim E. Fry B. Kalbacher H. Voelter W. Structure-activity relationship of chlorotoxin-like peptides. Toxins 2016 8 2 36 10.3390/toxins8020036 26848686
    [Google Scholar]
  115. Wang H. He H. Chen X. Zhou M. Wei M. Xi X. Ma C. Du Q. Chen T. Shaw C. Wang L. A novel antimicrobial peptide (Kassinatuerin-3) isolated from the skin secretion of the African frog, Kassina senegalensis. Biology 2020 9 7 148 10.3390/biology9070148 32630734
    [Google Scholar]
  116. Li L. Huang J. Lin Y. Snake venoms in cancer therapy: Past, present and future. Toxins 2018 10 9 346 10.3390/toxins10090346 30158426
    [Google Scholar]
  117. Cheng W. He L. Ren W. Yue T. Xie X. Sun J. Chen X. Wu Z. Li F. Piao J.G. Bacteria-nanodrug cancer treatment system: The combination of dual swords and the confrontation of needle tips. Nano TransMed 2023 2 2-3 100008 10.1016/j.ntm.2023.100008
    [Google Scholar]
  118. Elissawy A.M. Soleiman Dehkordi E. Mehdinezhad N. Ashour M.L. Mohammadi Pour P. Cytotoxic alkaloids derived from marine sponges: A comprehensive review. Biomolecules 2021 11 2 258 10.3390/biom11020258 33578987
    [Google Scholar]
  119. Dardevet L. Rani D. Aziz T. Bazin I. Sabatier J.M. Fadl M. Brambilla E. De Waard M. Chlorotoxin: A helpful natural scorpion peptide to diagnose glioma and fight tumor invasion. Toxins 2015 7 4 1079 1101 10.3390/toxins7041079 25826056
    [Google Scholar]
  120. Chavda V.P. Ertas Y.N. Walhekar V. Modh D. Doshi A. Shah N. Anand K. Chhabria M. Advanced computational methodologies used in the discovery of new natural anticancer compounds. Front. Pharmacol. 2021 12 702611 10.3389/fphar.2021.702611 34483905
    [Google Scholar]
  121. Ruiz-Torres V. Encinar J.A. Herranz-López M. Pérez-Sánchez A. Galiano V. Barrajón-Catalán E. Micol V. In. Molecules 2017 Vol. 22
    [Google Scholar]
  122. Gomes N.G.M. Dasari R. Chandra S. Kiss R. Kornienko A. Marine invertebrate metabolites with anticancer activities: Solutions to the "Supply problem" Mar. Drugs 2016 14 5 98
    [Google Scholar]
  123. Pal D. Nayak A.K. Bioactive natural products for pharmaceutical applications. Springer 2021 10.1007/978‑3‑030‑54027‑2
    [Google Scholar]
  124. Jin J-O. Yadav D. Madhwani K. Puranik N. Chavda V. Song M. Seaweeds in the oncology arena: Anti-cancer potential of fucoidan as a drug—A review. Molecules 2022 27 18 6032
    [Google Scholar]
  125. Sudewi A.A.R. Susilawathi N.M. Mahardika B.K. Mahendra A.N. Pharmawati M. Phuong M.A. Mahardika G.N. Selecting potential neuronal drug leads from conotoxins of various venomous marine cone snails in Bali, Indonesia. ACS Omega 2019 4 21 19483 19490 10.1021/acsomega.9b03122 31763573
    [Google Scholar]
  126. Barreca M. Spanò V. Montalbano A. Cueto M. Díaz Marrero A.R. Deniz I. Erdoğan A. Lukić Bilela L. Moulin C. Taffin-de-Givenchy E. Spriano F. Perale G. Mehiri M. Rotter A. P Thomas O. Barraja P. Gaudêncio S.P. Bertoni F. Marine anticancer agents: An overview with a particular focus on their chemical classes. Mar. Drugs 2020 18 12 619 10.3390/md18120619 33291602
    [Google Scholar]
  127. Russo P. Del Bufalo A. Fini M. Deep sea as a source of novel-anticancer drugs: Update on discovery and preclinical/clinical evaluation in a systems medicine perspective. EXCLI J. 2015 14 228 236 26600744
    [Google Scholar]
  128. Nasim N. Sandeep I.S. Mohanty S. Plant-derived natural products for drug discovery: Current approaches and prospects. Nucleus 2022 65 3 399 411 10.1007/s13237‑022‑00405‑3 36276225
    [Google Scholar]
  129. Choudhari A.S. Mandave P.C. Deshpande M. Ranjekar P. Prakash O. Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Front. Pharmacol. 2020 10 1614 10.3389/fphar.2019.01614 32116665
    [Google Scholar]
  130. Gali-Muhtasib H. Hmadi R. Kareh M. Tohme R. Darwiche N. Cell death mechanisms of plant-derived anticancer drugs: Beyond apoptosis. Apoptosis 2015 20 12 1531 1562 10.1007/s10495‑015‑1169‑2 26362468
    [Google Scholar]
  131. Kim C. Kim B. Anti-cancer natural products and their bioactive compounds inducing ER stress-mediated apoptosis: A review. Nutrients 2018 10 8 1021 10.3390/nu10081021 30081573
    [Google Scholar]
  132. Jain A. Madu C.O. Lu Y. Phytochemicals in chemoprevention: A cost-effective complementary approach. J. Cancer 2021 12 12 3686 3700 10.7150/jca.57776 33995644
    [Google Scholar]
  133. Das S.R. Phytochemicals modify the action of cancer cells mitochondrial drug-resistance mechanism. Sci. Pharm. 2023 2 3 184 203
    [Google Scholar]
  134. Xia Y. Chen R. Lu G. Li C. Lian S. Kang T.W. Jung Y.D. Natural phytochemicals in bladder cancer prevention and therapy. Front. Oncol. 2021 11 652033 10.3389/fonc.2021.652033 33996570
    [Google Scholar]
  135. Mao Q.Q. Xu X.Y. Shang A. Gan R.Y. Wu D.T. Atanasov A.G. Li H.B. Phytochemicals for the prevention and treatment of gastric cancer: Effects and mechanisms. Int. J. Mol. Sci. 2020 21 2 570 10.3390/ijms21020570 31963129
    [Google Scholar]
  136. Erikel E. Yuzbasioglu D. Unal F. Genotoxic and antigenotoxic potential of amygdalin on isolated human lymphocytes by the comet assay. J. Food Biochem. 2020 44 10 e13436 10.1111/jfbc.13436 32794256
    [Google Scholar]
  137. Delgado-Gonzalez P. Garza-Treviño E.N. de la Garza Kalife D.A. Quiroz Reyes A. Hernández-Tobías E.A. Bioactive compounds of dietary origin and their influence on colorectal cancer as chemoprevention. Life 2023 13 10 1977 10.3390/life13101977 37895359
    [Google Scholar]
  138. Pereira R.B. Evdokimov N.M. Lefranc F. Valentão P. Kornienko A. Pereira D.M. Andrade P.B. Gomes N.G.M. Marine-derived anticancer agents: Clinical benefits, innovative mechanisms, and new targets. Mar. Drugs 2019 17 6 329 10.3390/md17060329 31159480
    [Google Scholar]
  139. Attoub S. Arafat K. Khalaf T. Sulaiman S. Iratni R. Frondoside a enhances the anti-cancer effects of oxaliplatin and 5-fluorouracil on colon cancer cells. Nutrients 2018 10 5 560 10.3390/nu10050560 29724012
    [Google Scholar]
  140. Ru R. Chen G. Liang X. Cao X. Yuan L. Meng M. Sea cucumber derived triterpenoid glycoside frondoside A: A potential anti-bladder cancer drug. Nutrients 2023 15 2 378 10.3390/nu15020378 36678249
    [Google Scholar]
  141. Jing Q. Hu X. Ma Y. Mu J. Liu W. Xu F. Li Z. Bai J. Hua H. Li D. 2019
  142. Jing Q. Hu X. Ma Y. Mu J. Liu W. Xu F. Li Z. Bai J. Hua H. Li D. In. Marine Drugs 2019 Vol. 17
    [Google Scholar]
  143. Ahn M.Y. Jung J.H. Na Y.J. Kim H.S. A natural histone deacetylase inhibitor, Psammaplin A, induces cell cycle arrest and apoptosis in human endometrial cancer cells. Gynecol. Oncol. 2008 108 1 27 33 10.1016/j.ygyno.2007.08.098 17920664
    [Google Scholar]
  144. Hong S. Shin Y. Jung M. Ha M.W. Park Y. Lee Y.J. Shin J. Oh K.B. Lee S.K. Park H. Efficient synthesis and biological activity of Psammaplin A and its analogues as antitumor agents. Eur. J. Med. Chem. 2015 96 218 230 10.1016/j.ejmech.2015.04.001 25884112
    [Google Scholar]
  145. Kim N. Ma J. Kim W. Kim J. Belenky P. Lee I. Genome-resolved metagenomics: A game changer for microbiome medicine. Exp. Mol. Med. 2024 56 7 1501 1512 10.1038/s12276‑024‑01262‑7 38945961
    [Google Scholar]
  146. Kobras C.M. Fenton A.K. Sheppard S.K. Next-generation microbiology: From comparative genomics to gene function. Genome Biol. 2021 22 1 123 10.1186/s13059‑021‑02344‑9 33926534
    [Google Scholar]
  147. Radhi M. Ashraf S. Lawrence S. Tranholm A.A. Wellham P.A.D. Hafeez A. Khamis A.S. Thomas R. McWilliams D. de Moor C.H. A systematic review of the biological effects of cordycepin. Molecules 2021 26 19 5886 10.3390/molecules26195886 34641429
    [Google Scholar]
  148. Giurini E.F. Godla A. Gupta K.H. Redefining bioactive small molecules from microbial metabolites as revolutionary anticancer agents. Cancer Gene Ther. 2024 31 2 187 206 10.1038/s41417‑023‑00715‑x 38200347
    [Google Scholar]
  149. Zhang Y. Zhang W. Zhao Y. Peng R. Zhang Z. Xu Z. Simal-Gandara J. Yang H. Deng J. Bioactive sulforaphane from cruciferous vegetables: Advances in biosynthesis, metabolism, bioavailability, delivery, health benefits, and applications. Crit. Rev. Food Sci. Nutr. 2024 ••• 1 21 10.1080/10408398.2024.2354937 38841734
    [Google Scholar]
  150. Najafi M. Farhood B. Mortezaee K. Cancer stem cells (CSCs) in cancer progression and therapy. J. Cell. Physiol. 2019 234 6 8381 8395 10.1002/jcp.27740 30417375
    [Google Scholar]
  151. Zhao S. Gao Q. Rong C. Wang S. Zhao Z. Liu Y. Xu J. Immunomodulatory effects of edible and medicinal mushrooms and their bioactive immunoregulatory products. J. Fungi 2020 6 4 269 10.3390/jof6040269 33171663
    [Google Scholar]
  152. Xing Z. Su A. Mi L. Zhang Y. He T. Qiu Y. Wei T. Li Z. Zhu J. Wu W. Withaferin A. Withaferin A: A dietary supplement with promising potential as an anti-tumor therapeutic for cancer treatment - Pharmacology and mechanisms. Drug Des. Devel. Ther. 2023 17 2909 2929 10.2147/DDDT.S422512 37753228
    [Google Scholar]
  153. Wong Y.H. Wong S.R. Lee S.H. The therapeutic anticancer potential of marine-derived bioactive peptides: A highlight on pardaxin. Int. J. Pept. Res. Ther. 2023 29 5 90 10.1007/s10989‑023‑10562‑x
    [Google Scholar]
  154. Bell K.L.C. Quinzin M.C. Amon D. Poulton S. Hope A. Sarti O. Cañete T.E. Smith A.M. Baldwin H.I. Lira D.M. Cambronero-Solano S. Chung T.R.A. Brady B. Exposing inequities in deep-sea exploration and research: Results of the 2022 Global Deep-Sea Capacity Assessment. Front. Mar. Sci. 2023 10 1217227 10.3389/fmars.2023.1217227
    [Google Scholar]
  155. Sánchez-Suárez J. Coy-Barrera E. Villamil L. Díaz L. Streptomyces-derived metabolites with potential photoprotective properties—A systematic literature review and meta-analysis on the reported chemodiversity. Molecules 2020 25 14 3221 10.3390/molecules25143221 32679651
    [Google Scholar]
  156. Leite V.M.B. Garrido L.M. Tangerina M.M.P. Costa-Lotufo L.V. Ferreira M.J.P. Padilla G. Genome mining of Streptomyces sp. BRB081 reveals the production of the antitumor pyrrolobenzodiazepine sibiromycin 3 Biotech 2022 12 10 249
    [Google Scholar]
  157. Bladt T. Frisvad J. Knudsen P. Larsen T. Anticancer and antifungal compounds from Aspergillus, Penicillium and other filamentous fungi. Molecules 2013 18 9 11338 11376 10.3390/molecules180911338 24064454
    [Google Scholar]
  158. El-Sayed A.S.A. El-Sayed M.T. Rady A.M. Zein N. Enan G. Shindia A. El-Hefnawy S. Sitohy M. Sitohy B. Exploiting the biosynthetic potency of taxol from fungal endophytes of conifers plants; genome mining and metabolic manipulation. Molecules 2020 25 13 3000 10.3390/molecules25133000 32630044
    [Google Scholar]
  159. Amin A. Gali-Muhtasib H. Ocker M. Schneider-Stock R. Overview of major classes of plant-derived anticancer drugs. Int. J. Biomed. Sci. 2009 5 1 1 11 10.59566/IJBS.2009.5001 23675107
    [Google Scholar]
  160. Anwar S. Malik J.A. Ahmed S. Kameshwar V.A. Alanazi J. Alamri A. Ahemad N. Can natural products targeting emt serve as the future anticancer therapeutics? Molecules 2022 27 22 7668 10.3390/molecules27227668 36431766
    [Google Scholar]
  161. Artusa V. Calabrone L. Mortara L. Peri F. Bruno A. Microbiota-derived natural products targeting cancer stem cells: inside the gut pharma factory. Int. J. Mol. Sci. 2023 24 5 4997 10.3390/ijms24054997 36902427
    [Google Scholar]
  162. Villemin C. Six A. Neville B.A. Lawley T.D. Robinson M.J. Bakdash G. The heightened importance of the microbiome in cancer immunotherapy. Trends Immunol. 2023 44 1 44 59 10.1016/j.it.2022.11.002 36464584
    [Google Scholar]
  163. Gaudêncio S.P. Bayram E. Lukić Bilela L. Cueto M. Díaz-Marrero A.R. Haznedaroglu B.Z. Jimenez C. Mandalakis M. Pereira F. Reyes F. Tasdemir D. Advanced methods for natural products discovery: Bioactivity screening, dereplication, metabolomics profiling, genomic sequencing, databases and informatic tools, and structure elucidation. Marine Drugs. 2023 21 5 308
    [Google Scholar]
  164. Bianconi I. Aschbacher R. Pagani E. In. Antibiotics 2023 Vol. 12
    [Google Scholar]
  165. Nam N.N. Do H.D. Loan Trinh K.T. Lee N.Y. In. Foods 2023 Vol. 12
    [Google Scholar]
  166. Alves L.F. Westmann C.A. Lovate G.L. de Siqueira G.M.V. Borelli T.C. Guazzaroni M.E. Metagenomic approaches for understanding new concepts in microbial science. Int. J. Genomics 2018 2018 1 15 10.1155/2018/2312987 30211213
    [Google Scholar]
  167. Courdavault V. O’Connor S.E. Oudin A. Besseau S. Papon N. Towards the microbial production of plant-derived anticancer drugs. Trends Cancer 2020 6 6 444 448 10.1016/j.trecan.2020.02.004 32459998
    [Google Scholar]
  168. Kapoor R. Saini A. Sharma D. Indispensable role of microbes in anticancer drugs and discovery trends. Appl. Microbiol. Biotechnol. 2022 106 13-16 4885 4906 10.1007/s00253‑022‑12046‑2 35819512
    [Google Scholar]
  169. Roszczenko P. Holota S. Szewczyk O.K. Dudchak R. Bielawski K. Bielawska A. Lesyk R. 4-Thiazolidinone-bearing hybrid molecules in anticancer drug design. Int. J. Mol. Sci. 2022 23 21 13135 10.3390/ijms232113135 36361924
    [Google Scholar]
  170. Yip H.Y.K. Papa A. Signaling pathways in cancer: Therapeutic targets, combinatorial treatments, and new developments. Cells 2021 10 3 659 10.3390/cells10030659 33809714
    [Google Scholar]
  171. Montoya S. Soong D. Nguyen N. Affer M. Munamarty S.P. Taylor J. Targeted therapies in cancer: To be or not to be, selective. Biomedicines 2021 9 11 1591 10.3390/biomedicines9111591 34829820
    [Google Scholar]
  172. Shi Z.D. Pang K. Wu Z.X. Dong Y. Hao L. Qin J.X. Wang W. Chen Z.S. Han C.H. Tumor cell plasticity in targeted therapy-induced resistance: Mechanisms and new strategies. Signal Transduct. Target. Ther. 2023 8 1 113 10.1038/s41392‑023‑01383‑x 36906600
    [Google Scholar]
  173. Shi Y.M. Wang J. Yan H. The current scenario of furoxan hybrids with anticancer potential. J. Heterocycl. Chem. 2023 60 10 1651 1665 10.1002/jhet.4675
    [Google Scholar]
  174. Ma Z. Woon C.Y.N. Liu C.G. Cheng J.T. You M. Sethi G. Wong A.L.A. Ho P.C.L. Zhang D. Ong P. Wang L. Goh B.C. Repurposing artemisinin and its derivatives as anticancer drugs: A chance or challenge? Front. Pharmacol. 2021 12 828856 10.3389/fphar.2021.828856 35035355
    [Google Scholar]
  175. Sun L. Zhou W. Zhang H. Guo Q. Yang W. Li B. Sun Z. Gao S. Cui R. Modulation of multiple signaling pathways of the plant-derived natural products in cancer. Front. Oncol. 2019 9 1153 10.3389/fonc.2019.01153 31781485
    [Google Scholar]
  176. Samanta A. Sarkar A. Fighting new wars with old weapons: Repurposing of anti-malarial drug for anticancer therapy. Arch Breast Cancer 2022 9 4 439 449
    [Google Scholar]
  177. Imran M. Saleem S. Chaudhuri A. Ali J. Baboota S. Docetaxel: An update on its molecular mechanisms, therapeutic trajectory and nanotechnology in the treatment of breast, lung and prostate cancer. J. Drug Deliv. Sci. Technol. 2020 60 101959 10.1016/j.jddst.2020.101959
    [Google Scholar]
  178. Ong J.Y. Torres J.Z. Dissecting the mechanisms of cell division. J. Biol. Chem. 2019 294 30 11382 11390 10.1074/jbc.AW119.008149 31175154
    [Google Scholar]
  179. Yamauchi T. Yoshida A. Ueda T. Camptothecin induces DNA strand breaks and is cytotoxic in stimulated normal lymphocytes. Oncol. Rep. 2011 25 2 347 352 10.3892/or.2010.1100 21165573
    [Google Scholar]
  180. Lagunas-Rangel F.A. Bermúdez-Cruz R.M. Natural compounds that target DNA repair pathways and their therapeutic potential to counteract cancer cells. Front. Oncol. 2020 10 598174 10.3389/fonc.2020.598174 33330091
    [Google Scholar]
  181. Butterfield L.H. Najjar Y.G. Immunotherapy combination approaches: Mechanisms, biomarkers and clinical observations. Nat. Rev. Immunol. 2024 24 6 399 416 10.1038/s41577‑023‑00973‑8 38057451
    [Google Scholar]
  182. Kuo H.Y. Khan K.A. Kerbel R.S. Antiangiogenic–immune-checkpoint inhibitor combinations: Lessons from phase III clinical trials. Nat. Rev. Clin. Oncol. 2024 21 6 468 482 10.1038/s41571‑024‑00886‑y 38600370
    [Google Scholar]
  183. Azam F. Vazquez A. Trends in phase II trials for cancer therapies. Cancers 2021 13 2 178 10.3390/cancers13020178 33430223
    [Google Scholar]
  184. Tuorkey M. Curcumin a potent cancer preventive agent: Mechanisms of cancer cell killing. Interv. Med. Appl. Sci. 2014 6 4 139 146 10.1556/imas.6.2014.4.1 25598986
    [Google Scholar]
  185. Baldwin E. Osheroff N. Etoposide, topoisomerase II and cancer. Curr. Med. Chem. Anticancer Agents 2005 5 4 363 372 10.2174/1568011054222364 16101488
    [Google Scholar]
  186. Hsiang Y.H. Hertzberg R. Hecht S. Liu L.F. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J. Biol. Chem. 1985 260 27 14873 14878 10.1016/S0021‑9258(17)38654‑4 2997227
    [Google Scholar]
  187. Kothari A. Hittelman W.N. Chambers T.C. Cell cycle–dependent mechanisms underlie vincristine-Induced death of primary acute lymphoblastic leukemia cells. Cancer Res. 2016 76 12 3553 3561 10.1158/0008‑5472.CAN‑15‑2104 27197148
    [Google Scholar]
  188. Moreira H. Szyjka A. Grzesik J. Pelc K. Żuk M. Kulma A. Emhemmed F. Muller C. Gąsiorowski K. Barg E. Celastrol and resveratrol modulate SIRT genes expression and exert anticancer activity in colon cancer cells and cancer stem-like cells. Cancers 2022 14 6 1372 10.3390/cancers14061372 35326523
    [Google Scholar]
  189. Czaja M. Skirlińska-Nosek K. Adamczyk O. Sofińska K. Wilkosz N. Rajfur Z. Szymoński M. Lipiec E. Raman research on bleomycin-induced dna strand breaks and repair processes in living cells. Int. J. Mol. Sci. 2022 23 7 3524 10.3390/ijms23073524 35408885
    [Google Scholar]
  190. Moura D.S. Peña-Chilet M. Cordero Varela J.A. Alvarez-Alegret R. Agra-Pujol C. Izquierdo F. Ramos R. Ortega-Medina L. Martin-Davila F. Castilla-Ramirez C. Hernandez-Leon C.N. Romagosa C. Vaz Salgado M.A. Lavernia J. Bagué S. Mayodormo-Aranda E. Vicioso L. Hernández Barceló J.E. Rubio-Casadevall J. de Juan A. Fiaño-Valverde M.C. Hindi N. Lopez-Alvarez M. Lacerenza S. Dopazo J. Gutierrez A. Alvarez R. Valverde C. Martinez-Trufero J. Martín-Broto J. A DNA damage repair gene-associated signature predicts responses of patients with advanced soft-tissue sarcoma to treatment with trabectedin. Mol. Oncol. 2021 15 12 3691 3705 10.1002/1878‑0261.12996 33983674
    [Google Scholar]
  191. Raghuvanshi R. Bharate S.B. Preclinical and clinical studies on bryostatins, a class of marine-derived protein kinase C modulators: A mini-review. Curr. Top. Med. Chem. 2020 20 12 1124 1135 10.2174/1568026620666200325110444 32209043
    [Google Scholar]
  192. Pistritto G. Trisciuoglio D. Ceci C. Garufi A. D’Orazi G. Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY) 2016 8 4 603 619 10.18632/aging.100934 27019364
    [Google Scholar]
  193. Wu C.C. Bratton S.B. Regulation of the intrinsic apoptosis pathway by reactive oxygen species. Antioxid. Redox Signal. 2013 19 6 546 558 10.1089/ars.2012.4905 22978471
    [Google Scholar]
  194. Ashkenazi A. Targeting the extrinsic apoptotic pathway in cancer: Lessons learned and future directions. J. Clin. Invest. 2015 125 2 487 489 10.1172/JCI80420 25642709
    [Google Scholar]
  195. Qian S. Wei Z. Yang W. Huang J. Yang Y. Wang J. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front. Oncol. 2022 12 985363 10.3389/fonc.2022.985363 36313628
    [Google Scholar]
  196. Warren C.F.A. Wong-Brown M.W. Bowden N.A. BCL-2 family isoforms in apoptosis and cancer. Cell Death Dis. 2019 10 3 177 10.1038/s41419‑019‑1407‑6 30792387
    [Google Scholar]
  197. Checa J. Aran J.M. Reactive oxygen species: Drivers of physiological and pathological processes. J. Inflamm. Res. 2020 13 1057 1073 10.2147/JIR.S275595 33293849
    [Google Scholar]
  198. Sedighi M. Namdari M. Mahmoudi P. Khani A. Manouchehri A. Anvari M. An overview of angiogenesis and chemical and physiological angiogenic factors: Short review. J. Chem. Health Risks 2022
    [Google Scholar]
  199. Lopes-Coelho F. Martins F. Pereira S.A. Serpa J. Anti-angiogenic therapy: Current challenges and future perspectives. Int. J. Mol. Sci. 2021 22 7 3765 10.3390/ijms22073765 33916438
    [Google Scholar]
  200. Liu Z.L. Chen H.H. Zheng L.L. Sun L.P. Shi L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct. Target. Ther. 2023 8 1 198 10.1038/s41392‑023‑01460‑1 37169756
    [Google Scholar]
  201. Elebiyo T.C. Rotimi D. Evbuomwan I.O. Maimako R.F. Iyobhebhe M. Ojo O.A. Oluba O.M. Adeyemi O.S. Reassessing vascular endothelial growth factor (VEGF) in anti-angiogenic cancer therapy. Cancer Treat. Res. Commun. 2022 32 100620 10.1016/j.ctarc.2022.100620 35964475
    [Google Scholar]
  202. Habtemariam S. Lentini G. Plant-Derived anticancer agents: Lessons from the pharmacology of geniposide and its Aglycone, Genipin. Biomedicines. 2018 6 2 39
    [Google Scholar]
  203. Carmeliet P. Jain R.K. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011 473 7347 298 307 10.1038/nature10144 21593862
    [Google Scholar]
  204. Aravindaram K. Yang N.S. Anti-inflammatory plant natural products for cancer therapy. Planta Med. 2010 76 11 1103 1117 10.1055/s‑0030‑1249859 20432202
    [Google Scholar]
  205. Moody R. Wilson K. Jaworowski A. Plebanski M. Natural compounds with potential to modulate cancer therapies and self-reactive immune cells. Cancers 2020 12 3 673 10.3390/cancers12030673 32183059
    [Google Scholar]
  206. Jang J.-H. Kim D.-H. Surh Y.-J. Dynamic roles of inflammasomes in inflammatory tumor microenvironment. NPJ Precis Oncol. 2021 5 1 18
    [Google Scholar]
  207. Li R. Song X. Guo Y. Song P. Duan D. Chen Z.S. Natural products: A promising therapeutics for targeting tumor angiogenesis. Front. Oncol. 2021 11 772915 10.3389/fonc.2021.772915 34746014
    [Google Scholar]
  208. Shanmugam M.K. Warrier S. Kumar A.P. Sethi G. Arfuso F. Potential role of natural compounds as anti-angiogenic agents in cancer. Curr. Vasc. Pharmacol. 2017 15 6 503 519 28707601
    [Google Scholar]
  209. Sagar S.M. Yance D. Wong R.K. Natural health products that inhibit angiogenesis: A potential source for investigational new agents to treat cancer-Part 1. Curr. Oncol. 2006 13 1 14 26 10.3747/co.v13i1.77 17576437
    [Google Scholar]
  210. Lichota A. Gwozdzinski K. Anticancer activity of natural compounds from plant and marine environment. Int. J. Mol. Sci. 2018 19 11 3533 10.3390/ijms19113533 30423952
    [Google Scholar]
  211. Jingwen B. Yaochen L. Guojun Z. Cell cycle regulation and anticancer drug discovery. Cancer Biol. Med. 2017 14 4 348 362 10.20892/j.issn.2095‑3941.2017.0033 29372101
    [Google Scholar]
  212. Shapiro G.I. Harper J.W. Anticancer drug targets: Cell cycle and checkpoint control. J. Clin. Invest. 1999 104 12 1645 1653 10.1172/JCI9054 10606615
    [Google Scholar]
  213. Qin R. You F.M. Zhao Q. Xie X. Peng C. Zhan G. Han B. Naturally derived indole alkaloids targeting regulated cell death (RCD) for cancer therapy: From molecular mechanisms to potential therapeutic targets. J. Hematol. Oncol. 2022 15 1 133 10.1186/s13045‑022‑01350‑z 36104717
    [Google Scholar]
  214. Bailon-Moscoso N. Cevallos-Solorzano G. Romero-Benavides J. Ramirez Orellana M. Natural compounds as modulators of cell cycle arrest: Application for anticancer chemotherapies. Curr. Genomics 2017 18 2 106 131 10.2174/1389202917666160808125645 28367072
    [Google Scholar]
  215. Finn O.J. Immuno-oncology: Understanding the function and dysfunction of the immune system in cancer Ann Oncol. 2012 23 Suppl 8 viii6 viii9 10.1093/annonc/mds256
    [Google Scholar]
  216. Hanahan D. Weinberg R.A. Biological hallmarks of cancer. Holland-Frei Cancer Medicine 2016 1 10
    [Google Scholar]
  217. Pan P. Huang Y.W. Oshima K. Yearsley M. Zhang J. Arnold M. Yu J. Wang L.S. The immunomodulatory potential of natural compounds in tumor-bearing mice and humans. Crit. Rev. Food Sci. Nutr. 2019 59 6 992 1007 10.1080/10408398.2018.1537237 30795687
    [Google Scholar]
  218. Singh S. Barik D. Arukha A.P. Prasad S. Mohapatra I. Singh A. Singh G. Small Molecule Targeting Immune Cells: A Novel Approach for Cancer Treatment Biomedicines 2023 11 10 2621
    [Google Scholar]
  219. Lee J. Han Y. Wang W. Jo H. Kim H. Kim S. Yang K.M. Kim S.J. Dhanasekaran D.N. Song Y.S. Phytochemicals in cancer immune checkpoint inhibitor therapy. Biomolecules 2021 11 8 1107 10.3390/biom11081107 34439774
    [Google Scholar]
  220. Haanen J.B.A.G. Robert C. Immune checkpoint inhibitors. Prog. Tumor Res. 2015 42 55 66 10.1159/000437178 26382943
    [Google Scholar]
  221. Pardoll D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012 12 4 252 264 10.1038/nrc3239 22437870
    [Google Scholar]
  222. Peter A.E. Sandeep B.V. Rao B.G. Kalpana V.L. Calming the storm: Natural immunosuppressants as adjuvants to target the cytokine storm in COVID-19. Front. Pharmacol. 2021 11 583777 10.3389/fphar.2020.583777 33708109
    [Google Scholar]
  223. Kany S. Vollrath J.T. Relja B. Cytokines in inflammatory disease. Int. J. Mol. Sci. 2019 20 23 6008 10.3390/ijms20236008 31795299
    [Google Scholar]
  224. Greten F.R. Grivennikov S.I. Inflammation and cancer: Triggers, mechanisms, and consequences. Immunity 2019 51 1 27 41 10.1016/j.immuni.2019.06.025 31315034
    [Google Scholar]
  225. Deng L.J. Qi M. Li N. Lei Y.H. Zhang D.M. Chen J.X. Natural products and their derivatives: Promising modulators of tumor immunotherapy. J. Leukoc. Biol. 2020 108 2 493 508 10.1002/JLB.3MR0320‑444R 32678943
    [Google Scholar]
  226. Nuzzo G. Senese G. Gallo C. Albiani F. Romano L. d’Ippolito G. Manzo E. Fontana A. Antitumor potential of immunomodulatory natural products. Mar. Drugs 2022 20 6 386 10.3390/md20060386 35736189
    [Google Scholar]
  227. Huang M. Lu J.J. Ding J. Natural products in cancer therapy: Past, present and future. Nat. Prod. Bioprospect. 2021 11 1 5 13 10.1007/s13659‑020‑00293‑7 33389713
    [Google Scholar]
  228. Wang J. Jiang Y.F. Natural compounds as anticancer agents: Experimental evidence. World J. Exp. Med. 2012 2 3 45 57 10.5493/wjem.v2.i3.45 24520533
    [Google Scholar]
  229. Hashem S. Ali T.A. Akhtar S. Nisar S. Sageena G. Ali S. Al-Mannai S. Therachiyil L. Mir R. Elfaki I. Mir M.M. Jamal F. Masoodi T. Uddin S. Singh M. Haris M. Macha M. Bhat A.A. Targeting cancer signaling pathways by natural products: Exploring promising anti-cancer agents. Biomed. Pharmacother. 2022 150 113054 10.1016/j.biopha.2022.113054 35658225
    [Google Scholar]
  230. Granchi C. Minutolo F. Anticancer agents that counteract tumor glycolysis. ChemMedChem 2012 7 8 1318 1350 10.1002/cmdc.201200176 22684868
    [Google Scholar]
  231. Cui Y. Li C. Sang F. Cao W. Qin Z. Zhang P. Natural products targeting glycolytic signaling pathways-an updated review on anti-cancer therapy. Front. Pharmacol. 2022 13 1035882 10.3389/fphar.2022.1035882 36339566
    [Google Scholar]
  232. Zhao M. Wei F. Sun G. Wen Y. Xiang J. Su F. Zhan L. Nian Q. Chen Y. Zeng J. Natural compounds targeting glycolysis as promising therapeutics for gastric cancer: A review. Front. Pharmacol. 2022 13 1004383 10.3389/fphar.2022.1004383 36438836
    [Google Scholar]
  233. Chen Q. Ruan D. Shi J. Du D. Bian C. The multifaceted roles of natural products in mitochondrial dysfunction. Front. Pharmacol. 2023 14 1093038 10.3389/fphar.2023.1093038 36860298
    [Google Scholar]
  234. Yang Y. He P.Y. Zhang Y. Li N. Natural products targeting the mitochondria in cancers. Molecules 2020 26 1 92 10.3390/molecules26010092 33379233
    [Google Scholar]
  235. Min H.Y. Jang H.J. Park K.H. Hyun S.Y. Park S.J. Kim J.H. Son J. Kang S.S. Lee H.Y. The natural compound gracillin exerts potent antitumor activity by targeting mitochondrial complex II. Cell Death Dis. 2019 10 11 810 10.1038/s41419‑019‑2041‑z 31649278
    [Google Scholar]
  236. Ray P.D. Huang B.W. Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 2012 24 5 981 990 10.1016/j.cellsig.2012.01.008 22286106
    [Google Scholar]
  237. Sharifi-Rad M. Anil Kumar N.V. Zucca P. Varoni E.M. Dini L. Panzarini E. Rajkovic J. Tsouh Fokou P.V. Azzini E. Peluso I. Prakash Mishra A. Nigam M. El Rayess Y. Beyrouthy M.E. Polito L. Iriti M. Martins N. Martorell M. Docea A.O. Setzer W.N. Calina D. Cho W.C. Sharifi-Rad J. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Front. Physiol. 2020 11 694 10.3389/fphys.2020.00694 32714204
    [Google Scholar]
  238. Stine Z.E. Schug Z.T. Salvino J.M. Dang C.V. Targeting cancer metabolism in the era of precision oncology. Nat. Rev. Drug Discov. 2022 21 2 141 162 10.1038/s41573‑021‑00339‑6 34862480
    [Google Scholar]
  239. Lukey M.J. Katt W.P. Cerione R.A. Targeting amino acid metabolism for cancer therapy. Drug Discov. Today 2017 22 5 796 804 10.1016/j.drudis.2016.12.003 27988359
    [Google Scholar]
  240. Dong S. Guo X. Han F. He Z. Wang Y. Emerging role of natural products in cancer immunotherapy. Acta Pharm. Sin. B 2022 12 3 1163 1185 10.1016/j.apsb.2021.08.020 35530162
    [Google Scholar]
  241. Lin J. Huo X. Liu X. mTOR signaling pathway”: A potential target of curcumin in the treatment of spinal cord injury. Biomed Res Int. 2017 2017 Suppl 8 1634801
    [Google Scholar]
  242. Oshiro C. Marsh S. McLeod H. Carrillo M.W. Klein T. Altman R. Taxane pathway. Pharmacogenet. Genomics 2009 19 12 979 983 10.1097/FPC.0b013e3283335277 21151855
    [Google Scholar]
  243. Mosca L. Ilari A. Fazi F. Assaraf Y.G. Colotti G. Taxanes in cancer treatment: Activity, chemoresistance and its overcoming. Drug Resist. Updat. 2021 54 100742 10.1016/j.drup.2020.100742 33429249
    [Google Scholar]
  244. Conlin A.K. Seidman A.D. Taxanes in breast cancer: An update. Curr. Oncol. Rep. 2007 9 1 22 30 10.1007/BF02951422 17164044
    [Google Scholar]
  245. Li F. Jiang T. Li Q. Ling X. Camptothecin (CPT) and its derivatives are known to target topoisomerase I (Top1) as their mechanism of action: Did we miss something in CPT analogue molecular targets for treating human disease such as cancer? Am. J. Cancer Res. 2017 7 12 2350 2394 29312794
    [Google Scholar]
  246. Wang X. Zhuang Y. Wang Y. Jiang M. Yao L. The recent developments of camptothecin and its derivatives as potential anti-tumor agents. Eur. J. Med. Chem. 2023 260 115710 10.1016/j.ejmech.2023.115710 37595544
    [Google Scholar]
  247. Jimenez P.C. Wilke D.V. Costa-Lotufo L.V. Marine drugs for cancer: Surfacing biotechnological innovations from the oceans. Clinics 2018 73 Suppl. 1 e482s 10.6061/clinics/2018/e482s 30133563
    [Google Scholar]
  248. Zuo W. Kwok H.F. Development of marine-Derived compounds for cancer therapy. Mar. Drugs 2021 19 6 342 10.3390/md19060342 34203870
    [Google Scholar]
  249. Yun C.W. Kim H.J. Lee S.H. Therapeutic application of diverse marine-derived natural products in cancer therapy. Anticancer Res. 2019 39 10 5261 5284 10.21873/anticanres.13721 31570422
    [Google Scholar]
  250. Wang X. Gigant B. Zheng X. Chen Q. Microtubule-targeting agents for cancer treatment: Seven binding sites and three strategies. MedComm Oncol. 2023 2 3 e46 10.1002/mog2.46
    [Google Scholar]
  251. Shaik B.B. Katari N.K. Jonnalagadda S.B. Role of natural products in developing novel anticancer agents: A perspective. Chem. Biodivers. 2022 19 11 e202200535 10.1002/cbdv.202200535 36347633
    [Google Scholar]
  252. Maloney S.M. Hoover C.A. Morejon-Lasso L.V. Prosperi J.R. Mechanisms of taxane resistance Cancers 2020 12 11 3323
    [Google Scholar]
  253. Arora R. Malhotra P. Mathur A.K. Mathur A. Govil C.M. Ahuja P.S. Anticancer Alkaloids of Catharanthus roseus: Transition from traditional to modern medicine. Herbal Medicine: A Cancer Chemopreventive and Therapeutic Perspective Jaypee 2010 292 310
    [Google Scholar]
  254. Hoiczyk M. Grabellus F. Podleska L. Ahrens M. Schwindenhammer B. Taeger G. Pöttgen C. Schuler M. Bauer S. Trabectedin in metastatic soft tissue sarcomas: Role of pretreatment and age. Int. J. Oncol. 2013 43 1 23 28 10.3892/ijo.2013.1928 23652821
    [Google Scholar]
  255. Asmana Ningrum R. Human interferon alpha-2b: A therapeutic protein for cancer treatment. Scientifica (Cairo) 2014 2014 1 8 10.1155/2014/970315 24741445
    [Google Scholar]
  256. Kiyonga E.M. Kekani L.N. Chidziwa T.V. Kahwenga K.D. Bronkhorst E. Milne M. Poka M.S. Mokhele S. Demana P.H. Witika B.A. Nano-and crystal engineering approaches in the development of therapeutic agents for neoplastic diseases. Crystals 2022 12 7 926 10.3390/cryst12070926
    [Google Scholar]
  257. Zhou S. Zhang S. Shen H. Chen W. Xu H. Chen X. Sun D. Zhong S. Zhao J. Tang J. Curcumin inhibits cancer progression through regulating expression of microRNAs. Tumour Biol. 2017 39 2 10.1177/1010428317691680 28222667
    [Google Scholar]
  258. Fu H. Wang C. Yang D. Wei Z. Xu J. Hu Z. Zhang Y. Wang W. Yan R. Cai Q. Curcumin regulates proliferation, autophagy, and apoptosis in gastric cancer cells by affecting PI3K and P53 signaling. J. Cell. Physiol. 2018 233 6 4634 4642 10.1002/jcp.26190 28926094
    [Google Scholar]
  259. Alves C. Silva J. Pinteus S. Gaspar H. Alpoim M.C. Botana L.M. Pedrosa R. From marine origin to therapeutics: The antitumor potential of marine algae-Derived compounds. Front. Pharmacol. 2018 9 777 10.3389/fphar.2018.00777 30127738
    [Google Scholar]
  260. Reichenbach H. Höfle G. Discovery and development of the epothilones : A novel class of antineoplastic drugs. Drugs R D. 2008 9 1 1 10 10.2165/00126839‑200809010‑00001 18095749
    [Google Scholar]
  261. Hyun H. Chung J. Kim J. Lee J-S. Kwon B-M. Son K-H. Cho K. Isolation of Sorangium cellulosum carrying epothilone gene clusters. J. Microbiol. Biotechnol. 2008 18 8 1416 1422 18756102
    [Google Scholar]
  262. Castañeda A.M. Meléndez C.M. Uribe D. Pedroza-Díaz J. Synergistic effects of natural compounds and conventional chemotherapeutic agents: Recent insights for the development of cancer treatment strategies. Heliyon 2022 8 6 e09519 10.1016/j.heliyon.2022.e09519 35669542
    [Google Scholar]
  263. Eisenmann E.D. Talebi Z. Sparreboom A. Baker S.D. Boosting the oral bioavailability of anticancer drugs through intentional drug-drug interactions. Basic Clin. Pharmacol. Toxicol. 2022 130 Suppl 1 23 35 10.1111/bcpt.13623
    [Google Scholar]
  264. Garcia-Oliveira P. Otero P. Pereira A.G. Chamorro F. Carpena M. Echave J. Fraga-Corral M. Simal-Gandara J. Prieto M.A. Status and challenges of plant-Anticancer compounds in cancer treatment. Pharmaceuticals 2021 14 2 157 10.3390/ph14020157 33673021
    [Google Scholar]
  265. Pochet S. Lechon A.S. Lescrainier C. De Vriese C. Mathieu V. Hamdani J. Souard F. Herb-anticancer drug interactions in real life based on VigiBase, the WHO global database. Sci. Rep. 2022 12 1 14178 10.1038/s41598‑022‑17704‑z 35986023
    [Google Scholar]
  266. Ferreira U. 2023
  267. Litman T. Personalized medicine—Concepts, technologies, and applications in inflammatory skin diseases. Acta Pathol. Microbiol. Scand. Suppl. 2019 127 5 386 424 10.1111/apm.12934 31124204
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673344501250109210447
Loading
/content/journals/cmc/10.2174/0109298673344501250109210447
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test