Skip to content
2000
Volume 32, Issue 31
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Scientists have been keenly interested in using bioactive compounds as food supplements over the past few decades. Nevertheless, such components frequently show low stability, and solubility, and limited gastrointestinal tract bio accessibility restricts their efficacy. Numerous nanocages like carriers have been investigated to encapsulate nutraceuticals and improve their bioavailability to get around these problems. Protein and lipid carrier-based nanocages are 3D-case-like structures with an internal homogenous compartment isolated from the surrounding bulk material by lipid and protein barriers. Because of their superior physicochemical properties and distinctive structural features, protein cage-like nanoparticles (NPs) have recently attracted increased interest from various fields for use as nano-vehicles for delivering active compounds with improved physicochemical properties and bioavailability. The use of food-grade colloidal systems, such as solid lipid nanoparticles (SLNPs), micelles, and nano-structured lipid carriers (NLCs), for delivering bioactive substances is broadly reviewed in this article. In addition, it offers a critical evaluation of the preparation process, challenges in using lipids and proteins produced from plants to transport hydrophobic bioactive compounds, and strategies to enhance these materials' ability to do so. This information should benefit the rational development of functional and medicinal foods with supplements for efficient bioactive delivery.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673309672241113102535
2025-01-09
2025-10-23
Loading full text...

Full text loading...

References

  1. ChenH. TanX. FuY. DaiH. WangH. ZhaoG. ZhangY. The development of natural and designed protein nanocages for encapsulation and delivery of active compounds.Food Hydrocoll.202112110700410.1016/j.foodhyd.2021.107004
    [Google Scholar]
  2. ZhangC. ZhangX. ZhaoG. Ferritin nanocage: A versatile nanocarrier utilized in the field of food, nutrition, and medicine.Nanomaterials (Basel)2020109189410.3390/nano1009189432971961
    [Google Scholar]
  3. HanM. LiuK. LiuX. RashidM.T. ZhangH. WangM. Research progress of protein-based bioactive substance nanoparticles.Foods20231216299910.3390/foods1216299937627998
    [Google Scholar]
  4. Sahandi ZangabadP. KarimiM. MehdizadehF. MalekzadH. GhasemiA. BahramiS. ZareH. MoghoofeiM. HekmatmaneshA. HamblinM.R. Nanocaged platforms: Modification, drug delivery and nanotoxicity. Opening synthetic cages to release the tiger.Nanoscale2017941356139210.1039/C6NR07315H28067384
    [Google Scholar]
  5. RoudiN.E. Saraygord-AfshariN. HemmatyM. Protein nanocages: Novel carriers for optimized targeted remedy.F1000 Res.20176154110.12688/f1000research.11909.1
    [Google Scholar]
  6. LeeE.J. LeeN.K. KimI.S. Bioengineered protein-based nanocage for drug delivery.Adv. Drug Deliv. Rev.2016106Pt A15717110.1016/j.addr.2016.03.00226994591
    [Google Scholar]
  7. AgnierayH. GlassonJ.L. ChenQ. KaurM. DomiganL.J. Recent developments in sustainably sourced protein-based biomaterials.Biochem. Soc. Trans.202149295396410.1042/BST2020089633729443
    [Google Scholar]
  8. OntongJ.C. SinghS. SiriyongT. VoravuthikunchaiS.P. Transferosomes stabilized hydrogel incorporated rhodomyrtone-rich extract from Rhodomyrtus tomentosa leaf fortified with phosphatidylcholine for the management of skin and soft-tissue infections.Biotechnol. Lett.202446112714210.1007/s10529‑023‑03452‑138150096
    [Google Scholar]
  9. SudarshanS. TanviR.D. RajeshD. YogeshV.U. SlametW. Lipid nanoparticulate drug delivery systems: Approaches toward improvement in therapeutic efficacy of bioactive moleculesDrug Carriers.IntechOpen202210.5772/intechopen.104510
    [Google Scholar]
  10. KapoorD.U. GaurM. PariharA. PrajapatiB.G. SinghS. PatelR.J. Phosphatidylcholine (PCL) fortified nano-phytopharmaceuticals for improvement of therapeutic efficacy.EXCLI J.20232288090310.17179/excli2023‑634538317861
    [Google Scholar]
  11. SinghS. SupaweeraN. NwaborO.F. ChaichompooW. SuksamrarnA. ChittasuphoC. ChunglokW. Poly (vinyl alcohol)-gelatin-sericin copolymerized film fortified with vesicle-entrapped demethoxycurcumin/bisdemethoxycurcumin for improved stability, antibacterial, anti-inflammatory, and skin tissue regeneration.Int. J. Biol. Macromol.2024258Pt 212907110.1016/j.ijbiomac.2023.12907138159707
    [Google Scholar]
  12. SinghS. UshirY.V. PrajapatiB. Phytosomes and herbosomes: A vesicular drug delivery system for improving the bioavailability of natural products.Lipid-Based Drug Delivery Systems.Jenny Stanford Publishing202342346010.1201/9781003459811‑11
    [Google Scholar]
  13. SinghS. SupaweeraN. NwaborO.F. YusakulG. ChaichompooW. SuksamrarnA. PanpipatW. ChunglokW. Polymeric scaffold integrated with nanovesicle-entrapped curcuminoids for enhanced therapeutic efficacy.Nanomedicine (Lond.)202419141313132910.1080/17435889.2024.234782338884141
    [Google Scholar]
  14. BazanaM.T. CodevillaC.F. de MenezesC.R. Nanoencapsulation of bioactive compounds: Challenges and perspectives.Curr. Opin. Food Sci.201926475610.1016/j.cofs.2019.03.005
    [Google Scholar]
  15. WangY. DouglasT. Protein nanocage architectures for the delivery of therapeutic proteins.Curr. Opin. Colloid Interface Sci.20215110139510.1016/j.cocis.2020.101395
    [Google Scholar]
  16. BrownL.R. Commercial challenges of protein drug delivery.Expert Opin. Drug Deliv.200521294210.1517/17425247.2.1.2916296733
    [Google Scholar]
  17. JaoD. XueY. MedinaJ. HuX. Protein-based drug-delivery materials.Materials (Basel)201710551710.3390/ma1005051728772877
    [Google Scholar]
  18. McClementsD. ÖztürkB. Utilization of nanotechnology to improve the handling, storage and biocompatibility of bioactive lipids in food applications.Foods202110236510.3390/foods1002036533567622
    [Google Scholar]
  19. Martínez-MaquedaD Hernández-LedesmaB AmigoL MirallesB Gómez-RuizJÁ. Extraction/fractionation techniques for proteins and peptides and protein digestion.Food Microbiology and Food SafetySpringerBoston, MA201322150
    [Google Scholar]
  20. FetzerA. HerfellnerT. StäblerA. MennerM. EisnerP. Influence of process conditions during aqueous protein extraction upon yield from pre-pressed and cold-pressed rapeseed press cake.Ind. Crops Prod.201811223624610.1016/j.indcrop.2017.12.011
    [Google Scholar]
  21. PreeceK.E. HooshyarN. ZuidamN.J. Whole soybean protein extraction processes: A review.Innov. Food Sci. Emerg. Technol.20174316317210.1016/j.ifset.2017.07.024
    [Google Scholar]
  22. YamaguchiS. YamamotoE. MannenT. NagamuneT. NagamuneT. Protein refolding using chemical refolding additives.Biotechnol. J.201381173110.1002/biot.20120002522965925
    [Google Scholar]
  23. HoeB.C. ChanE.S. Nagasundara RamananR. OoiC.W. Recent development and challenges in extraction of phytonutrients from palm oil.Compr. Rev. Food Sci. Food Saf.20201964031406110.1111/1541‑4337.1264833337051
    [Google Scholar]
  24. KumarM. TomarM. PotkuleJ. VermaR. PuniaS. MahapatraA. BelwalT. DahujaA. JoshiS. BerwalM.K. SatankarV. BhoiteA.G. AmarowiczR. KaurC. KennedyJ.F. Advances in the plant protein extraction: Mechanism and recommendations.Food Hydrocoll.202111510659510.1016/j.foodhyd.2021.106595
    [Google Scholar]
  25. JablonskýM. ŠkulcováA. MalvisA. ŠimaJ. Extraction of value-added components from food industry based and agro-forest biowastes by deep eutectic solvents.J. Biotechnol.2018282466610.1016/j.jbiotec.2018.06.34929969642
    [Google Scholar]
  26. KistJ.A. ZhaoH. Mitchell-KochK.R. BakerG.A. The study and application of biomolecules in deep eutectic solvents.J. Mater. Chem. B Mater. Biol. Med.20219353656610.1039/D0TB01656J33289777
    [Google Scholar]
  27. FarooqM.Q. OdugbesiG.A. AbbasiN.M. AndersonJ.L. Elucidating the role of hydrogen bond donor and acceptor on solvation in deep eutectic solvents formed by ammonium/phosphonium salts and carboxylic acids.ACS Sustain. Chem.& Eng.2020849182861829610.1021/acssuschemeng.0c06926
    [Google Scholar]
  28. ChenY. MuT. Revisiting greenness of ionic liquids and deep eutectic solvents.Green Chemical Engineering20212217418610.1016/j.gce.2021.01.004
    [Google Scholar]
  29. Torres-ValenzuelaL.S. Ballesteros-GómezA. RubioS. Green solvents for the extraction of high added-value compounds from agri-food waste.Food Eng. Rev.20201218310010.1007/s12393‑019‑09206‑y
    [Google Scholar]
  30. HäkkinenR. AbbottA.P. Deep eutectic solvents—Teaching nature lessons that it knew already.Advances in Botanical Research.Elsevier2021Vol. 97116
    [Google Scholar]
  31. ContrerasM.M. Lama-MuñozA. Manuel Gutiérrez-PérezJ. EspínolaF. MoyaM. CastroE. Protein extraction from agri-food residues for integration in biorefinery: Potential techniques and current status.Bioresour. Technol.201928045947710.1016/j.biortech.2019.02.04030777702
    [Google Scholar]
  32. HewageA. OlatundeO.O. NimalaratneC. HouseJ.D. AlukoR.E. BandaraN. Improved protein extraction technology using deep eutectic solvent system for producing high purity fava bean protein isolates at mild conditions.Food Hydrocoll.202414710928310.1016/j.foodhyd.2023.109283
    [Google Scholar]
  33. LvC. ZhangX. LiuY. ZhangT. ChenH. ZangJ. ZhengB. ZhaoG. Redesign of protein nanocages: The way from 0D, 1D, 2D to 3D assembly.Chem. Soc. Rev.20215063957398910.1039/D0CS01349H33587075
    [Google Scholar]
  34. WangC. SunF. HeG. ZhaoH. TianL. ChengY. LiG. Noble metal nanoparticles meet molecular cages: A tale of integration and synergy.Curr. Opin. Colloid Interface Sci.20236310166010.1016/j.cocis.2022.101660
    [Google Scholar]
  35. VendruscoloM ZurdoJ MacPheeCE DobsonCM 2003Protein folding and misfolding: A paradigm of self–assembly and regulation in complex biological systems.Philos Trans A Math Phys Eng Sci.200336118071205122210.1098/rsta.2003.1194
    [Google Scholar]
  36. KhanA. JadhavM. JainN.K. PrasadR. SrivastavaR. Self-assembled nanostructures.Nanochemistry.CRC Press202311510.1201/9781003081944‑1
    [Google Scholar]
  37. SoutoE.B. SoutoS.B. CamposJ.R. SeverinoP. PashirovaT.N. ZakharovaL.Y. SilvaA.M. DurazzoA. LucariniM. IzzoA.A. SantiniA. Nanoparticle delivery systems in the treatment of diabetes complications.Molecules20192423420910.3390/molecules2423420931756981
    [Google Scholar]
  38. PanwarN. SoehartonoA.M. ChanK.K. ZengS. XuG. QuJ. CoquetP. YongK.T. ChenX. Nanocarbons for biology and medicine: Sensing, imaging, and drug delivery.Chem. Rev.2019119169559965610.1021/acs.chemrev.9b0009931287663
    [Google Scholar]
  39. YaoJ. YangM. DuanY. Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: New insights into biosensing, bioimaging, genomics, diagnostics, and therapy.Chem. Rev.2014114126130617810.1021/cr200359p24779710
    [Google Scholar]
  40. SkrabalakS.E. ChenJ. AuL. LuX. LiX. XiaY. Gold nanocages for biomedical applications.Adv. Mater.200719203177318410.1002/adma.20070197218648528
    [Google Scholar]
  41. XiaY. LiW. CobleyC.M. ChenJ. XiaX. ZhangQ. YangM. ChoE.C. BrownP.K. Gold nanocages: From synthesis to theranostic applications.Acc. Chem. Res.2011441091492410.1021/ar200061q21528889
    [Google Scholar]
  42. WuQ. YangL. WangX. HuZ. Carbon-based nanocages: A new platform for advanced energy storage and conversion.Adv. Mater.20203227190417710.1002/adma.20190417731566282
    [Google Scholar]
  43. JoãoJ. PrazeresD.M.F. Manufacturing of non-viral protein nanocages for biotechnological and biomedical applications.Front. Bioeng. Biotechnol.202311120072910.3389/fbioe.2023.120072937520292
    [Google Scholar]
  44. ZhangB. TangG. HeJ. YanX. FanK. Ferritin nanocage: A promising and designable multi-module platform for constructing dynamic nanoassembly-based drug nanocarrier.Adv. Drug Deliv. Rev.202117611389210.1016/j.addr.2021.11389234331986
    [Google Scholar]
  45. TheilE.C. Ferritin protein nanocages—the story.Nanotechnol. Percept.20128171610.4024/N03TH12A.ntp.08.0124198751
    [Google Scholar]
  46. ChiouB. ConnorJ.R. Emerging and dynamic biomedical uses of ferritin.Pharmaceuticals (Basel)201811412410.3390/ph1104012430428583
    [Google Scholar]
  47. SwaisgoodH.E. Review and update of casein chemistry.J. Dairy Sci.199376103054306110.3168/jds.S0022‑0302(93)77645‑68227630
    [Google Scholar]
  48. ThornD.C. EcroydH. CarverJ.A. HoltC. Casein structures in the context of unfolded proteins.Int. Dairy J.20154621110.1016/j.idairyj.2014.07.008
    [Google Scholar]
  49. HoltC. CarverJ.A. EcroydH. ThornD.C. Invited review: Caseins and the casein micelle: Their biological functions, structures, and behavior in foods.J. Dairy Sci.201396106127614610.3168/jds.2013‑683123958008
    [Google Scholar]
  50. KianfarE. Protein nanoparticles in drug delivery: animal protein, plant proteins and protein cages, albumin nanoparticles.J. Nanobiotechnology202119115910.1186/s12951‑021‑00896‑334051806
    [Google Scholar]
  51. JainA. SinghS.K. AryaS.K. KunduS.C. KapoorS. Protein nanoparticles: Promising platforms for drug delivery applications.ACS Biomater. Sci. Eng.20184123939396110.1021/acsbiomaterials.8b0109833418796
    [Google Scholar]
  52. GłąbT.K. BoratyńskiJ. Potential of casein as a carrier for biologically active agents.Top. Curr. Chem. (Cham)201737547110.1007/s41061‑017‑0158‑z28712055
    [Google Scholar]
  53. MarshallK. Therapeutic applications of whey protein.Altern. Med. Rev.20049213615615253675
    [Google Scholar]
  54. KontopidisG. HoltC. SawyerL. Invited review: β-lactoglobulin: Binding properties, structure, and function.J. Dairy Sci.200487478579610.3168/jds.S0022‑0302(04)73222‑115259212
    [Google Scholar]
  55. GołębiowskiA. PomastowskiP. RodzikA. Król-GórniakA. KowalkowskiT. GóreckiM. BuszewskiB. Isolation and self-association studies of beta-lactoglobulin.Int. J. Mol. Sci.20202124971110.3390/ijms2124971133352705
    [Google Scholar]
  56. NissinenL. KähäriV.M. Matrix metalloproteinases in inflammation.Biochim. Biophys. Acta, Gen. Subj.2014184082571258010.1016/j.bbagen.2014.03.00724631662
    [Google Scholar]
  57. IzadiZ. DivsalarA. SabouryA.A. SawyerL. β-lactoglobulin–pectin nanoparticle-based oral drug delivery system for potential treatment of colon cancer.Chem. Biol. Drug Des.201688220921610.1111/cbdd.1274826896377
    [Google Scholar]
  58. García-PinelB. Porras-AlcaláC. Ortega-RodríguezA. SarabiaF. PradosJ. MelguizoC. López-RomeroJ.M. Lipid-based nanoparticles: Application and recent advances in cancer treatment.Nanomaterials (Basel)20199463810.3390/nano904063831010180
    [Google Scholar]
  59. PatelR SinghS SinghS ShethN GendleR. Development and characterization of curcumin loaded transfersome for transdermal delivery.J. Pharm. Sci. Res.20091471
    [Google Scholar]
  60. ShahS. ChauhanH. MadhuH. MoriD. SoniwalaM. SinghS. PrajapatiB. Lipids fortified nano phytopharmaceuticals: A breakthrough approach in delivering bio-actives for improved therapeutic efficacy.Pharm. Nanotechnol.2025131708910.2174/012211738527768623112705072338279712
    [Google Scholar]
  61. DasU. KapoorD.U. SinghS. PrajapatiB.G. Unveiling the potential of chitosan-coated lipid nanoparticles in drug delivery for management of critical illness: A review.Z. Naturforsch. C J. Biosci.2024795-610712410.1515/znc‑2023‑018138721838
    [Google Scholar]
  62. KesharwaniR. JaiswalP. PatelD.K. YadavP.K. Lipid-based drug delivery system (LBDDS): An emerging paradigm to enhance oral bioavailability of poorly soluble drugs.Biomedical Materials & Devices20231264866310.1007/s44174‑022‑00041‑0
    [Google Scholar]
  63. TamjidiF. ShahediM. VarshosazJ. NasirpourA. Nanostructured lipid carriers (NLC): A potential delivery system for bioactive food molecules.Innov. Food Sci. Emerg. Technol.201319294310.1016/j.ifset.2013.03.002
    [Google Scholar]
  64. SarathchandraprakashN. MahendraC. PrashanthS. ManralK. BabuU. GowdaD. Emulsions and emulsifiers.Asian J. Exp. Chem.201383045
    [Google Scholar]
  65. FanX. HuW. YangJ. XuX. GaoJ. A new emulsifier behavior of the preparation for micro-emulsified diesel oil.Petrol. Sci. Technol.200826182125213610.1080/10916460701429100
    [Google Scholar]
  66. McClementsD.J. BaiL. ChungC. Recent advances in the utilization of natural emulsifiers to form and stabilize emulsions.Annu. Rev. Food Sci. Technol.20178120523610.1146/annurev‑food‑030216‑03015428125353
    [Google Scholar]
  67. LeeS.Y. ChoJ.M. ChangY.K. OhY.K. Cell disruption and lipid extraction for microalgal biorefineries: A review.Bioresour. Technol.2017244Pt 21317132810.1016/j.biortech.2017.06.03828634124
    [Google Scholar]
  68. LiuQ. HuangH. ChenH. LinJ. WangQ. Food- grade nanoemulsions: Preparation, stability and application in encapsulation of bioactive compounds.Molecules20192423424210.3390/molecules2423424231766473
    [Google Scholar]
  69. NazF. VerpoortF. IqbalS.Z. NaheedN. AsiM.R. Seasonal variation of aflatoxin levels in selected spices available in retail markets: Estimation of exposure and risk assessment.Toxins (Basel)202214959710.3390/toxins1409059736136535
    [Google Scholar]
  70. PatelP. GaralaK. SinghS. PrajapatiB.G. ChittasuphoC. Lipid-based nanoparticles in delivering bioactive compounds for improving therapeutic efficacy.Pharmaceuticals (Basel)202417332910.3390/ph1703032938543115
    [Google Scholar]
  71. PrajapatiB. PatelJ. Lipid-based drug delivery systems: Principles and applications.CRC Press202310.1201/9781003459811
    [Google Scholar]
  72. SoukoulisC. BohnT. A comprehensive overview on the micro- and nano-technological encapsulation advances for enhancing the chemical stability and bioavailability of carotenoids.Crit. Rev. Food Sci. Nutr.201858113610.1080/10408398.2014.97135326065668
    [Google Scholar]
  73. McClementsD.J. Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: A review.Adv. Colloid Interface Sci.201825312210.1016/j.cis.2018.02.00229478671
    [Google Scholar]
  74. JoyceP. WhitbyC.P. PrestidgeC.A. Nanostructuring biomaterials with specific activities towards digestive enzymes for controlled gastrointestinal absorption of lipophilic bioactive molecules.Adv. Colloid Interface Sci.2016237527510.1016/j.cis.2016.10.00328314428
    [Google Scholar]
  75. AguilarZ. Nanomaterials for medical applications.Newnes2012
    [Google Scholar]
  76. YangL. WuX. LiuF. DuanY. LiS. Novel biodegradable polylactide/poly(ethylene glycol) micelles prepared by direct dissolution method for controlled delivery of anticancer drugs.Pharm. Res.200926102332234210.1007/s11095‑009‑9949‑419669098
    [Google Scholar]
  77. NaseriN. ValizadehH. Zakeri-MilaniP. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application.Adv. Pharm. Bull.20155330531310.15171/apb.2015.04326504751
    [Google Scholar]
  78. Luisa LüdtkeF. Aparecida StahlM. GrimaldiR. Bruno Soares ForteM. Lúcia GiganteM. Paula Badan RibeiroA. Optimization of high pressure homogenization conditions to produce nanostructured lipid carriers using natural and synthetic emulsifiers.Food Res. Int.202216011174610.1016/j.foodres.2022.11174636076468
    [Google Scholar]
  79. SadiahS. AnwarE. DjufriM. CahyaningsihU. Preparation and characteristics of nanostructured lipid carrier (NLC) loaded red ginger extract using high pressure homogenizer method.Journal of Pharmaceutical Sciences and Research201791018891893
    [Google Scholar]
  80. LingayatV.J. ZarekarN.S. ShendgeR.S. Solid lipid nanoparticles: A review.Nanoscience and Nanotechnology Research2017426772
    [Google Scholar]
  81. KumarA. JayeoyeT.J. MohiteP. SinghS. RajputT. MundeS. EzeF.N. ChidrawarV.R. PuriA. PrajapatiB.G. PariharA. Sustainable and consumer-centric nanotechnology-based materials: An update on the multifaceted applications, risks and tremendous opportunities.Nano-Structures & Nano-Objects20243810114810.1016/j.nanoso.2024.101148
    [Google Scholar]
  82. MukherjeeS. RayS. ThakurR.S. Solid lipid nanoparticles: A modern formulation approach in drug delivery system.Indian J. Pharm. Sci.200971434935810.4103/0250‑474X.5728220502539
    [Google Scholar]
  83. Harivardhan ReddyL. VivekK. BakshiN. MurthyR.S.R. Tamoxifen citrate loaded solid lipid nanoparticles (SLN): Preparation, characterization, in vitro drug release, and pharmacokinetic evaluation.Pharm. Dev. Technol.200611216717710.1080/1083745060056126516749527
    [Google Scholar]
  84. HumphriesRM AmblerJ MitchellSL CastanheiraM DingleT HindlerJA KoethL SeiK CLSI methods development and standardization working group best practices for evaluation of antimicrobial susceptibility tests.J Clin Microbiol.2018564e01934-1710.1128/JCM.01934‑17
    [Google Scholar]
  85. Higuera-CiaparaI. Félix-ValenzuelaL. GoycooleaF.M. Astaxanthin: A review of its chemistry and applications.Crit. Rev. Food Sci. Nutr.200646218519610.1080/1040869059095718816431409
    [Google Scholar]
  86. WangT. HuQ. LeeJ.Y. LuoY. Solid lipid–polymer hybrid nanoparticles by in situ conjugation for oral delivery of Astaxanthin.J. Agric. Food Chem.201866369473948010.1021/acs.jafc.8b0282730130387
    [Google Scholar]
  87. HuQ. HuS. FlemingE. LeeJ.Y. LuoY. Chitosan- caseinate-dextran ternary complex nanoparticles for potential oral delivery of astaxanthin with significantly improved bioactivity.Int. J. Biol. Macromol.202015174775610.1016/j.ijbiomac.2020.02.17032084488
    [Google Scholar]
  88. ShresthaS SadiqMB AnalAK Culled banana resistant starch-soy protein isolate conjugate based emulsion enriched with astaxanthin to enhance its stability.Int J Biol Macromol.2018120Pt A44945910.1016/j.ijbiomac.2018.08.066
    [Google Scholar]
  89. HuangL. LiD. MaY. LiuY. LiuG. WangY. TanB. Dietary fatty acid-mediated protein encapsulation simultaneously improving the water-solubility, storage stability, and oral absorption of astaxanthin.Food Hydrocoll.202212310715210.1016/j.foodhyd.2021.107152
    [Google Scholar]
  90. SahraeianS. RashidinejadA. GolmakaniM.T. Recent advances in the conjugation approaches for enhancing the bioavailability of polyphenols.Food Hydrocoll.202414610922110.1016/j.foodhyd.2023.109221
    [Google Scholar]
  91. LiuF. MaC. McClementsD.J. GaoY. Development of polyphenol-protein-polysaccharide ternary complexes as emulsifiers for nutraceutical emulsions: Impact on formation, stability, and bioaccessibility of β-carotene emulsions.Food Hydrocoll.20166157858810.1016/j.foodhyd.2016.05.031
    [Google Scholar]
  92. ShishirM.R.I. KarimN. GowdV. XieJ. ZhengX. ChenW. Pectin-chitosan conjugated nanoliposome as a promising delivery system for neohesperidin: Characterization, release behavior, cellular uptake, and antioxidant property.Food Hydrocoll.20199543244410.1016/j.foodhyd.2019.04.059
    [Google Scholar]
  93. QuanT.H. BenjakulS. Sae-leawT. BalangeA.K. MaqsoodS. Protein–polyphenol conjugates: Antioxidant property, functionalities and their applications.Trends Food Sci. Technol.20199150751710.1016/j.tifs.2019.07.049
    [Google Scholar]
  94. LiY. HeD. LiB. LundM.N. XingY. WangY. LiF. CaoX. LiuY. ChenX. YuJ. ZhuJ. ZhangM. WangQ. ZhangY. LiB. WangJ. XingX. LiL. Engineering polyphenols with biological functions via polyphenol-protein interactions as additives for functional foods.Trends Food Sci. Technol.202111047048210.1016/j.tifs.2021.02.009
    [Google Scholar]
  95. ZhangS. LiX. YanX. Julian McClementsD. MaC. LiuX. LiuF. Ultrasound-assisted preparation of lactoferrin-EGCG conjugates and their application in forming and stabilizing algae oil emulsions.Ultrason. Sonochem.20228910611010.1016/j.ultsonch.2022.10611035961190
    [Google Scholar]
  96. DissanayakeT. SunX. AbbeyL. BandaraN. Recent advances in lipid-protein conjugate-based delivery systems in nutraceutical, drug, and gene delivery.Food Hydrocolloids for Health2022210005410.1016/j.fhfh.2022.100054
    [Google Scholar]
  97. BanasazS. MorozovaK. FerrentinoG. ScampicchioM. Encapsulation of lipid-soluble bioactives by nanoemulsions.Molecules20202517396610.3390/molecules2517396632878137
    [Google Scholar]
  98. ZhangQ. ZhouY. YueW. QinW. DongH. VasanthanT. Nanostructures of protein-polysaccharide complexes or conjugates for encapsulation of bioactive compounds.Trends Food Sci. Technol.202110916919610.1016/j.tifs.2021.01.026
    [Google Scholar]
  99. BenjemaaM. NevesM.A. FallehH. IsodaH. KsouriR. NakajimaM. Nanoencapsulation of Thymus capitatus essential oil: Formulation process, physical stability characterization and antibacterial efficiency monitoring.Ind. Crops Prod.201811341442110.1016/j.indcrop.2018.01.062
    [Google Scholar]
  100. ChangY. McLandsboroughL. McClementsD.J. Fabrication, stability and efficacy of dual-component antimicrobial nanoemulsions: Essential oil (thyme oil) and cationic surfactant (lauric arginate).Food Chem.201517229830410.1016/j.foodchem.2014.09.08125442557
    [Google Scholar]
  101. SabetS. RashidinejadA. MeltonL.D. McGillivrayD.J. Recent advances to improve curcumin oral bioavailability.Trends Food Sci. Technol.202111025326610.1016/j.tifs.2021.02.006
    [Google Scholar]
  102. Moran-ValeroM.I. MartinD. TorreloG. RegleroG. TorresC.F. Phytosterols esterified with conjugated linoleic acid. In vitro intestinal digestion and interaction on cholesterol bioaccessibility.J. Agric. Food Chem.20126045113231133010.1021/jf303148d23130954
    [Google Scholar]
  103. AlmutairiF.M. El RabeyH.A. TayelA.A. AlalawyA.I. Al-DuaisM.A. SakranM.I. ZidanN.S. Augmented anticancer activity of curcumin loaded fungal chitosan nanoparticles.Int. J. Biol. Macromol.202015586186710.1016/j.ijbiomac.2019.11.20731786303
    [Google Scholar]
  104. PlamperF.A. RichteringW. Functional microgels and microgel systems.Acc. Chem. Res.201750213114010.1021/acs.accounts.6b0054428186408
    [Google Scholar]
  105. WalkerR. DeckerE.A. McClementsD.J. Development of food-grade nanoemulsions and emulsions for delivery of omega-3 fatty acids: Opportunities and obstacles in the food industry.Food Funct.201561415410.1039/C4FO00723A25384961
    [Google Scholar]
  106. ShidhayeS. VaidyaR. SutarS. PatwardhanA. KadamV. Solid lipid nanoparticles and nanostructured lipid carriers-innovative generations of solid lipid carriers.Curr. Drug Deliv.20085432433110.2174/15672010878591508718855604
    [Google Scholar]
  107. WunnooS. BilhmanS. AmnuaikitT. OntongJ.C. SinghS. AuepemkiateS. VoravuthikunchaiS.P. Rhodomyrtone as a new natural antibiotic isolated from Rhodomyrtus tomentosa leaf extract: A clinical application in the management of acne vulgaris.Antibiotics (Basel)202110210810.3390/antibiotics1002010833499400
    [Google Scholar]
  108. ChenX. ZouL.Q. NiuJ. LiuW. PengS.F. LiuC.M. The stability, sustained release and cellular antioxidant activity of curcumin nanoliposomes.Molecules2015208142931431110.3390/molecules20081429326251892
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673309672241113102535
Loading
/content/journals/cmc/10.2174/0109298673309672241113102535
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Bioactive compound; food supplements; lipid carrier; nanocages; nanostructure; protein
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test