Skip to content
2000
Volume 32, Issue 31
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

The investigation of naturally derived anticancer drugs has gained prominence in cancer therapy research. Within a broad context, this review seeks to elucidate the molecular foundations and diverse mechanisms underlying these compounds to understand their pivotal role in advancing effective interventions. Additionally by employing a systematic approach, this study examined the interplay between cellular components, signaling pathways, and genetic factors, providing valuable insights into the regulatory networks governing the efficacy of these drugs. Categorization based on sources (plants, animals, marine organisms, and microbes) revealed unique bioactive constituents and therapeutic potential. Mechanistic investigations have revealed the ability of these compounds to induce apoptosis, inhibit angiogenesis, modulate metabolic processes, stimulate the immune system, and arrest the cell cycle. This overview encompasses both approved drugs and those undergoing clinical trials, highlighting their heightened efficacy and reduced toxicity compared to their synthetic counterparts. However, challenges persist in terms of standardization, quality control, and large-scale production. In conclusion, this review examined the potential of naturally derived anticancer drugs to contribute to advancements in cancer treatment and enhance patient outcomes. In addition to their effectiveness, natural anticancer drugs are generally less toxic and have fewer harmful side effects than conventional chemotherapies. This emphasizes the need for continued research, collaborative efforts, and addressing the regulatory and intellectual property challenges associated with natural products. This review provides a balanced perspective on the mechanisms, advantages, and prospects.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673344501250109210447
2025-01-27
2025-10-23
Loading full text...

Full text loading...

References

  1. ArriecheD. Cabrera-PardoJ.R. San-MartinA. CarrascoH. TaborgaL. Natural products from chilean and antarctic marine fungi and their biomedical relevance.Mar. Drugs202321298
    [Google Scholar]
  2. JamiesonC.S. MisaJ. TangY. BillingsleyJ.M. Biosynthesis and synthetic biology of psychoactive natural products.Chem. Soc. Rev.202150126950700810.1039/D1CS00065A33908526
    [Google Scholar]
  3. WeaverB.A. How Taxol/paclitaxel kills cancer cells.Mol. Biol. Cell201425182677268110.1091/mbc.e14‑04‑091625213191
    [Google Scholar]
  4. LeungJ.C. CassimerisL. Reorganization of paclitaxel-stabilized microtubule arrays at mitotic entry: Roles of depolymerizing kinesins and severing proteins.Cancer Biol. Ther.201920101337134710.1080/15384047.2019.163867831345098
    [Google Scholar]
  5. WallM.E. WaniM.C. Camptothecin and taxol: From discovery to clinic.J. Ethnopharmacol.1996511-323925410.1016/0378‑8741(95)01367‑99213622
    [Google Scholar]
  6. NaeemA. HuP. YangM. ZhangJ. LiuY. ZhuW. ZhengQ. Natural products as anticancer agents: Current status and future perspectives.Molecules20222723836710.3390/molecules2723836736500466
    [Google Scholar]
  7. ErhirhieE.O. IhekweremeC.P. IlodigweE.E. Advances in acute toxicity testing: Strengths, weaknesses and regulatory acceptance.Interdiscip. Toxicol.201811151210.2478/intox‑2018‑000130181707
    [Google Scholar]
  8. StielowM. WitczyńskaA. KubryńN. FijałkowskiŁ. NowaczykJ. NowaczykA. The bioavailability of drugs—The current state of knowledge.Molecules20232824803810.3390/molecules2824803838138529
    [Google Scholar]
  9. Sharifi-RadJ. QuispeC. PatraJ.K. SinghY.D. PandaM.K. DasG. AdetunjiC.O. MichaelO.S. SytarO. PolitoL. ŽivkovićJ. Cruz-MartinsN. Klimek-SzczykutowiczM. EkiertH. ChoudharyM.I. AyatollahiS.A. TynybekovB. KobarfardF. MunteanA.C. GrozeaI. DaştanS.D. ButnariuM. SzopaA. CalinaD. Paclitaxel: Application in modern oncology and nanomedicine-Based cancer therapy.Oxid. Med. Cell. Longev.202120211368770010.1155/2021/368770034707776
    [Google Scholar]
  10. LinS.R. ChangC.H. HsuC.F. TsaiM.J. ChengH. LeongM.K. SungP.J. ChenJ.C. WengC.F. Natural compounds as potential adjuvants to cancer therapy: Preclinical evidence.Br. J. Pharmacol.202017761409142310.1111/bph.1481631368509
    [Google Scholar]
  11. MartinS.F. Natural products and their mimics as targets of opportunity for discovery.J. Org. Chem.20178220107571079410.1021/acs.joc.7b0136828738152
    [Google Scholar]
  12. ChaudhryG.S. Md AkimA. SungY.Y. SifzizulT.M.T. Cancer and apoptosis: The apoptotic activity of plant and marine natural products and their potential as targeted cancer therapeutics.Front. Pharmacol.20221384237610.3389/fphar.2022.84237636034846
    [Google Scholar]
  13. ElekofehintiO.O. IwaloyeO. OlawaleF. AriyoE.O. Saponins in cancer treatment: Current progress and future prospects.Pathophysiology202128225027210.3390/pathophysiology2802001735366261
    [Google Scholar]
  14. MarshallC.M. FedericeJ.G. BellC.N. CoxP.B. NjardarsonJ.T. An update on the nitrogen heterocycle compositions and properties of U.S. FDA-approved pharmaceuticals (2013–2023).J. Med. Chem.20246714116221165510.1021/acs.jmedchem.4c0112238995264
    [Google Scholar]
  15. LahiriC. PawarS. MishraR. Precision medicine and future of cancer treatment.Precis. Cancer Med.201923310.21037/pcm.2019.09.01
    [Google Scholar]
  16. YuanZ. YaoJ. Harnessing computational spatial omics to explore the spatial biology intricacies.Semin. Cancer Biol.202395254110.1016/j.semcancer.2023.06.00637400044
    [Google Scholar]
  17. MinL. HanJ.C. ZhangW. GuC.C. ZouY.P. LiC.C. Strategies and lessons learned from total synthesis of taxol.Chem. Rev.202312384934497110.1021/acs.chemrev.2c0076336917457
    [Google Scholar]
  18. GalúcioJ.M. MonteiroE.F. de JesusD.A. CostaC.H. SiqueiraR.C. SantosG.B. LameiraJ. CostaK.S. In silico identification of natural products with anticancer activity using a chemo-structural database of Brazilian biodiversity.Comput. Biol. Chem.20198310710210.1016/j.compbiolchem.2019.10710231487609
    [Google Scholar]
  19. Rosales-HernandezM.C. Bermúdez-LugoJ. GarciaJ. Trujillo-FerraraJ. Correa-BasurtoJ. Molecular modeling applied to anti-cancer drug development.Anticancer. Agents Med. Chem.20099223023810.2174/18715200978731381919199867
    [Google Scholar]
  20. MishraK. TalapatraS.N. Prediction of toxicity, pharmacokinetics of selected phytochemicals of leaf of drumstick (Moringa Sp.) and molecular docking studies on two receptors as insulin tyrosine kinase for antidiabetic potential.Int. J. Adv. Sci. Res.202213026775
    [Google Scholar]
  21. ChehelgerdiM. ChehelgerdiM. AllelaO.Q.B. PechoR.D.C. JayasankarN. RaoD.P. ThamaraikaniT. VasanthanM. ViktorP. LakshmaiyaN. SaadhM.J. AmajdA. Abo-ZaidM.A. Castillo-AcoboR.Y. IsmailA.H. AminA.H. Akhavan-SigariR. Progressing nanotechnology to improve targeted cancer treatment: overcoming hurdles in its clinical implementation.Mol. Cancer202322116910.1186/s12943‑023‑01865‑037814270
    [Google Scholar]
  22. FloydZ.E. RibnickyD.M. RaskinI. HsiaD.S. RoodJ.C. GurleyB.J. Designing a clinical study with dietary supplements: It’s all in the details.Front. Nutr.2022877948610.3389/fnut.2021.77948635118104
    [Google Scholar]
  23. KhalifaS.A.M. EliasN. FaragM.A. ChenL. SaeedA. HegazyM.E.F. MoustafaM.S. Abd El-WahedA. Al-MousawiS.M. MusharrafS.G. ChangF.R. IwasakiA. SuenagaK. AlajlaniM. GöranssonU. El-SeediH.R. Marine natural products: A source of novel anticancer drugs.Mar. Drugs201917949110.3390/md1709049131443597
    [Google Scholar]
  24. AsmaS.T. AcarozU. ImreK. MorarA. ShahS.R.A. HussainS.Z. Arslan-AcarozD. DemirbasH. Hajrulai-MusliuZ. IstanbullugilF.R. SoleimanzadehA. MorozovD. ZhuK. HermanV. AyadA. AthanassiouC. InceS. Natural products/bioactive compounds as a source of anticancer drugs.Cancers20221424620310.3390/cancers1424620336551687
    [Google Scholar]
  25. OlofinsanK. AbrahamseH. GeorgeB.P. In.Molecules2023Vol. 28
    [Google Scholar]
  26. KhanT. AliM. KhanA. NisarP. JanS.A. AfridiS. ShinwariZ.K. Anticancer plants: A review of the active phytochemicals, applications in animal models, and regulatory aspects.Biomolecules201910147
    [Google Scholar]
  27. RamakrishnaW. KumariA. RahmanN. MandaveP. Anticancer activities of plant secondary metabolites: Rice callus suspension culture as a new paradigm.Rice Sci.2021281133010.1016/j.rsci.2020.11.004
    [Google Scholar]
  28. DeshpandeA. DhadiS.R. HagerE.J. RamakrishnaW. Anticancer activity of rice callus suspension culture.Phytother. Res.20122671075108110.1002/ptr.369922213212
    [Google Scholar]
  29. NkweD.O. In Applications in Plant Biotechnology.CRC Press2022617310.1201/9781003008866‑4
    [Google Scholar]
  30. CocettaV. QuagliarielloV. FioricaF. BerrettaM. MontopoliM. Resveratrol as chemosensitizer agent: State of art and future perspectives.Int. J. Mol. Sci.2021224204910.3390/ijms2204204933669559
    [Google Scholar]
  31. PfefferC. SinghA. Apoptosis: A target for anticancer therapy.Int. J. Mol. Sci.201819244810.3390/ijms1902044829393886
    [Google Scholar]
  32. AtanasovA.G. ZotchevS.B. DirschV.M. SupuranC.T. BanachM. RollingerJ.M. BarrecaD. WeckwerthW. BauerR. BayerE.A. MajeedM. BishayeeA. BochkovV. BonnG.K. BraidyN. BucarF. CifuentesA. D’OnofrioG. BodkinM. DiederichM. Dinkova-KostovaA.T. EfferthT. El BairiK. ArkellsN. FanT-P. FiebichB.L. FreissmuthM. GeorgievM.I. GibbonsS. GodfreyK.M. GruberC.W. HeerJ. HuberL.A. IbanezE. KijjoaA. KissA.K. LuA. MaciasF.A. MillerM.J.S. MocanA. MüllerR. NicolettiF. PerryG. PittalàV. RastrelliL. RistowM. RussoG.L. SilvaA.S. SchusterD. SheridanH. Skalicka-WoźniakK. SkaltsounisL. Sobarzo-SánchezE. BredtD.S. StuppnerH. SuredaA. TzvetkovN.T. VaccaR.A. AggarwalB.B. BattinoM. GiampieriF. WinkM. WolfenderJ-L. XiaoJ. YeungA.W.K. LizardG. PoppM.A. HeinrichM. Berindan-NeagoeI. StadlerM. DagliaM. VerpoorteR. SupuranC.T. Natural products in drug discovery: Advances and opportunities.Nat. Rev. Drug Discov.202120320021610.1038/s41573‑020‑00114‑z33510482
    [Google Scholar]
  33. MinamiH. KiyotaN. KimbaraS. AndoY. ShimokataT. OhtsuA. FuseN. KubokiY. ShimizuT. YamamotoN. NishioK. KawakamiY. NihiraS. SaseK. NonakaT. TakahashiH. KomoriY. KiyoharaK. Guidelines for clinical evaluation of anti-cancer drugs.Cancer Sci.202111272563257710.1111/cas.1496733990993
    [Google Scholar]
  34. Sharifi-RadJ. OzleyenA. Boyunegmez TumerT. Oluwaseun AdetunjiC. El OmariN. BalahbibA. TaheriY. BouyahyaA. MartorellM. MartinsN. ChoW.C. Natural products and synthetic analogs as a source of antitumor drugs.Biomolecules201991167910.3390/biom911067931683894
    [Google Scholar]
  35. DeheleanC.A. MarcoviciI. SoicaC. MiocM. CoricovacD. IurciucS. CretuO.M. PinzaruI. Plant-derived anticancer compounds as new perspectives in drug discovery and alternative therapy.Molecules2021264110910.3390/molecules2604110933669817
    [Google Scholar]
  36. VaouN. StavropoulouE. VoidarouC.C. TsakrisZ. RozosG. TsigalouC. BezirtzoglouE. Interactions between medical plant-derived bioactive compounds: focus on antimicrobial combination effects.Antibiotics2022118101410.3390/antibiotics1108101436009883
    [Google Scholar]
  37. RatovitskiE. Anticancer natural compounds: Molecular mechanisms and functions. Part I).Curr. Genomics2016181210.2174/13892029180116121520414328503086
    [Google Scholar]
  38. ShakeriA. WardN. PanahiY. SahebkarA. Anti-angiogenic activity of curcumin in cancer therapy: A narrative review.Curr. Vasc. Pharmacol.201917326226910.2174/157016111666618020911301429424316
    [Google Scholar]
  39. JanR. ChaudhryG.S. Understanding apoptosis and apoptotic pathways targeted cancer therapeutics.Adv. Pharm. Bull.20199220521810.15171/apb.2019.02431380246
    [Google Scholar]
  40. RileyR.S. JuneC.H. LangerR. MitchellM.J. Delivery technologies for cancer immunotherapy.Nat. Rev. Drug Discov.201918317519610.1038/s41573‑018‑0006‑z30622344
    [Google Scholar]
  41. LawJ.W.F. LawL.N.S. LetchumananV. TanL.T.H. WongS.H. ChanK.G. Ab MutalibN.S. LeeL.H. Anticancer drug discovery from microbial sources: The unique mangrove Streptomycetes.Molecules20202522536510.3390/molecules2522536533212836
    [Google Scholar]
  42. SinghS. KachhawahaK. SinghS.K. Comprehensive approaches to preclinical evaluation of monoclonal antibodies and their next-generation derivatives.Biochem. Pharmacol.202422511630310.1016/j.bcp.2024.11630338797272
    [Google Scholar]
  43. PucciC. MartinelliC. CiofaniG. Innovative approaches for cancer treatment: Current perspectives and new challenges.Ecancermedicalscience20191396110.3332/ecancer.2019.96131537986
    [Google Scholar]
  44. IoeleG. ChieffalloM. OcchiuzziM.A. De LucaM. GarofaloA. RagnoG. GrandeF. Anticancer drugs: Recent strategies to improve stability profile, pharmacokinetic and pharmacodynamic properties.Molecules20222717543610.3390/molecules2717543636080203
    [Google Scholar]
  45. Abdoul-LatifF.M. AinaneA. Houmed AboubakerI. MohamedJ. AinaneT. Exploring the potent anticancer activity of essential oils and their bioactive compounds: Mechanisms and prospects for future cancer therapy.Pharmaceutics20231681086
    [Google Scholar]
  46. WuJ. LiY. HeQ. YangX. Exploration of the use of natural compounds in combination with chemotherapy drugs for tumor treatment.Molecules2023283102210.3390/molecules2803102236770689
    [Google Scholar]
  47. CzabotarP.E. Garcia-SaezA.J. Mechanisms of BCL-2 family proteins in mitochondrial apoptosis.Nat. Rev. Mol. Cell Biol.2023241073274810.1038/s41580‑023‑00629‑437438560
    [Google Scholar]
  48. Barillé-NionS. LohardS. JuinP.P. Targeting of BCL-2 family members during anticancer treatment: A necessary compromise between individual cell and ecosystemic responses?Biomolecules2020108110910.3390/biom1008110932722518
    [Google Scholar]
  49. CaoY. WangX. JinT. TianY. DaiC. WidarmaC. SongR. XuF. Immune checkpoint molecules in natural killer cells as potential targets for cancer immunotherapy.Signal Transduct. Target. Ther.20205125010.1038/s41392‑020‑00348‑833122640
    [Google Scholar]
  50. MushtaqS. AbbasiB.H. UzairB. AbbasiR. Natural products as reservoirs of novel therapeutic agents.EXCLI J.20181742045129805348
    [Google Scholar]
  51. SatiP. SharmaE. DhyaniP. AttriD.C. RanaR. KiyekbayevaL. BüsselbergD. SamuelS.M. Sharifi-RadJ. Paclitaxel and its semi-synthetic derivatives: Comprehensive insights into chemical structure, mechanisms of action, and anticancer properties.Eur. J. Med. Res.20242919010.1186/s40001‑024‑01657‑238291541
    [Google Scholar]
  52. DhyaniP. QuispeC. SharmaE. BahukhandiA. SatiP. AttriD.C. SzopaA. Sharifi-RadJ. DoceaA.O. MardareI. CalinaD. ChoW.C. Anticancer potential of alkaloids: A key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine.Cancer Cell Int.202222120610.1186/s12935‑022‑02624‑935655306
    [Google Scholar]
  53. WangT.H. WangH.S. SoongY.K. Paclitaxel-induced cell death.Cancer200088112619262810.1002/1097‑0142(20000601)88:11<2619::AID‑CNCR26>3.0.CO;2‑J10861441
    [Google Scholar]
  54. GiordanoA. TommonaroG. Curcumin and Cancer.Nutrients20191110237610.3390/nu1110237631590362
    [Google Scholar]
  55. FuloriaS. MehtaJ. ChandelA. SekarM. RaniN.N.I.M. BegumM.Y. SubramaniyanV. ChidambaramK. ThangaveluL. NordinR. WuY.S. SathasivamK.V. LumP.T. MeenakshiD.U. KumarasamyV. AzadA.K. FuloriaN.K. A comprehensive review on the therapeutic potential of Curcuma longa Linn. in relation to its major active constituent curcumin.Front. Pharmacol.20221382080610.3389/fphar.2022.82080635401176
    [Google Scholar]
  56. RadhaR. PaulV. AnjumS. BouakazA. PittW.G. HusseiniG.A. Enhancing Curcumin’s therapeutic potential in cancer treatment through ultrasound mediated liposomal delivery.Sci. Rep.20241411049910.1038/s41598‑024‑61278‑x38714740
    [Google Scholar]
  57. MasyitaA. Mustika SariR. Dwi AstutiA. YasirB. Rahma RumataN. EmranT.B. NainuF. Simal-GandaraJ. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives.Food Chem. X20221310021710.1016/j.fochx.2022.10021735498985
    [Google Scholar]
  58. JamesJ.T. DuberyI.A. Pentacyclic triterpenoids from the medicinal herb, Centella asiatica (L.) Urban.Molecules200914103922394110.3390/molecules1410392219924039
    [Google Scholar]
  59. ZhouY. ZhengJ. LiY. XuD.P. LiS. ChenY.M. LiH.B. Natural polyphenols for prevention and treatment of cancer.Nutrients20168851510.3390/nu808051527556486
    [Google Scholar]
  60. AlmatroodiS.A. AlmatroudiA. KhanA.A. AlhumaydhiF.A. AlsahliM.A. RahmaniA.H. Potential therapeutic targets of epigallocatechin gallate (EGCG), the most abundant catechin in green tea, and its role in the therapy of various types of cancer.Molecules20202514314610.3390/molecules2514314632660101
    [Google Scholar]
  61. PrintzC. A “natural” in the hunt for anticancer compounds.Cancer2010116235341534210.1002/cncr.2577921171231
    [Google Scholar]
  62. ŠkubníkJ. PavlíčkováV. RumlT. RimpelováS. Current perspectives on taxanes: Focus on their bioactivity, delivery and combination therapy.Plants202110356910.3390/plants1003056933802861
    [Google Scholar]
  63. LiuJ.C.T. De La PeñaR. TocolC. SattelyE.S. Reconstitution of early paclitaxel biosynthetic network.Nat. Commun.2024151141910.1038/s41467‑024‑45574‑838360800
    [Google Scholar]
  64. MoudiM. GoR. YienC.Y. NazreM. Vinca alkaloids.Int. J. Prev. Med.20134111231123524404355
    [Google Scholar]
  65. BanyalA. TiwariS. SharmaA. ChananaI. PatelS.K.S. KulshresthaS. KumarP. Vinca alkaloids as a potential cancer therapeutics: Recent update and future challenges3 Biotech2023136211
    [Google Scholar]
  66. KhaiwaN. MaaroufN.R. DarwishM.H. AlhamadD.W.M. SebastianA. HamadM. OmarH.A. OriveG. Al-TelT.H. Camptothecin’s journey from discovery to WHO Essential Medicine: Fifty years of promise.Eur. J. Med. Chem.202122311363910.1016/j.ejmech.2021.11363934175539
    [Google Scholar]
  67. DanceyJ. EisenhauerE.A. Current perspectives on camptothecins in cancer treatment.Br. J. Cancer199674332733810.1038/bjc.1996.3628695345
    [Google Scholar]
  68. RefaatS. FikryE. TawfeekN. El-SayedA.S.A. El-DomiatyM.M. El-ShafaeA.M. Production and bioprocessing of epothilone B from Aspergillus niger, an endophyte of Latania loddegesii, with a conceivable biosynthetic stability: Anticancer, anti-wound healing activities and cell cycle analysis.Microb. Cell Fact.202423122910.1186/s12934‑024‑02495‑x39152399
    [Google Scholar]
  69. Duta-BratuC.G. NitulescuG.M. MihaiD.P. OlaruO.T. Resveratrol and other natural oligomeric stilbenoid compounds and their therapeutic applications.Plants20231216293510.3390/plants1216293537631147
    [Google Scholar]
  70. NunesY.C. MendesN.M. Pereira de LimaE. ChehadiA.C. LamasC.B. HaberJ.F.S. dos Santos BuenoM. AraújoA.C. CatharinV.C.S. DetregiachiC.R.P. LaurindoL.F. TanakaM. BarbalhoS.M. MarinM.J.S. Curcumin: A golden approach to healthy aging: A systematic review of the evidence.Nutrients20241616272110.3390/nu1616272139203857
    [Google Scholar]
  71. EmadiS.A. Ghasemzadeh RahbardarM. MehriS. HosseinzadehH. A review of therapeutic potentials of milk thistle (Silybum marianum L.) and its main constituent, silymarin, on cancer, and their related patents.Iran. J. Basic Med. Sci.202225101166117636311193
    [Google Scholar]
  72. MichalaA.S. PritsaA. Quercetin: A molecule of great biochemical and clinical value and its beneficial effect on diabetes and cancer.Diseases20221033710.3390/diseases1003003735892731
    [Google Scholar]
  73. DarbandS.G. KavianiM. YousefiB. SadighparvarS. PakdelF.G. AttariJ.A. MohebbiI. NaderiS. MajidiniaM. Quercetin: A functional dietary flavonoid with potential chemo-preventive properties in colorectal cancer.J. Cell. Physiol.201823396544656010.1002/jcp.2659529663361
    [Google Scholar]
  74. MusialC. Kuban-JankowskaA. Gorska-PonikowskaM. Beneficial properties of green tea catechins.Int. J. Mol. Sci.2020215174410.3390/ijms2105174432143309
    [Google Scholar]
  75. FarhanM. Green tea catechins: Nature’s way of preventing and treating cancer.Int. J. Mol. Sci.202223181071310.3390/ijms23181071336142616
    [Google Scholar]
  76. HuangJ.D. WangC.F. LianC.L. HuangM.Y. ZhangC. LiuJ.Q. Isolation and identification of five new diterpenoids from Jatropha curcas.Phytochem. Lett.202040374110.1016/j.phytol.2020.09.006
    [Google Scholar]
  77. JiangW. LiX. DongS. ZhouW. Betulinic acid in the treatment of tumour diseases: Application and research progress.Biomed. Pharmacother.202114211199010.1016/j.biopha.2021.11199034388528
    [Google Scholar]
  78. Oliveira-CostaJ.F. MeiraC.S. NevesM.V.G. Dos ReisB.P.Z.C. SoaresM.B.P. Anti-inflammatory activities of betulinic acid: A review.Front. Pharmacol.20221388385710.3389/fphar.2022.88385735677426
    [Google Scholar]
  79. ShilpashreeH.B. SudharshanS.J. ShasanyA.K. NagegowdaD.A. Molecular characterization of three CYP450 genes reveals their role in withanolides formation and defense in Withania somnifera, the Indian Ginseng.Sci. Rep.2022121160210.1038/s41598‑022‑05634‑935102209
    [Google Scholar]
  80. DharN. RazdanS. RanaS. BhatW.W. VishwakarmaR. LattooS.K. A decade of molecular understanding of withanolide biosynthesis and in vitro studies in Withania somnifera (L.) Dunal: Prospects and perspectives for pathway engineering.Front. Plant Sci.20156103110.3389/fpls.2015.0103126640469
    [Google Scholar]
  81. ShahZ. GoharU.F. JamshedI. MushtaqA. MukhtarH. Zia-UI-HaqM. TomaS.I. ManeaR. MogaM. PopoviciB. Podophyllotoxin: History, recent advances and future prospects.Biomolecules202111460310.3390/biom1104060333921719
    [Google Scholar]
  82. Miranda-VeraC. HernándezÁ.P. García-GarcíaP. DíezD. GarcíaP.A. CastroM.Á. Podophyllotoxin: Recent advances in the development of hybridization strategies to enhance its antitumoral profile.Pharmaceutics20231512272810.3390/pharmaceutics1512272838140069
    [Google Scholar]
  83. UroševićM. NikolićL. GajićI. NikolićV. DinićA. MiljkovićV. Curcumin: Biological activities and modern pharmaceutical forms.Antibiotics202211213510.3390/antibiotics1102013535203738
    [Google Scholar]
  84. TomehM.A. HadianamreiR. ZhaoX. A review of curcumin and its derivatives as anticancer agents.Int. J. Mol. Sci.2019205103310.3390/ijms2005103330818786
    [Google Scholar]
  85. FuY.S. ChenT.H. WengL. HuangL. LaiD. WengC.F. Pharmacological properties and underlying mechanisms of curcumin and prospects in medicinal potential.Biomed. Pharmacother.202114111188810.1016/j.biopha.2021.11188834237598
    [Google Scholar]
  86. UllahI. KhanJ.A. ShahidM. KhanA. AdhikariA. HannanP.A. JavedI. ShakeelF. FarooqU. Pharmacological screening of Monotheca buxifolia (Falc.) A. DC. for antinociceptive, anti-inflammatory and antipyretic activities.BMC Complement. Altern. Med.201616127310.1186/s12906‑016‑1257‑z27495801
    [Google Scholar]
  87. RaposoF. BorjaR. CachoJ.A. MummeJ. MohedanoÁ.F. BattimelliA. BolzonellaD. SchuitA.D. Noguerol-AriasJ. FrigonJ.C. PeñuelaG.A. MuehlenbergJ. SambusitiC. Harmonization of the quantitative determination of volatile fatty acids profile in aqueous matrix samples by direct injection using gas chromatography and high-performance liquid chromatography techniques: Multi-laboratory validation study.J. Chromatogr. A201514139410610.1016/j.chroma.2015.08.00826306912
    [Google Scholar]
  88. CanbolatM. ÇalışırÜ. ÇiçekB. Microwave-assisted synthesis of aromatic thiadiazol crown ethers and determination of complexation properties with metal ions by application of job′s plot method to conductometry.ChemistrySelect2022729e20220094410.1002/slct.202200944
    [Google Scholar]
  89. JeyaleelaG.D. VimalaJ.R. SenthilR. AnandagopuP. ManjulaK. Isolation, characterization, molecular docking and in vitro studies of inhibitory effect on the growth of struvite crystal derived from Melia dubia leaf extract.Asian J. Chem.201931112628263410.14233/ajchem.2019.22217
    [Google Scholar]
  90. OladimejiA.V. ValanM.F. HPLC techniques for phytochemistry.IJCS20208625902596
    [Google Scholar]
  91. PorrasG. ChassagneF. LylesJ.T. MarquezL. DettweilerM. SalamA.M. SamarakoonT. ShabihS. FarrokhiD.R. QuaveC.L. Ethnobotany and the role of plant natural products in antibiotic drug discovery.Chem. Rev.202112163495356010.1021/acs.chemrev.0c0092233164487
    [Google Scholar]
  92. AshrafizadehM. ZarrabiA. HashemiF. ZabolianA. SalekiH. BagherianM. AzamiN. BejandiA.K. HushmandiK. AngH.L. MakvandiP. KhanH. KumarA.P. Polychemotherapy with curcumin and doxorubicin via biological nanoplatforms: Enhancing antitumor activity.Pharmaceutics20201211108410.3390/pharmaceutics1211108433187385
    [Google Scholar]
  93. MajnooniM.B. FakhriS. ShokoohiniaY. KiyaniN. StageK. MohammadiP. GravandiM.M. FarzaeiM.H. EcheverríaJ. Phytochemicals: Potential therapeutic interventions against coronavirus-associated lung injury.Front. Pharmacol.20201158846710.3389/fphar.2020.58846733658931
    [Google Scholar]
  94. ZhangY.J. GanR.Y. LiS. ZhouY. LiA.N. XuD.P. LiH.B. Antioxidant phytochemicals for the prevention and treatment of chronic diseases.Molecules20152012211382115610.3390/molecules20121975326633317
    [Google Scholar]
  95. WangH. Oo KhorT. ShuL. SuZ.Y. FuentesF. LeeJ.H. Tony KongA-N. Plants vs. cancer: A review on natural phytochemicals in preventing and treating cancers and their druggability.Anticancer. Agents Med. Chem.201212101281130510.2174/18715201280383302622583408
    [Google Scholar]
  96. BurnsJ. BuckA.C. D’ SouzaS. DubeA. BardienS. Nanophytomedicines as therapeutic agents for Parkinson’s disease.ACS Omega2023845420454206110.1021/acsomega.3c0486238024675
    [Google Scholar]
  97. SinghP.K. SinghJ. MedhiT. KumarA. Phytochemical screening, quantification, FT-IR analysis, and in silico characterization of potential bio-active compounds identified in HR-LC/MS analysis of the polyherbal formulation from Northeast India.ACS Omega2022737330673307810.1021/acsomega.2c0311736157760
    [Google Scholar]
  98. QuintieriL. ManiS. LentiniG. MaisettaG. Editorial: Advances in the discovery of natural molecules and their analogues against microbial infection-related biofilms.Front. Microbiol.202213109220910.3389/fmicb.2022.109220936504771
    [Google Scholar]
  99. BiswasS. MitaM.A. AfroseS. HasanM.R. IslamM.T. RahmanM.A. AraM.J. ChowdhuryM.B.A. MeemH.N. MamunuzzamanM. AhammadT. AshikI.U. IbrahimM.M. ImamM.T. HossainM.A. SalehM.A. Integrated computational approaches for inhibiting sex hormone-binding globulin in male infertility by screening potent phytochemicals.Life202313247610.3390/life1302047636836833
    [Google Scholar]
  100. ChenR.P. ChavdaV.P. PatelA.B. ChenZ.S. Phytochemical delivery through transferosome (phytosome): An advanced transdermal drug delivery for complementary medicines.Front. Pharmacol.20221385086210.3389/fphar.2022.85086235281927
    [Google Scholar]
  101. BelobrajdicD.P. BirdA.R. The potential role of phytochemicals in wholegrain cereals for the prevention of type-2 diabetes.Nutr. J.20131216210.1186/1475‑2891‑12‑6223679924
    [Google Scholar]
  102. ChenC. YuL.T. ChengB.R. XuJ.L. CaiY. JinJ.L. FengR.L. XieL. QuX.Y. LiD. LiuJ. LiY. CuiX.Y. LuJ.J. ZhouK. LinQ. WanJ. Promising therapeutic candidate for myocardial ischemia/reperfusion injury: What are the possible mechanisms and roles of phytochemicals?Front. Cardiovasc. Med.2022879259210.3389/fcvm.2021.79259235252368
    [Google Scholar]
  103. ImamS.S. AlshehriS. GhoneimM.M. ZafarA. AlsaidanO.A. AlruwailiN.K. GilaniS.J. RizwanullahM. Recent advancement in chitosan-based nanoparticles for improved oral bioavailability and bioactivity of phytochemicals: Challenges and perspectives.Polymers20211322403610.3390/polym1322403634833334
    [Google Scholar]
  104. LimX.Y. ChanJ.S.W. JapriN. LeeJ.C. TanT.Y.C. Carica papaya L. Leaf: A systematic scoping review on biological safety and herb-drug interactions.Evid. Based Complement. Alternat. Med.2021202112110.1155/2021/551122134040647
    [Google Scholar]
  105. HayesA.W. LiR. HoengJ. IskandarA. PeistchM.C. DoursonM.L. New approaches to risk assessment of chemical mixtures.Toxicol. Res. Appl.20193239784731882076810.1177/2397847318820768
    [Google Scholar]
  106. Al-NourM.Y. IbrahimM.M. ElsamanT. Ellagic acid, Kaempferol, and Quercetin from Acacia nilotica: Promising combined drug with multiple mechanisms of action.Curr. Pharmacol. Rep.20195425528010.1007/s40495‑019‑00181‑w32226726
    [Google Scholar]
  107. SinghV.K. AroraD. AnsariM.I. SharmaP.K. Phytochemicals based chemopreventive and chemotherapeutic strategies and modern technologies to overcome limitations for better clinical applications.Phytother. Res.201933123064308910.1002/ptr.650831515899
    [Google Scholar]
  108. ThilakarathnaS. RupasingheH. Flavonoid bioavailability and attempts for bioavailability enhancement.Nutrients2013593367338710.3390/nu509336723989753
    [Google Scholar]
  109. AldrichL.N. BurdetteJ.E. Carcache de BlancoE. CossC.C. EustaquioA.S. FuchsJ.R. KinghornA.D. MacFarlaneA. MizeB.K. OberliesN.H. OrjalaJ. PearceC.J. PhelpsM.A. RakotondraibeL.H. RenY. SoejartoD.D. StockwellB.R. YalowichJ.C. ZhangX. Discovery of anticancer agents of diverse natural origin.J. Nat. Prod.202285370271910.1021/acs.jnatprod.2c0003635213158
    [Google Scholar]
  110. Ruiz-TorresV. EncinarJ. Herranz-LópezM. Pérez-SánchezA. GalianoV. Barrajón-CatalánE. MicolV. An updated review on marine anticancer compounds: The use of virtual screening for the discovery of small- molecule cancer drugs.Molecules2017227103710.3390/molecules2207103728644406
    [Google Scholar]
  111. De SouzaM.V.N. (+)-discodermolide: A marine natural product against cancer.Sci. World J.2004441543610.1100/tsw.2004.9615243683
    [Google Scholar]
  112. NigamM. SuleriaH.A.R. FarzaeiM.H. MishraA.P. Marine anticancer drugs and their relevant targets: A treasure from the ocean.Daru201927149151510.1007/s40199‑019‑00273‑431165439
    [Google Scholar]
  113. RapôsoC. Scorpion and spider venoms in cancer treatment: State of the art, challenges, and perspectives.J. Clin. Transl. Res.20173223324910.18053/jctres.03.201702.00230873475
    [Google Scholar]
  114. AliS. AlamM. AbbasiA. UndheimE. FryB. KalbacherH. VoelterW. Structure-activity relationship of chlorotoxin-like peptides.Toxins2016823610.3390/toxins802003626848686
    [Google Scholar]
  115. WangH. HeH. ChenX. ZhouM. WeiM. XiX. MaC. DuQ. ChenT. ShawC. WangL. A novel antimicrobial peptide (Kassinatuerin-3) isolated from the skin secretion of the African frog, Kassina senegalensis. Biology20209714810.3390/biology907014832630734
    [Google Scholar]
  116. LiL. HuangJ. LinY. Snake venoms in cancer therapy: Past, present and future.Toxins201810934610.3390/toxins1009034630158426
    [Google Scholar]
  117. ChengW. HeL. RenW. YueT. XieX. SunJ. ChenX. WuZ. LiF. PiaoJ.G. Bacteria-nanodrug cancer treatment system: The combination of dual swords and the confrontation of needle tips.Nano TransMed202322-310000810.1016/j.ntm.2023.100008
    [Google Scholar]
  118. ElissawyA.M. Soleiman DehkordiE. MehdinezhadN. AshourM.L. Mohammadi PourP. Cytotoxic alkaloids derived from marine sponges: A comprehensive review.Biomolecules202111225810.3390/biom1102025833578987
    [Google Scholar]
  119. DardevetL. RaniD. AzizT. BazinI. SabatierJ.M. FadlM. BrambillaE. De WaardM. Chlorotoxin: A helpful natural scorpion peptide to diagnose glioma and fight tumor invasion.Toxins2015741079110110.3390/toxins704107925826056
    [Google Scholar]
  120. ChavdaV.P. ErtasY.N. WalhekarV. ModhD. DoshiA. ShahN. AnandK. ChhabriaM. Advanced computational methodologies used in the discovery of new natural anticancer compounds.Front. Pharmacol.20211270261110.3389/fphar.2021.70261134483905
    [Google Scholar]
  121. Ruiz-TorresV. EncinarJ.A. Herranz-LópezM. Pérez-SánchezA. GalianoV. Barrajón-CatalánE. MicolV. In.Molecules2017Vol. 22
    [Google Scholar]
  122. GomesN.G.M. DasariR. ChandraS. KissR. KornienkoA. Marine invertebrate metabolites with anticancer activities: Solutions to the "Supply problem"Mar. Drugs201614598
    [Google Scholar]
  123. PalD. NayakA.K. Bioactive natural products for pharmaceutical applications.Springer202110.1007/978‑3‑030‑54027‑2
    [Google Scholar]
  124. JinJ-O. YadavD. MadhwaniK. PuranikN. ChavdaV. SongM. Seaweeds in the oncology arena: Anti-cancer potential of fucoidan as a drug—A review.Molecules202227186032
    [Google Scholar]
  125. SudewiA.A.R. SusilawathiN.M. MahardikaB.K. MahendraA.N. PharmawatiM. PhuongM.A. MahardikaG.N. Selecting potential neuronal drug leads from conotoxins of various venomous marine cone snails in Bali, Indonesia.ACS Omega2019421194831949010.1021/acsomega.9b0312231763573
    [Google Scholar]
  126. BarrecaM. SpanòV. MontalbanoA. CuetoM. Díaz MarreroA.R. DenizI. ErdoğanA. Lukić BilelaL. MoulinC. Taffin-de-GivenchyE. SprianoF. PeraleG. MehiriM. RotterA. P ThomasO. BarrajaP. GaudêncioS.P. BertoniF. Marine anticancer agents: An overview with a particular focus on their chemical classes.Mar. Drugs2020181261910.3390/md1812061933291602
    [Google Scholar]
  127. RussoP. Del BufaloA. FiniM. Deep sea as a source of novel-anticancer drugs: Update on discovery and preclinical/clinical evaluation in a systems medicine perspective.EXCLI J.20151422823626600744
    [Google Scholar]
  128. NasimN. SandeepI.S. MohantyS. Plant-derived natural products for drug discovery: Current approaches and prospects.Nucleus202265339941110.1007/s13237‑022‑00405‑336276225
    [Google Scholar]
  129. ChoudhariA.S. MandaveP.C. DeshpandeM. RanjekarP. PrakashO. Phytochemicals in cancer treatment: From preclinical studies to clinical practice.Front. Pharmacol.202010161410.3389/fphar.2019.0161432116665
    [Google Scholar]
  130. Gali-MuhtasibH. HmadiR. KarehM. TohmeR. DarwicheN. Cell death mechanisms of plant-derived anticancer drugs: Beyond apoptosis.Apoptosis201520121531156210.1007/s10495‑015‑1169‑226362468
    [Google Scholar]
  131. KimC. KimB. Anti-cancer natural products and their bioactive compounds inducing ER stress-mediated apoptosis: A review.Nutrients2018108102110.3390/nu1008102130081573
    [Google Scholar]
  132. JainA. MaduC.O. LuY. Phytochemicals in chemoprevention: A cost-effective complementary approach.J. Cancer202112123686370010.7150/jca.5777633995644
    [Google Scholar]
  133. DasS.R. Phytochemicals modify the action of cancer cells mitochondrial drug-resistance mechanism.Sci. Pharm.202323184203
    [Google Scholar]
  134. XiaY. ChenR. LuG. LiC. LianS. KangT.W. JungY.D. Natural phytochemicals in bladder cancer prevention and therapy.Front. Oncol.20211165203310.3389/fonc.2021.65203333996570
    [Google Scholar]
  135. MaoQ.Q. XuX.Y. ShangA. GanR.Y. WuD.T. AtanasovA.G. LiH.B. Phytochemicals for the prevention and treatment of gastric cancer: Effects and mechanisms.Int. J. Mol. Sci.202021257010.3390/ijms2102057031963129
    [Google Scholar]
  136. ErikelE. YuzbasiogluD. UnalF. Genotoxic and antigenotoxic potential of amygdalin on isolated human lymphocytes by the comet assay.J. Food Biochem.20204410e1343610.1111/jfbc.1343632794256
    [Google Scholar]
  137. Delgado-GonzalezP. Garza-TreviñoE.N. de la Garza KalifeD.A. Quiroz ReyesA. Hernández-TobíasE.A. Bioactive compounds of dietary origin and their influence on colorectal cancer as chemoprevention.Life20231310197710.3390/life1310197737895359
    [Google Scholar]
  138. PereiraR.B. EvdokimovN.M. LefrancF. ValentãoP. KornienkoA. PereiraD.M. AndradeP.B. GomesN.G.M. Marine-derived anticancer agents: Clinical benefits, innovative mechanisms, and new targets.Mar. Drugs201917632910.3390/md1706032931159480
    [Google Scholar]
  139. AttoubS. ArafatK. KhalafT. SulaimanS. IratniR. Frondoside a enhances the anti-cancer effects of oxaliplatin and 5-fluorouracil on colon cancer cells.Nutrients201810556010.3390/nu1005056029724012
    [Google Scholar]
  140. RuR. ChenG. LiangX. CaoX. YuanL. MengM. Sea cucumber derived triterpenoid glycoside frondoside A: A potential anti-bladder cancer drug.Nutrients202315237810.3390/nu1502037836678249
    [Google Scholar]
  141. JingQ. HuX. MaY. MuJ. LiuW. XuF. LiZ. BaiJ. HuaH. LiD. Marine-derived natural lead compound disulfide-linked dimer psammaplin A: Biological activity and structural modification.Mar. Drugs201917738410.3390/md17070384
    [Google Scholar]
  142. AhnM.Y. JungJ.H. NaY.J. KimH.S. A natural histone deacetylase inhibitor, Psammaplin A, induces cell cycle arrest and apoptosis in human endometrial cancer cells.Gynecol. Oncol.20081081273310.1016/j.ygyno.2007.08.09817920664
    [Google Scholar]
  143. HongS. ShinY. JungM. HaM.W. ParkY. LeeY.J. ShinJ. OhK.B. LeeS.K. ParkH. Efficient synthesis and biological activity of Psammaplin A and its analogues as antitumor agents.Eur. J. Med. Chem.20159621823010.1016/j.ejmech.2015.04.00125884112
    [Google Scholar]
  144. KimN. MaJ. KimW. KimJ. BelenkyP. LeeI. Genome-resolved metagenomics: A game changer for microbiome medicine.Exp. Mol. Med.20245671501151210.1038/s12276‑024‑01262‑738945961
    [Google Scholar]
  145. KobrasC.M. FentonA.K. SheppardS.K. Next-generation microbiology: From comparative genomics to gene function.Genome Biol.202122112310.1186/s13059‑021‑02344‑933926534
    [Google Scholar]
  146. RadhiM. AshrafS. LawrenceS. TranholmA.A. WellhamP.A.D. HafeezA. KhamisA.S. ThomasR. McWilliamsD. de MoorC.H. A systematic review of the biological effects of cordycepin.Molecules20212619588610.3390/molecules2619588634641429
    [Google Scholar]
  147. GiuriniE.F. GodlaA. GuptaK.H. Redefining bioactive small molecules from microbial metabolites as revolutionary anticancer agents.Cancer Gene Ther.202431218720610.1038/s41417‑023‑00715‑x38200347
    [Google Scholar]
  148. ZhangY. ZhangW. ZhaoY. PengR. ZhangZ. XuZ. Simal-GandaraJ. YangH. DengJ. Bioactive sulforaphane from cruciferous vegetables: Advances in biosynthesis, metabolism, bioavailability, delivery, health benefits, and applications.Crit. Rev. Food Sci. Nutr.202412110.1080/10408398.2024.235493738841734
    [Google Scholar]
  149. NajafiM. FarhoodB. MortezaeeK. Cancer stem cells (CSCs) in cancer progression and therapy.J. Cell. Physiol.201923468381839510.1002/jcp.2774030417375
    [Google Scholar]
  150. ZhaoS. GaoQ. RongC. WangS. ZhaoZ. LiuY. XuJ. Immunomodulatory effects of edible and medicinal mushrooms and their bioactive immunoregulatory products.J. Fungi20206426910.3390/jof604026933171663
    [Google Scholar]
  151. XingZ. SuA. MiL. ZhangY. HeT. QiuY. WeiT. LiZ. ZhuJ. WuW. WithaferinA. Withaferin A: A dietary supplement with promising potential as an anti-tumor therapeutic for cancer treatment - Pharmacology and mechanisms.Drug Des. Devel. Ther.2023172909292910.2147/DDDT.S42251237753228
    [Google Scholar]
  152. WongY.H. WongS.R. LeeS.H. The therapeutic anticancer potential of marine-derived bioactive peptides: A highlight on pardaxin.Int. J. Pept. Res. Ther.20232959010.1007/s10989‑023‑10562‑x
    [Google Scholar]
  153. BellK.L.C. QuinzinM.C. AmonD. PoultonS. HopeA. SartiO. CañeteT.E. SmithA.M. BaldwinH.I. LiraD.M. Cambronero-SolanoS. ChungT.R.A. BradyB. Exposing inequities in deep-sea exploration and research: Results of the 2022 Global Deep-Sea Capacity Assessment.Front. Mar. Sci.202310121722710.3389/fmars.2023.1217227
    [Google Scholar]
  154. Sánchez-SuárezJ. Coy-BarreraE. VillamilL. DíazL. Streptomyces-derived metabolites with potential photoprotective properties—A systematic literature review and meta-analysis on the reported chemodiversity.Molecules20202514322110.3390/molecules2514322132679651
    [Google Scholar]
  155. LeiteV.M.B. GarridoL.M. TangerinaM.M.P. Costa-LotufoL.V. FerreiraM.J.P. PadillaG. Genome mining of Streptomyces sp. BRB081 reveals the production of the antitumor pyrrolobenzodiazepine sibiromycin3 Biotech20221210249
    [Google Scholar]
  156. BladtT. FrisvadJ. KnudsenP. LarsenT. Anticancer and antifungal compounds from Aspergillus, Penicillium and other filamentous fungi.Molecules2013189113381137610.3390/molecules18091133824064454
    [Google Scholar]
  157. El-SayedA.S.A. El-SayedM.T. RadyA.M. ZeinN. EnanG. ShindiaA. El-HefnawyS. SitohyM. SitohyB. Exploiting the biosynthetic potency of taxol from fungal endophytes of conifers plants; genome mining and metabolic manipulation.Molecules20202513300010.3390/molecules2513300032630044
    [Google Scholar]
  158. AminA. Gali-MuhtasibH. OckerM. Schneider-StockR. Overview of major classes of plant-derived anticancer drugs.Int. J. Biomed. Sci.20095111110.59566/IJBS.2009.500123675107
    [Google Scholar]
  159. AnwarS. MalikJ.A. AhmedS. KameshwarV.A. AlanaziJ. AlamriA. AhemadN. Can natural products targeting emt serve as the future anticancer therapeutics?Molecules20222722766810.3390/molecules2722766836431766
    [Google Scholar]
  160. ArtusaV. CalabroneL. MortaraL. PeriF. BrunoA. Microbiota-derived natural products targeting cancer stem cells: inside the gut pharma factory.Int. J. Mol. Sci.2023245499710.3390/ijms2405499736902427
    [Google Scholar]
  161. VilleminC. SixA. NevilleB.A. LawleyT.D. RobinsonM.J. BakdashG. The heightened importance of the microbiome in cancer immunotherapy.Trends Immunol.2023441445910.1016/j.it.2022.11.00236464584
    [Google Scholar]
  162. GaudêncioS.P. BayramE. Lukić BilelaL. CuetoM. Díaz-MarreroA.R. HaznedarogluB.Z. JimenezC. MandalakisM. PereiraF. ReyesF. TasdemirD. Advanced methods for natural products discovery: Bioactivity screening, dereplication, metabolomics profiling, genomic sequencing, databases and informatic tools, and structure elucidation.Marine Drugs2023215308
    [Google Scholar]
  163. BianconiI. AschbacherR. PaganiE. Current uses and future perspectives of genomic technologies in clinical microbiology.Antibiotics202312111580
    [Google Scholar]
  164. NamN.N. DoH.D. Loan TrinhK.T. LeeN.Y. Metagenomics: An effective approach for exploring microbial diversity and functions.Foods202312112140
    [Google Scholar]
  165. AlvesL.F. WestmannC.A. LovateG.L. de SiqueiraG.M.V. BorelliT.C. GuazzaroniM.E. Metagenomic approaches for understanding new concepts in microbial science.Int. J. Genomics2018201811510.1155/2018/231298730211213
    [Google Scholar]
  166. CourdavaultV. O’ConnorS.E. OudinA. BesseauS. PaponN. Towards the microbial production of plant- derived anticancer drugs.Trends Cancer20206644444810.1016/j.trecan.2020.02.00432459998
    [Google Scholar]
  167. KapoorR. SainiA. SharmaD. Indispensable role of microbes in anticancer drugs and discovery trends.Appl. Microbiol. Biotechnol.202210613-164885490610.1007/s00253‑022‑12046‑235819512
    [Google Scholar]
  168. RoszczenkoP. HolotaS. SzewczykO.K. DudchakR. BielawskiK. BielawskaA. LesykR. 4-Thiazolidinone-bearing hybrid molecules in anticancer drug design.Int. J. Mol. Sci.202223211313510.3390/ijms23211313536361924
    [Google Scholar]
  169. YipH.Y.K. PapaA. Signaling pathways in cancer: Therapeutic targets, combinatorial treatments, and new developments.Cells202110365910.3390/cells1003065933809714
    [Google Scholar]
  170. MontoyaS. SoongD. NguyenN. AfferM. MunamartyS.P. TaylorJ. Targeted therapies in cancer: To be or not to be, selective.Biomedicines2021911159110.3390/biomedicines911159134829820
    [Google Scholar]
  171. ShiZ.D. PangK. WuZ.X. DongY. HaoL. QinJ.X. WangW. ChenZ.S. HanC.H. Tumor cell plasticity in targeted therapy-induced resistance: Mechanisms and new strategies.Signal Transduct. Target. Ther.20238111310.1038/s41392‑023‑01383‑x36906600
    [Google Scholar]
  172. ShiY.M. WangJ. YanH. The current scenario of furoxan hybrids with anticancer potential.J. Heterocycl. Chem.202360101651166510.1002/jhet.4675
    [Google Scholar]
  173. MaZ. WoonC.Y.N. LiuC.G. ChengJ.T. YouM. SethiG. WongA.L.A. HoP.C.L. ZhangD. OngP. WangL. GohB.C. Repurposing artemisinin and its derivatives as anticancer drugs: A chance or challenge?Front. Pharmacol.20211282885610.3389/fphar.2021.82885635035355
    [Google Scholar]
  174. SunL. ZhouW. ZhangH. GuoQ. YangW. LiB. SunZ. GaoS. CuiR. Modulation of multiple signaling pathways of the plant-derived natural products in cancer.Front. Oncol.20199115310.3389/fonc.2019.0115331781485
    [Google Scholar]
  175. SamantaA. SarkarA. Fighting new wars with old weapons: Repurposing of anti-malarial drug for anticancer therapy.Arch Breast Cancer202294439449
    [Google Scholar]
  176. ImranM. SaleemS. ChaudhuriA. AliJ. BabootaS. Docetaxel: An update on its molecular mechanisms, therapeutic trajectory and nanotechnology in the treatment of breast, lung and prostate cancer.J. Drug Deliv. Sci. Technol.20206010195910.1016/j.jddst.2020.101959
    [Google Scholar]
  177. OngJ.Y. TorresJ.Z. Dissecting the mechanisms of cell division.J. Biol. Chem.201929430113821139010.1074/jbc.AW119.00814931175154
    [Google Scholar]
  178. YamauchiT. YoshidaA. UedaT. Camptothecin induces DNA strand breaks and is cytotoxic in stimulated normal lymphocytes.Oncol. Rep.201125234735210.3892/or.2010.110021165573
    [Google Scholar]
  179. Lagunas-RangelF.A. Bermúdez-CruzR.M. Natural compounds that target DNA repair pathways and their therapeutic potential to counteract cancer cells.Front. Oncol.20201059817410.3389/fonc.2020.59817433330091
    [Google Scholar]
  180. ButterfieldL.H. NajjarY.G. Immunotherapy combination approaches: Mechanisms, biomarkers and clinical observations.Nat. Rev. Immunol.202424639941610.1038/s41577‑023‑00973‑838057451
    [Google Scholar]
  181. KuoH.Y. KhanK.A. KerbelR.S. Antiangiogenic–immune-checkpoint inhibitor combinations: Lessons from phase III clinical trials.Nat. Rev. Clin. Oncol.202421646848210.1038/s41571‑024‑00886‑y38600370
    [Google Scholar]
  182. AzamF. VazquezA. Trends in phase II trials for cancer therapies.Cancers202113217810.3390/cancers1302017833430223
    [Google Scholar]
  183. TuorkeyM. Curcumin a potent cancer preventive agent: Mechanisms of cancer cell killing.Interv. Med. Appl. Sci.20146413914610.1556/imas.6.2014.4.125598986
    [Google Scholar]
  184. BaldwinE. OsheroffN. Etoposide, topoisomerase II and cancer.Curr. Med. Chem. Anticancer Agents20055436337210.2174/156801105422236416101488
    [Google Scholar]
  185. HsiangY.H. HertzbergR. HechtS. LiuL.F. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I.J. Biol. Chem.198526027148731487810.1016/S0021‑9258(17)38654‑42997227
    [Google Scholar]
  186. KothariA. HittelmanW.N. ChambersT.C. Cell cycle–dependent mechanisms underlie vincristine-Induced death of primary acute lymphoblastic leukemia cells.Cancer Res.201676123553356110.1158/0008‑5472.CAN‑15‑210427197148
    [Google Scholar]
  187. MoreiraH. SzyjkaA. GrzesikJ. PelcK. ŻukM. KulmaA. EmhemmedF. MullerC. GąsiorowskiK. BargE. Celastrol and resveratrol modulate SIRT genes expression and exert anticancer activity in colon cancer cells and cancer stem-like cells.Cancers2022146137210.3390/cancers1406137235326523
    [Google Scholar]
  188. CzajaM. Skirlińska-NosekK. AdamczykO. SofińskaK. WilkoszN. RajfurZ. SzymońskiM. LipiecE. Raman research on bleomycin-induced DNA strand breaks and repair processes in living cells.Int. J. Mol. Sci.2022237352410.3390/ijms2307352435408885
    [Google Scholar]
  189. MouraD.S. Peña-ChiletM. Cordero VarelaJ.A. Alvarez-AlegretR. Agra-PujolC. IzquierdoF. RamosR. Ortega-MedinaL. Martin-DavilaF. Castilla-RamirezC. Hernandez-LeonC.N. RomagosaC. Vaz SalgadoM.A. LaverniaJ. BaguéS. Mayodormo-ArandaE. ViciosoL. Hernández BarcelóJ.E. Rubio-CasadevallJ. de JuanA. Fiaño-ValverdeM.C. HindiN. Lopez-AlvarezM. LacerenzaS. DopazoJ. GutierrezA. AlvarezR. ValverdeC. Martinez-TruferoJ. Martín-BrotoJ. A DNA damage repair gene-associated signature predicts responses of patients with advanced soft-tissue sarcoma to treatment with trabectedin.Mol. Oncol.202115123691370510.1002/1878‑0261.1299633983674
    [Google Scholar]
  190. RaghuvanshiR. BharateS.B. Preclinical and clinical studies on bryostatins, a class of marine-derived protein kinase C modulators: A mini-review.Curr. Top. Med. Chem.202020121124113510.2174/156802662066620032511044432209043
    [Google Scholar]
  191. PistrittoG. TrisciuoglioD. CeciC. GarufiA. D’OraziG. Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies.Aging (Albany NY)20168460361910.18632/aging.10093427019364
    [Google Scholar]
  192. WuC.C. BrattonS.B. Regulation of the intrinsic apoptosis pathway by reactive oxygen species.Antioxid. Redox Signal.201319654655810.1089/ars.2012.490522978471
    [Google Scholar]
  193. AshkenaziA. Targeting the extrinsic apoptotic pathway in cancer: Lessons learned and future directions.J. Clin. Invest.2015125248748910.1172/JCI8042025642709
    [Google Scholar]
  194. QianS. WeiZ. YangW. HuangJ. YangY. WangJ. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy.Front. Oncol.20221298536310.3389/fonc.2022.98536336313628
    [Google Scholar]
  195. WarrenC.F.A. Wong-BrownM.W. BowdenN.A. BCL-2 family isoforms in apoptosis and cancer.Cell Death Dis.201910317710.1038/s41419‑019‑1407‑630792387
    [Google Scholar]
  196. ChecaJ. AranJ.M. Reactive oxygen species: Drivers of physiological and pathological processes.J. Inflamm. Res.2020131057107310.2147/JIR.S27559533293849
    [Google Scholar]
  197. SedighiM. NamdariM. MahmoudiP. KhaniA. ManouchehriA. AnvariM. An overview of angiogenesis and chemical and physiological angiogenic factors: Short review.J. Chem. Health Risks2022
    [Google Scholar]
  198. Lopes-CoelhoF. MartinsF. PereiraS.A. SerpaJ. Anti-angiogenic therapy: Current challenges and future perspectives.Int. J. Mol. Sci.2021227376510.3390/ijms2207376533916438
    [Google Scholar]
  199. LiuZ.L. ChenH.H. ZhengL.L. SunL.P. ShiL. Angiogenic signaling pathways and anti-angiogenic therapy for cancer.Signal Transduct. Target. Ther.20238119810.1038/s41392‑023‑01460‑137169756
    [Google Scholar]
  200. ElebiyoT.C. RotimiD. EvbuomwanI.O. MaimakoR.F. IyobhebheM. OjoO.A. OlubaO.M. AdeyemiO.S. Reassessing vascular endothelial growth factor (VEGF) in anti-angiogenic cancer therapy.Cancer Treat. Res. Commun.20223210062010.1016/j.ctarc.2022.10062035964475
    [Google Scholar]
  201. HabtemariamS. LentiniG. Plant-Derived anticancer agents: Lessons from the pharmacology of geniposide and its Aglycone, Genipin.Biomedicines.20186239
    [Google Scholar]
  202. CarmelietP. JainR.K. Molecular mechanisms and clinical applications of angiogenesis.Nature2011473734729830710.1038/nature1014421593862
    [Google Scholar]
  203. AravindaramK. YangN.S. Anti-inflammatory plant natural products for cancer therapy.Planta Med.201076111103111710.1055/s‑0030‑124985920432202
    [Google Scholar]
  204. MoodyR. WilsonK. JaworowskiA. PlebanskiM. Natural compounds with potential to modulate cancer therapies and self-reactive immune cells.Cancers202012367310.3390/cancers1203067332183059
    [Google Scholar]
  205. JangJ.-H. KimD.-H. SurhY.-J. Dynamic roles of inflammasomes in inflammatory tumor microenvironment.NPJ Precis Oncol.20215118
    [Google Scholar]
  206. LiR. SongX. GuoY. SongP. DuanD. ChenZ.S. Natural products: A promising therapeutics for targeting tumor angiogenesis.Front. Oncol.20211177291510.3389/fonc.2021.77291534746014
    [Google Scholar]
  207. ShanmugamM.K. WarrierS. KumarA.P. SethiG. ArfusoF. Potential role of natural compounds as anti-angiogenic agents in cancer.Curr. Vasc. Pharmacol.201715650351928707601
    [Google Scholar]
  208. SagarS.M. YanceD. WongR.K. Natural health products that inhibit angiogenesis: A potential source for investigational new agents to treat cancer-Part 1.Curr. Oncol.2006131142610.3747/co.v13i1.7717576437
    [Google Scholar]
  209. LichotaA. GwozdzinskiK. Anticancer activity of natural compounds from plant and marine environment.Int. J. Mol. Sci.20181911353310.3390/ijms1911353330423952
    [Google Scholar]
  210. JingwenB. YaochenL. GuojunZ. Cell cycle regulation and anticancer drug discovery.Cancer Biol. Med.201714434836210.20892/j.issn.2095‑3941.2017.003329372101
    [Google Scholar]
  211. ShapiroG.I. HarperJ.W. Anticancer drug targets: Cell cycle and checkpoint control.J. Clin. Invest.1999104121645165310.1172/JCI905410606615
    [Google Scholar]
  212. QinR. YouF.M. ZhaoQ. XieX. PengC. ZhanG. HanB. Naturally derived indole alkaloids targeting regulated cell death (RCD) for cancer therapy: From molecular mechanisms to potential therapeutic targets.J. Hematol. Oncol.202215113310.1186/s13045‑022‑01350‑z36104717
    [Google Scholar]
  213. Bailon-MoscosoN. Cevallos-SolorzanoG. Romero-BenavidesJ. Ramirez OrellanaM. Natural compounds as modulators of cell cycle arrest: Application for anticancer chemotherapies.Curr. Genomics201718210613110.2174/138920291766616080812564528367072
    [Google Scholar]
  214. FinnO.J. Immuno-oncology: Understanding the function and dysfunction of the immune system in cancer.Ann. Oncol.201223Suppl 8viii6viii910.1093/annonc/mds256
    [Google Scholar]
  215. HanahanD. WeinbergR.A. Biological hallmarks of cancer.Holland-Frei Cancer Medicine2016110
    [Google Scholar]
  216. PanP. HuangY.W. OshimaK. YearsleyM. ZhangJ. ArnoldM. YuJ. WangL.S. The immunomodulatory potential of natural compounds in tumor-bearing mice and humans.Crit. Rev. Food Sci. Nutr.2019596992100710.1080/10408398.2018.153723730795687
    [Google Scholar]
  217. SinghS. BarikD. ArukhaA.P. PrasadS. MohapatraI. SinghA. SinghG. Small molecule targeting immune cells: A novel approach for cancer treatmentBiomedicines202311102621
    [Google Scholar]
  218. LeeJ. HanY. WangW. JoH. KimH. KimS. YangK.M. KimS.J. DhanasekaranD.N. SongY.S. Phytochemicals in cancer immune checkpoint inhibitor therapy.Biomolecules2021118110710.3390/biom1108110734439774
    [Google Scholar]
  219. HaanenJ.B.A.G. RobertC. Immune checkpoint inhibitors.Prog. Tumor Res.201542556610.1159/00043717826382943
    [Google Scholar]
  220. PardollD.M. The blockade of immune checkpoints in cancer immunotherapy.Nat. Rev. Cancer201212425226410.1038/nrc323922437870
    [Google Scholar]
  221. PeterA.E. SandeepB.V. RaoB.G. KalpanaV.L. Calming the storm: Natural immunosuppressants as adjuvants to target the cytokine storm in COVID-19.Front. Pharmacol.20211158377710.3389/fphar.2020.58377733708109
    [Google Scholar]
  222. KanyS. VollrathJ.T. ReljaB. Cytokines in inflammatory disease.Int. J. Mol. Sci.20192023600810.3390/ijms2023600831795299
    [Google Scholar]
  223. GretenF.R. GrivennikovS.I. Inflammation and cancer: Triggers, mechanisms, and consequences.Immunity2019511274110.1016/j.immuni.2019.06.02531315034
    [Google Scholar]
  224. DengL.J. QiM. LiN. LeiY.H. ZhangD.M. ChenJ.X. Natural products and their derivatives: Promising modulators of tumor immunotherapy.J. Leukoc. Biol.2020108249350810.1002/JLB.3MR0320‑444R32678943
    [Google Scholar]
  225. NuzzoG. SeneseG. GalloC. AlbianiF. RomanoL. d’IppolitoG. ManzoE. FontanaA. Antitumor potential of immunomodulatory natural products.Mar. Drugs202220638610.3390/md2006038635736189
    [Google Scholar]
  226. HuangM. LuJ.J. DingJ. Natural products in cancer therapy: Past, present and future.Nat. Prod. Bioprospect.202111151310.1007/s13659‑020‑00293‑733389713
    [Google Scholar]
  227. WangJ. JiangY.F. Natural compounds as anticancer agents: Experimental evidence.World J. Exp. Med.201223455710.5493/wjem.v2.i3.4524520533
    [Google Scholar]
  228. HashemS. AliT.A. AkhtarS. NisarS. SageenaG. AliS. Al-MannaiS. TherachiyilL. MirR. ElfakiI. MirM.M. JamalF. MasoodiT. UddinS. SinghM. HarisM. MachaM. BhatA.A. Targeting cancer signaling pathways by natural products: Exploring promising anti-cancer agents.Biomed. Pharmacother.202215011305410.1016/j.biopha.2022.11305435658225
    [Google Scholar]
  229. GranchiC. MinutoloF. Anticancer agents that counteract tumor glycolysis.Chem. Med. Chem.2012781318135010.1002/cmdc.20120017622684868
    [Google Scholar]
  230. CuiY. LiC. SangF. CaoW. QinZ. ZhangP. Natural products targeting glycolytic signaling pathways-An updated review on anti-cancer therapy.Front. Pharmacol.202213103588210.3389/fphar.2022.103588236339566
    [Google Scholar]
  231. ZhaoM. WeiF. SunG. WenY. XiangJ. SuF. ZhanL. NianQ. ChenY. ZengJ. Natural compounds targeting glycolysis as promising therapeutics for gastric cancer: A review.Front. Pharmacol.202213100438310.3389/fphar.2022.100438336438836
    [Google Scholar]
  232. ChenQ. RuanD. ShiJ. DuD. BianC. The multifaceted roles of natural products in mitochondrial dysfunction.Front. Pharmacol.202314109303810.3389/fphar.2023.109303836860298
    [Google Scholar]
  233. YangY. HeP.Y. ZhangY. LiN. Natural products targeting the mitochondria in cancers.Molecules20202619210.3390/molecules2601009233379233
    [Google Scholar]
  234. MinH.Y. JangH.J. ParkK.H. HyunS.Y. ParkS.J. KimJ.H. SonJ. KangS.S. LeeH.Y. The natural compound gracillin exerts potent antitumor activity by targeting mitochondrial complex II.Cell Death Dis.2019101181010.1038/s41419‑019‑2041‑z31649278
    [Google Scholar]
  235. RayP.D. HuangB.W. TsujiY. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling.Cell. Signal.201224598199010.1016/j.cellsig.2012.01.00822286106
    [Google Scholar]
  236. Sharifi-RadM. Anil KumarN.V. ZuccaP. VaroniE.M. DiniL. PanzariniE. RajkovicJ. Tsouh FokouP.V. AzziniE. PelusoI. Prakash MishraA. NigamM. El RayessY. BeyrouthyM.E. PolitoL. IritiM. MartinsN. MartorellM. DoceaA.O. SetzerW.N. CalinaD. ChoW.C. Sharifi-RadJ. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases.Front. Physiol.20201169410.3389/fphys.2020.0069432714204
    [Google Scholar]
  237. StineZ.E. SchugZ.T. SalvinoJ.M. DangC.V. Targeting cancer metabolism in the era of precision oncology.Nat. Rev. Drug Discov.202221214116210.1038/s41573‑021‑00339‑634862480
    [Google Scholar]
  238. LukeyM.J. KattW.P. CerioneR.A. Targeting amino acid metabolism for cancer therapy.Drug Discov. Today201722579680410.1016/j.drudis.2016.12.00327988359
    [Google Scholar]
  239. DongS. GuoX. HanF. HeZ. WangY. Emerging role of natural products in cancer immunotherapy.Acta Pharm. Sin. B20221231163118510.1016/j.apsb.2021.08.02035530162
    [Google Scholar]
  240. LinJ. HuoX. LiuX. "mTOR signaling pathway”: A potential target of curcumin in the treatment of spinal cord injury.Biomed Res Int.20172017Suppl 81634801
    [Google Scholar]
  241. OshiroC. MarshS. McLeodH. CarrilloM.W. KleinT. AltmanR. Taxane pathway.Pharmacogenet. Genomics2009191297998310.1097/FPC.0b013e328333527721151855
    [Google Scholar]
  242. MoscaL. IlariA. FaziF. AssarafY.G. ColottiG. Taxanes in cancer treatment: Activity, chemoresistance and its overcoming.Drug Resist. Updat.20215410074210.1016/j.drup.2020.10074233429249
    [Google Scholar]
  243. ConlinA.K. SeidmanA.D. Taxanes in breast cancer: An update.Curr. Oncol. Rep.200791223010.1007/BF0295142217164044
    [Google Scholar]
  244. LiF. JiangT. LiQ. LingX. Camptothecin (CPT) and its derivatives are known to target topoisomerase I (Top1) as their mechanism of action: Did we miss something in CPT analogue molecular targets for treating human disease such as cancer?Am. J. Cancer Res.20177122350239429312794
    [Google Scholar]
  245. WangX. ZhuangY. WangY. JiangM. YaoL. The recent developments of camptothecin and its derivatives as potential anti-tumor agents.Eur. J. Med. Chem.202326011571010.1016/j.ejmech.2023.11571037595544
    [Google Scholar]
  246. JimenezP.C. WilkeD.V. Costa-LotufoL.V. Marine drugs for cancer: Surfacing biotechnological innovations from the oceans.Clinics201873Suppl. 1e482s10.6061/clinics/2018/e482s30133563
    [Google Scholar]
  247. ZuoW. KwokH.F. Development of marine-derived compounds for cancer therapy.Mar. Drugs202119634210.3390/md1906034234203870
    [Google Scholar]
  248. YunC.W. KimH.J. LeeS.H. Therapeutic application of diverse marine-derived natural products in cancer therapy.Anticancer Res.201939105261528410.21873/anticanres.1372131570422
    [Google Scholar]
  249. WangX. GigantB. ZhengX. ChenQ. Microtubule- targeting agents for cancer treatment: Seven binding sites and three strategies.MedComm Oncol.202323e4610.1002/mog2.46
    [Google Scholar]
  250. ShaikB.B. KatariN.K. JonnalagaddaS.B. Role of natural products in developing novel anticancer agents: A perspective.Chem. Biodivers.20221911e20220053510.1002/cbdv.20220053536347633
    [Google Scholar]
  251. MaloneyS.M. HooverC.A. Morejon-LassoL.V. ProsperiJ.R. Mechanisms of taxane resistanceCancers202012113323
    [Google Scholar]
  252. AroraR. MalhotraP. MathurA.K. MathurA. GovilC.M. AhujaP.S. Anticancer Alkaloids of Catharanthus roseus: Transition from traditional to modern medicine.Herbal Medicine: A Cancer Chemopreventive and Therapeutic PerspectiveJaypee2010292310
    [Google Scholar]
  253. HoiczykM. GrabellusF. PodleskaL. AhrensM. SchwindenhammerB. TaegerG. PöttgenC. SchulerM. BauerS. Trabectedin in metastatic soft tissue sarcomas: Role of pretreatment and age.Int. J. Oncol.2013431232810.3892/ijo.2013.192823652821
    [Google Scholar]
  254. Asmana NingrumR. Human interferon alpha-2b: A therapeutic protein for cancer treatment.Scientifica (Cairo)201420141810.1155/2014/97031524741445
    [Google Scholar]
  255. KiyongaE.M. KekaniL.N. ChidziwaT.V. KahwengaK.D. BronkhorstE. MilneM. PokaM.S. MokheleS. DemanaP.H. WitikaB.A. Nano-and crystal engineering approaches in the development of therapeutic agents for neoplastic diseases.Crystals202212792610.3390/cryst12070926
    [Google Scholar]
  256. ZhouS. ZhangS. ShenH. ChenW. XuH. ChenX. SunD. ZhongS. ZhaoJ. TangJ. Curcumin inhibits cancer progression through regulating expression of microRNAs.Tumour Biol.201739210.1177/101042831769168028222667
    [Google Scholar]
  257. FuH. WangC. YangD. WeiZ. XuJ. HuZ. ZhangY. WangW. YanR. CaiQ. Curcumin regulates proliferation, autophagy, and apoptosis in gastric cancer cells by affecting PI3K and P53 signaling.J. Cell. Physiol.201823364634464210.1002/jcp.2619028926094
    [Google Scholar]
  258. AlvesC. SilvaJ. PinteusS. GasparH. AlpoimM.C. BotanaL.M. PedrosaR. From marine origin to therapeutics: The antitumor potential of marine algae-derived compounds.Front. Pharmacol.2018977710.3389/fphar.2018.0077730127738
    [Google Scholar]
  259. ReichenbachH. HöfleG. Discovery and development of the epothilones : A novel class of antineoplastic drugs.Drugs R D.20089111010.2165/00126839‑200809010‑0000118095749
    [Google Scholar]
  260. HyunH. ChungJ. KimJ. LeeJ-S. KwonB-M. SonK-H. ChoK. Isolation of Sorangium cellulosum carrying epothilone gene clusters.J. Microbiol. Biotechnol.20081881416142218756102
    [Google Scholar]
  261. CastañedaA.M. MeléndezC.M. UribeD. Pedroza-DíazJ. Synergistic effects of natural compounds and conventional chemotherapeutic agents: Recent insights for the development of cancer treatment strategies.Heliyon202286e0951910.1016/j.heliyon.2022.e0951935669542
    [Google Scholar]
  262. EisenmannE.D. TalebiZ. SparreboomA. BakerS.D. Boosting the oral bioavailability of anticancer drugs through intentional drug-drug interactions.Basic Clin. Pharmacol. Toxicol.2022130Suppl 1233510.1111/bcpt.13623
    [Google Scholar]
  263. Garcia-OliveiraP. OteroP. PereiraA.G. ChamorroF. CarpenaM. EchaveJ. Fraga-CorralM. Simal-GandaraJ. PrietoM.A. Status and challenges of plant-anticancer compounds in cancer treatment.Pharmaceuticals202114215710.3390/ph1402015733673021
    [Google Scholar]
  264. PochetS. LechonA.S. LescrainierC. De VrieseC. MathieuV. HamdaniJ. SouardF. Herb-anticancer drug interactions in real life based on VigiBase, the WHO global database.Sci. Rep.20221211417810.1038/s41598‑022‑17704‑z35986023
    [Google Scholar]
  265. FerreiraU. In Vitro antioxidant activity of natural compounds: A critical reviewBasic Clin. Pharma. Toxi.20231333345357
    [Google Scholar]
  266. LitmanT. Personalized medicine—Concepts, technologies, and applications in inflammatory skin diseases.Acta. Pathol. Microbiol. Scand. Suppl.2019127538642410.1111/apm.1293431124204
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673344501250109210447
Loading
/content/journals/cmc/10.2174/0109298673344501250109210447
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test