Skip to content
2000
Volume 32, Issue 31
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Aim

This study was designed to construct a risk model based on homologous recombination deficiency (HRD) to evaluate the prognosis and drug sensitivity for patients with lung adenocarcinoma (LUAD).

Background

LUAD is a subtype of lung cancer with unfavorable overall survival (OS) and prognosis. HRD has been widely studied in various tumors, but its role in LUAD has not been fully understood.

Objective

We aimed to construct an HRD-related risk model for predicting the prognosis and drug sensitivity of patients with LUAD.

Methods

Gene expression data of the LUAD samples were collected from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. We extracted HRD genes from previous literature and performed univariate COX analysis to select those closely associated with LUAD prognosis. ConsensusClusterPlus was employed to stratify the samples in the TCGA-LUAD cohort into different subtypes. A RiskScore model was established applying random forest method. Furthermore, immunotherapy response and drug sensitivity were predicted using Tumor Immune Dysfunction and Exclusion (TIDE) software and pRRophytic R package, respectively. Finally, the clinical features between High- and Low- RiskScore groups were compared.

Results

A total of 16 HRD genes relevant to LUAD prognosis were selected and used to classify 3 LUAD clusters (C1, C2, and C3). Specifically, C1, with a lower TIDE score displayed higher immune infiltration and immunotherapy benefit and the optimal OS, while C2 was closely correlated with tumor-relevant pathways and had the worst OS. Finally, 4 HRD genes (RAD51AP1, BRCA1, H2AFX, and FANCL) were determined to develop a RiskScore signature. It was found that a higher RiskScore was related to more advanced stages, worse OS, and tumor development pathways. Additionally, the High-RiskScore group with a higher TIDE score was sensitive to 44 traditional chemotherapy drugs. A nomogram combined with RiskScore exhibited an accurate survival prediction ability.

Conclusion

The HRD-based RiskScore played a crucial role in LUAD development, showing a strong potential to serve as a prognostic indicator for LUAD. Our findings contributed to the diagnosis of LUAD and its treatment.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673333745240927074414
2024-10-01
2025-10-23
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.2176336633525
    [Google Scholar]
  3. SchabathM.B. CoteM.L. Cancer progress and priorities: Lung cancer.Cancer Epidemiol. Biomarkers Prev.201928101563157910.1158/1055‑9965.EPI‑19‑022131575553
    [Google Scholar]
  4. LiS. XuanY. GaoB. SunX. MiaoS. LuT. WangY. JiaoW. Identification of an eight-gene prognostic signature for lung adenocarcinoma.Cancer Manag. Res.2018103383339210.2147/CMAR.S17394130237740
    [Google Scholar]
  5. InamuraK. Clinicopathological characteristics and mutations driving development of early lung adenocarcinoma: Tumor initiation and progression.Int. J. Mol. Sci.2018194125910.3390/ijms1904125929690599
    [Google Scholar]
  6. (a LvJ. HuaY. DingY. Comprehensive metabolomic analysis of lung cancer patients treated with fu zheng fang.Curr. Pharmac. Analy.202218988189110.2174/1573412918666220822143119
    [Google Scholar]
  7. (bSiegel R.L., Miller K.D., Jemal A.. Cancer statistics, 2019., CA Cancer J. Clin. 2019; 69(1): 7-34.10.3322/caac.2155130620402
    [Google Scholar]
  8. NicholsonA.G. TsaoM.S. BeasleyM.B. BorczukA.C. BrambillaE. CooperW.A. DacicS. JainD. KerrK.M. LantuejoulS. NoguchiM. PapottiM. RekhtmanN. ScagliottiG. van SchilP. ShollL. YatabeY. YoshidaA. TravisW.D. The 2021 WHO classification of lung tumors: Impact of advances since 2015.J. Thorac. Oncol.202217336238710.1016/j.jtho.2021.11.00334808341
    [Google Scholar]
  9. ThaiA.A. SolomonB.J. SequistL.V. GainorJ.F. HeistR.S. Lung cancer.Lancet20213981029953555410.1016/S0140‑6736(21)00312‑334273294
    [Google Scholar]
  10. KnijnenburgT.A. WangL. ZimmermannM.T. ChambweN. GaoG.F. CherniackA.D. FanH. ShenH. WayG.P. GreeneC.S. LiuY. AkbaniR. FengB. DonehowerL.A. MillerC. ShenY. KarimiM. ChenH. KimP. JiaP. ShinbrotE. ZhangS. LiuJ. HuH. BaileyM.H. YauC. WolfD. ZhaoZ. WeinsteinJ.N. LiL. DingL. MillsG.B. LairdP.W. WheelerD.A. ShmulevichI. MonnatR.J.Jr XiaoY. WangC. Caesar-JohnsonS.J. DemchokJ.A. FelauI. KasapiM. FergusonM.L. HutterC.M. SofiaH.J. TarnuzzerR. WangZ. YangL. ZenklusenJ.C. ZhangJ.J. ChudamaniS. LiuJ. LollaL. NareshR. PihlT. SunQ. WanY. WuY. ChoJ. DeFreitasT. FrazerS. GehlenborgN. GetzG. HeimanD.I. KimJ. LawrenceM.S. LinP. MeierS. NobleM.S. SaksenaG. VoetD. ZhangH. BernardB. ChambweN. DhankaniV. KnijnenburgT. KramerR. LeinonenK. LiuY. MillerM. ReynoldsS. ShmulevichI. ThorssonV. ZhangW. AkbaniR. BroomB.M. HegdeA.M. JuZ. KanchiR.S. KorkutA. LiJ. LiangH. LingS. LiuW. LuY. MillsG.B. NgK-S. RaoA. RyanM. WangJ. WeinsteinJ.N. ZhangJ. AbeshouseA. ArmeniaJ. ChakravartyD. ChatilaW.K. de BruijnI. GaoJ. GrossB.E. HeinsZ.J. KundraR. LaK. LadanyiM. LunaA. NissanM.G. OchoaA. PhillipsS.M. ReznikE. Sanchez-VegaF. SanderC. SchultzN. SheridanR. SumerS.O. SunY. TaylorB.S. WangJ. ZhangH. AnurP. PetoM. SpellmanP. BenzC. StuartJ.M. WongC.K. YauC. HayesD.N. ParkerJ.S. WilkersonM.D. AllyA. BalasundaramM. BowlbyR. BrooksD. CarlsenR. ChuahE. DhallaN. HoltR. JonesS.J.M. KasaianK. LeeD. MaY. MarraM.A. MayoM. MooreR.A. MungallA.J. MungallK. RobertsonA.G. SadeghiS. ScheinJ.E. SipahimalaniP. TamA. ThiessenN. TseK. WongT. BergerA.C. BeroukhimR. CherniackA.D. CibulskisC. GabrielS.B. GaoG.F. HaG. MeyersonM. SchumacherS.E. ShihJ. KucherlapatiM.H. KucherlapatiR.S. BaylinS. CopeL. DanilovaL. BootwallaM.S. LaiP.H. MaglinteD.T. Van Den BergD.J. WeisenbergerD.J. AumanJ.T. BaluS. BodenheimerT. FanC. HoadleyK.A. HoyleA.P. JefferysS.R. JonesC.D. MengS. MieczkowskiP.A. MoseL.E. PerouA.H. PerouC.M. RoachJ. ShiY. SimonsJ.V. SkellyT. SolowayM.G. TanD. VeluvoluU. FanH. HinoueT. LairdP.W. ShenH. ZhouW. BellairM. ChangK. CovingtonK. CreightonC.J. DinhH. DoddapaneniH.V. DonehowerL.A. DrummondJ. GibbsR.A. GlennR. HaleW. HanY. HuJ. KorchinaV. LeeS. LewisL. LiW. LiuX. MorganM. MortonD. MuznyD. SantibanezJ. ShethM. ShinbrotE. WangL. WangM. WheelerD.A. XiL. ZhaoF. HessJ. AppelbaumE.L. BaileyM. CordesM.G. DingL. FronickC.C. FultonL.A. FultonR.S. KandothC. MardisE.R. McLellanM.D. MillerC.A. SchmidtH.K. WilsonR.K. CrainD. CurleyE. GardnerJ. LauK. MalleryD. MorrisS. PaulauskisJ. PennyR. SheltonC. SheltonT. ShermanM. ThompsonE. YenaP. BowenJ. Gastier-FosterJ.M. GerkenM. LeraasK.M. LichtenbergT.M. RamirezN.C. WiseL. ZmudaE. CorcoranN. CostelloT. HovensC. CarvalhoA.L. de CarvalhoA.C. FregnaniJ.H. Longatto-FilhoA. ReisR.M. Scapulatempo-NetoC. SilveiraH.C.S. VidalD.O. BurnetteA. EschbacherJ. HermesB. NossA. SinghR. AndersonM.L. CastroP.D. IttmannM. HuntsmanD. KohlB. LeX. ThorpR. AndryC. DuffyE.R. LyadovV. PaklinaO. SetdikovaG. ShabuninA. TavobilovM. McPhersonC. WarnickR. BerkowitzR. CramerD. FeltmateC. HorowitzN. KibelA. MutoM. RautC.P. MalykhA. Barnholtz-SloanJ.S. BarrettW. DevineK. FulopJ. OstromQ.T. ShimmelK. WolinskyY. SloanA.E. De RoseA. GiulianteF. GoodmanM. KarlanB.Y. HagedornC.H. EckmanJ. HarrJ. MyersJ. TuckerK. ZachL.A. DeyarminB. HuH. KvecherL. LarsonC. MuralR.J. SomiariS. VichaA. ZelinkaT. BennettJ. IacoccaM. RabenoB. SwansonP. LatourM. LacombeL. TêtuB. BergeronA. McGrawM. StaugaitisS.M. ChabotJ. HibshooshH. SepulvedaA. SuT. WangT. PotapovaO. VoroninaO. DesjardinsL. MarianiO. Roman-RomanS. SastreX. SternM-H. ChengF. SignorettiS. BerchuckA. BignerD. LippE. MarksJ. McCallS. McLendonR. SecordA. SharpA. BeheraM. BratD.J. ChenA. DelmanK. ForceS. KhuriF. MaglioccaK. MaithelS. OlsonJ.J. OwonikokoT. PickensA. RamalingamS. ShinD.M. SicaG. Van MeirE.G. ZhangH. EijckenboomW. GillisA. KorpershoekE. LooijengaL. OosterhuisW. StoopH. van KesselK.E. ZwarthoffE.C. CalatozzoloC. CuppiniL. CuzzubboS. DiMecoF. FinocchiaroG. MatteiL. PerinA. PolloB. ChenC. HouckJ. LohavanichbutrP. HartmannA. StoehrC. StoehrR. TaubertH. WachS. WullichB. KyclerW. MurawaD. WiznerowiczM. ChungK. EdenfieldW.J. MartinJ. BaudinE. BubleyG. BuenoR. De RienzoA. RichardsW.G. KalkanisS. MikkelsenT. NoushmehrH. ScarpaceL. GirardN. AymerichM. CampoE. GinéE. GuillermoA.L. Van BangN. HanhP.T. PhuB.D. TangY. ColmanH. EvasonK. DottinoP.R. MartignettiJ.A. GabraH. JuhlH. AkeredoluT. StepaS. HoonD. AhnK. KangK.J. BeuschleinF. BreggiaA. BirrerM. BellD. BoradM. BryceA.H. CastleE. ChandanV. ChevilleJ. CoplandJ.A. FarnellM. FlotteT. GiamaN. HoT. KendrickM. KocherJ-P. KoppK. MoserC. NagorneyD. O’BrienD. O’NeillB.P. PatelT. PetersenG. QueF. RiveraM. RobertsL. SmallridgeR. SmyrkT. StantonM. ThompsonR.H. TorbensonM. YangJ.D. ZhangL. BrimoF. AjaniJ.A. GonzalezA.M.A. BehrensC. BondarukJ. BroaddusR. CzerniakB. EsmaeliB. FujimotoJ. GershenwaldJ. GuoC. LazarA.J. LogothetisC. Meric-BernstamF. MoranC. RamondettaL. RiceD. SoodA. TamboliP. ThompsonT. TroncosoP. TsaoA. WistubaI. CarterC. HayduL. HerseyP. JakrotV. KakavandH. KeffordR. LeeK. LongG. MannG. QuinnM. SawR. ScolyerR. ShannonK. SpillaneA. StretchJ. SynottM. ThompsonJ. WilmottJ. Al-AhmadieH. ChanT.A. GhosseinR. GopalanA. LevineD.A. ReuterV. SingerS. SinghB. TienN.V. BroudyT. MirsaidiC. NairP. DrwiegaP. MillerJ. SmithJ. ZarenH. ParkJ-W. HungN.P. KebebewE. LinehanW.M. MetwalliA.R. PacakK. PintoP.A. SchiffmanM. SchmidtL.S. VockeC.D. WentzensenN. WorrellR. YangH. MoncrieffM. GoparajuC. MelamedJ. PassH. BotnariucN. CaramanI. CernatM. ChemencedjiI. ClipcaA. DorucS. GorincioiG. MuraS. PirtacM. StanculI. TcaciucD. AlbertM. AlexopoulouI. ArnaoutA. BartlettJ. EngelJ. GilbertS. ParfittJ. SekhonH. ThomasG. RasslD.M. RintoulR.C. BifulcoC. TamakawaR. UrbaW. HaywardN. TimmersH. AntenucciA. FaccioloF. GraziG. MarinoM. MerolaR. de KrijgerR. Gimenez-RoqueploA-P. PichéA. ChevalierS. McKercherG. BirsoyK. BarnettG. BrewerC. FarverC. NaskaT. PennellN.A. RaymondD. SchileroC. SmolenskiK. WilliamsF. MorrisonC. BorgiaJ.A. LiptayM.J. PoolM. SederC.W. JunkerK. OmbergL. DinkinM. ManikhasG. AlvaroD. BragazziM.C. CardinaleV. CarpinoG. GaudioE. CheslaD. CottinghamS. DubinaM. MoiseenkoF. DhanasekaranR. BeckerK-F. JanssenK-P. Slotta-HuspeninaJ. Abdel-RahmanM.H. AzizD. BellS. CebullaC.M. DavisA. DuellR. ElderJ.B. HiltyJ. KumarB. LangJ. LehmanN.L. MandtR. NguyenP. PilarskiR. RaiK. SchoenfieldL. SenecalK. WakelyP. HansenP. LechanR. PowersJ. TischlerA. GrizzleW.E. SextonK.C. KastlA. HendersonJ. PortenS. WaldmannJ. FassnachtM. AsaS.L. SchadendorfD. CouceM. GraefenM. HulandH. SauterG. SchlommT. SimonR. TennstedtP. OlabodeO. NelsonM. BatheO. CarrollP.R. ChanJ.M. DisaiaP. GlennP. KelleyR.K. LandenC.N. PhillipsJ. PradosM. SimkoJ. Smith-McCuneK. VandenBergS. RogginK. FehrenbachA. KendlerA. SifriS. SteeleR. JimenoA. CareyF. ForgieI. MannelliM. CarneyM. HernandezB. CamposB. Herold-MendeC. JungkC. UnterbergA. von DeimlingA. BosslerA. GalbraithJ. JacobusL. KnudsonM. KnutsonT. MaD. MilhemM. SigmundR. GodwinA.K. MadanR. RosenthalH.G. AdebamowoC. AdebamowoS.N. BoussioutasA. BeerD. GiordanoT. Mes-MassonA-M. SaadF. BocklageT. LandrumL. MannelR. MooreK. MoxleyK. PostierR. WalkerJ. ZunaR. FeldmanM. ValdiviesoF. DhirR. LuketichJ. PineroE.M.M. Quintero-AguiloM. CarlottiC.G.Jr Dos SantosJ.S. KempR. SankarankutyA. TirapelliD. CattoJ. AgnewK. SwisherE. CreaneyJ. RobinsonB. ShelleyC.S. GodwinE.M. KendallS. ShipmanC. BradfordC. CareyT. HaddadA. MoyerJ. PetersonL. PrinceM. RozekL. WolfG. BowmanR. FongK.M. YangI. KorstR. RathmellW.K. Fantacone-CampbellJ.L. HookeJ.A. KovatichA.J. ShriverC.D. DiPersioJ. DrakeB. GovindanR. HeathS. LeyT. Van TineB. WesterveltP. RubinM.A. LeeJ.I. AredesN.D. MariamidzeA. Cancer Genome Atlas Research Network Genomic and molecular landscape of DNA damage repair deficiency across The Cancer Genome Atlas.Cell Rep.2018231239254.e610.1016/j.celrep.2018.03.07629617664
    [Google Scholar]
  11. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell2011144564667410.1016/j.cell.2011.02.01321376230
    [Google Scholar]
  12. ChaiY. ChenY. ZhangD. WeiY. LiZ. LiQ. XuB. Homologous recombination deficiency (HRD) and BRCA 1/2 gene mutation for predicting the effect of platinum-based neoadjuvant chemotherapy of early-stage triple-negative breast cancer (TNBC): A systematic review and meta-analysis.J. Pers. Med.202212232310.3390/jpm1202032335207810
    [Google Scholar]
  13. ShiJ. ChenY. PengC. KuangL. ZhangZ. LiY. HuangK. Advances in targeted therapy against driver mutations and epigenetic alterations in non-small cell lung cancer.Oncologie202224461364810.32604/oncologie.2022.027545
    [Google Scholar]
  14. LiaoY. TuC. SongX. CaiL. Case report: Analysis of BRCA1 and BRCA2 gene mutations in a hereditary ovarian cancer family.J. Assist. Reprod. Genet.20203761489149510.1007/s10815‑020‑01783‑w32356124
    [Google Scholar]
  15. KitaharaM. HozumiY. MachinagaM. HayashiY. A case of triple-negative breast cancer with germline pathogenic variants in both BRCA1 and BRCA2.Case Rep. Oncol.20211431645165110.1159/00052014835082620
    [Google Scholar]
  16. LuoL. KeyomarsiK. PARP inhibitors as single agents and in combination therapy: The most promising treatment strategies in clinical trials for BRCA-mutant ovarian and triple-negative breast cancers.Expert Opin. Investig. Drugs202231660763110.1080/13543784.2022.206752735435784
    [Google Scholar]
  17. ZhuY. HuY. TangC. GuanX. ZhangW. Platinum-based systematic therapy in triple-negative breast cancer.Biochim. Biophys. Acta Rev. Cancer20221877118867810.1016/j.bbcan.2022.18867835026309
    [Google Scholar]
  18. PengH. WangY. WangP. HuangC. LiuZ. WuC. A risk model developed based on homologous recombination deficiency predicts overall survival in patients with lower grade glioma.Front. Genet.20221391939110.3389/fgene.2022.91939135846118
    [Google Scholar]
  19. RousseauxS. DebernardiA. JacquiauB. VitteA.L. VesinA. Nagy-MignotteH. Moro-SibilotD. BrichonP.Y. LantuejoulS. HainautP. LaffaireJ. de ReynièsA. BeerD.G. TimsitJ.F. BrambillaC. BrambillaE. KhochbinS. Ectopic activation of germline and placental genes identifies aggressive metastasis-prone lung cancers.Sci. Transl. Med.20135186186ra6610.1126/scitranslmed.300572323698379
    [Google Scholar]
  20. RunneH. RégulierE. KuhnA. ZalaD. GokceO. PerrinV. SickB. AebischerP. DéglonN. Luthi- CarterR. Dysregulation of gene expression in primary neuron models of Huntington’s disease shows that polyglutamine-related effects on the striatal transcriptome may not be dependent on brain circuitry.J. Neurosci.200828399723973110.1523/JNEUROSCI.3044‑08.200818815258
    [Google Scholar]
  21. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma.Nature2011474735360961510.1038/nature1016621720365
    [Google Scholar]
  22. KonstantinopoulosP.A. CeccaldiR. ShapiroG.I. D’AndreaA.D. Homologous recombination deficiency: Exploiting the fundamental vulnerability of ovarian cancer.Cancer Discov.20155111137115410.1158/2159‑8290.CD‑15‑071426463832
    [Google Scholar]
  23. MateoJ. CarreiraS. SandhuS. MirandaS. MossopH. Perez-LopezR. Nava RodriguesD. RobinsonD. OmlinA. TunariuN. BoysenG. PortaN. FlohrP. GillmanA. FigueiredoI. PauldingC. SeedG. JainS. RalphC. ProtheroeA. HussainS. JonesR. ElliottT. McGovernU. BianchiniD. GoodallJ. ZafeiriouZ. WilliamsonC.T. FerraldeschiR. RiisnaesR. EbbsB. FowlerG. RodaD. YuanW. WuY.M. CaoX. BroughR. PembertonH. A’HernR. SwainA. KunjuL.P. EelesR. AttardG. LordC.J. AshworthA. RubinM.A. KnudsenK.E. FengF.Y. ChinnaiyanA.M. HallE. de BonoJ.S. DNA-repair defects and olaparib in metastatic prostate cancer.N. Engl. J. Med.2015373181697170810.1056/NEJMoa150685926510020
    [Google Scholar]
  24. FoulkesW.D. KnoppersB.M. TurnbullC. Population genetic testing for cancer susceptibility: Founder mutations to genomes.Nat. Rev. Clin. Oncol.2016131415410.1038/nrclinonc.2015.17326483301
    [Google Scholar]
  25. ColemanR.L. OzaA.M. LorussoD. AghajanianC. OakninA. DeanA. ColomboN. WeberpalsJ.I. ClampA. ScambiaG. LearyA. HollowayR.W. GancedoM.A. FongP.C. GohJ.C. O’MalleyD.M. ArmstrongD.K. Garcia-DonasJ. SwisherE.M. FloquetA. KonecnyG.E. McNeishI.A. ScottC.L. CameronT. MaloneyL. IsaacsonJ. GobleS. GraceC. HardingT.C. RaponiM. SunJ. LinK.K. GiordanoH. LedermannJ.A. BuckM. DeanA. FriedlanderM.L. GohJ.C. HarnettP. KichenadasseG. ScottC.L. DenysH. DirixL. VergoteI. ElitL. GhatageP. OzaA.M. PlanteM. ProvencherD. WeberpalsJ.I. WelchS. FloquetA. GladieffL. JolyF. LearyA. LortholaryA. LotzJ. MedioniJ. TredanO. YouB. El-BalatA. HänleC. KrabischP. NeunhöfferT. PölcherM. WimbergerP. AmitA. KovelS. LeviovM. SafraT. Shapira-FrommerR. StemmerS. BolognaA. ColomboN. LorussoD. PignataS. SabbatiniR.F. ScambiaG. TamberiS. ZamagniC. FongP.C. O’DonnellA. GancedoM.A. HerraezA.C. Garcia-DonasJ. GuerraE.M. OakninA. PalacioI. RomeroI. SanchezA. BanerjeeS.N. ClampA. DrewY. GabraH.G. JacksonD. LedermannJ.A. McNeishI.A. ParkinsonC. PowellM. AghajanianC. ArmstrongD.K. BirrerM.J. BussM.K. ChambersS.K. ChenL. ColemanR.L. HollowayR.W. KonecnyG.E. MaL. MorganM.A. MorrisR.T. MutchD.G. O’MalleyD.M. SlomovitzB.M. SwisherE.M. VanderkwaakT. VulfovichM. ARIEL3 investigators Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): A randomised, double-blind, placebo-controlled, phase 3 trial.Lancet2017390101061949196110.1016/S0140‑6736(17)32440‑628916367
    [Google Scholar]
  26. RiazN. BlecuaP. LimR.S. ShenR. HigginsonD.S. WeinholdN. NortonL. WeigeltB. PowellS.N. Reis- FilhoJ.S. Pan-cancer analysis of bi-allelic alterations in homologous recombination DNA repair genes.Nat. Commun.20178185710.1038/s41467‑017‑00921‑w29021619
    [Google Scholar]
  27. SwisherE.M. LinK.K. OzaA.M. ScottC.L. GiordanoH. SunJ. KonecnyG.E. ColemanR.L. TinkerA.V. O’MalleyD.M. KristeleitR.S. MaL. Bell-McGuinnK.M. BrentonJ.D. CragunJ.M. OakninA. Ray-CoquardI. HarrellM.I. MannE. KaufmannS.H. FloquetA. LearyA. HardingT.C. GobleS. MaloneyL. IsaacsonJ. AllenA.R. RolfeL. YelenskyR. RaponiM. McNeishI.A. Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): An international, multicentre, open-label, phase 2 trial.Lancet Oncol.2017181758710.1016/S1470‑2045(16)30559‑927908594
    [Google Scholar]
  28. VandersticheleA. BusschaertP. OlbrechtS. LambrechtsD. VergoteI. Genomic signatures as predictive biomarkers of homologous recombination deficiency in ovarian cancer.Eur. J. Cancer20178651410.1016/j.ejca.2017.08.02928950147
    [Google Scholar]
  29. MayakondaA. LinD.C. AssenovY. PlassC. KoefflerH.P. Maftools: Efficient and comprehensive analysis of somatic variants in cancer.Genome Res.201828111747175610.1101/gr.239244.11830341162
    [Google Scholar]
  30. WilkersonM.D. HayesD.N. ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking.Bioinformatics201026121572157310.1093/bioinformatics/btq17020427518
    [Google Scholar]
  31. YinL. ZhouL. GaoS. FengY. ZhuH. XiangJ. XuR. Classification of hepatocellular carcinoma based on N6-methylandenosine–related lncRNAs profiling.Front. Mol. Biosci.2022980741810.3389/fmolb.2022.80741835187083
    [Google Scholar]
  32. HänzelmannS. CasteloR. GuinneyJ. GSVA: Gene set variation analysis for microarray and RNA-Seq data.BMC Bioinformatics2013141710.1186/1471‑2105‑14‑723323831
    [Google Scholar]
  33. CharoentongP. FinotelloF. AngelovaM. MayerC. EfremovaM. RiederD. HacklH. TrajanoskiZ. Pan- cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint Cell Rep.201718124826210.1016/j.celrep.2016.12.01928052254
    [Google Scholar]
  34. LynchC.M. AbdollahiB. FuquaJ.D. de CarloA.R. BartholomaiJ.A. BalgemannR.N. van BerkelV.H. FrieboesH.B. Prediction of lung cancer patient survival via supervised machine learning classification techniques.Int. J. Med. Inform.20171081810.1016/j.ijmedinf.2017.09.01329132615
    [Google Scholar]
  35. IshwaranH LuM KogalurUB. RandomForestSRC: Variable importance (VIMP) with subsampling inference vignette. 2021
    [Google Scholar]
  36. KassambaraA KosinskiM BiecekP. Drawing survival curves using 'ggplot2'.2016Available from: https://rpkgs.datanovia.com/survminer/reference/ggsurvplot.html
  37. KamarudinA.N. CoxT. Kolamunnage-DonaR. Time-dependent ROC curve analysis in medical research: Current methods and applications.BMC Med. Res. Methodol.20171715310.1186/s12874‑017‑0332‑628388943
    [Google Scholar]
  38. GeeleherP. CoxN. HuangR.S. pRRophetic: An R package for prediction of clinical chemotherapeutic response from tumor gene expression levels.PLoS One201499e10746810.1371/journal.pone.010746825229481
    [Google Scholar]
  39. HeS. JiangR. SunH. YangJ. YeC. LiuW. YangX. CaiX. XiaoJ. Surgical efficacy and survival prediction of patients with unspecified malignant bone tumors.BMC Cancer2022221107810.1186/s12885‑022‑10153‑x36266614
    [Google Scholar]
  40. ShenW. SongZ. ZhongX. HuangM. ShenD. GaoP. QianX. WangM. HeX. WangT. LiS. SongX. Sangerbox: A comprehensive, interaction-friendly clinical bioinformatics analysis platform.iMeta202213e3610.1002/imt2.3638868713
    [Google Scholar]
  41. (a JiangP. GuS. PanD. FuJ. SahuA. HuX. LiZ. TraughN. BuX. LiB. LiuJ. FreemanG.J. BrownM.A. WucherpfennigK.W. LiuX.S. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response.Nat. Med.201824101550155810.1038/s41591‑018‑0136‑130127393
    [Google Scholar]
  42. (bSeyfinejad, B.; Jouyban, A. Importance of method validation in the analysis of biomarker. Current Pharmaceutical Analysis., 2022, 18(6), 567-569.10.2174/1573412918666211213142638
    [Google Scholar]
  43. MariathasanS. TurleyS.J. NicklesD. CastiglioniA. YuenK. WangY. KadelE.E.III KoeppenH. AstaritaJ.L. CubasR. JhunjhunwalaS. BanchereauR. YangY. GuanY. ChalouniC. ZiaiJ. ŞenbabaoğluY. SantoroS. SheinsonD. HungJ. GiltnaneJ.M. PierceA.A. MeshK. LianoglouS. RieglerJ. CaranoR.A.D. ErikssonP. HöglundM. SomarribaL. HalliganD.L. van der HeijdenM.S. LoriotY. RosenbergJ.E. FongL. MellmanI. ChenD.S. GreenM. DerlethC. FineG.D. HegdeP.S. BourgonR. PowlesT. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells.Nature2018554769354454810.1038/nature2550129443960
    [Google Scholar]
  44. WangZ. ChenX. Establishment and validation of an immune-associated signature in lung adenocarcinoma.Int. Immunopharmacol.20208810686710.1016/j.intimp.2020.10686732799112
    [Google Scholar]
  45. WangH. WangM.S. WangY. HuangY.Q. ShiJ.P. DingZ.L. WangW.J. Prognostic value of immune related genes in lung adenocarcinoma.Oncol. Lett.2020205110.3892/ol.2020.1212232989393
    [Google Scholar]
  46. LiuW. DongR. GaoS. ShanX. LiM. YuZ. SunL. Assessing the prognostic capability of immune-related gene scoring systems in lung adenocarcinoma.J. Oncol.2022202211510.1155/2022/215139635957802
    [Google Scholar]
  47. de BonoJ. MateoJ. FizaziK. SaadF. ShoreN. SandhuS. ChiK.N. SartorO. AgarwalN. OlmosD. Thiery-VuilleminA. TwardowskiP. MehraN. GoesslC. KangJ. BurgentsJ. WuW. KohlmannA. AdelmanC.A. HussainM. Olaparib for metastatic castration-resistant prostate cancer.N. Engl. J. Med.2020382222091210210.1056/NEJMoa191144032343890
    [Google Scholar]
  48. BanerjeeS. MooreK.N. ColomboN. ScambiaG. KimB.G. OakninA. FriedlanderM. LisyanskayaA. FloquetA. LearyA. SonkeG.S. GourleyC. OzaA. González-MartínA. AghajanianC. BradleyW.H. HolmesE. LoweE.S. DiSilvestroP. Maintenance olaparib for patients with newly diagnosed advanced ovarian cancer and a BRCA mutation (SOLO1/GOG 3004): 5-year follow-up of a randomised, double-blind, placebo-controlled, phase 3 trial.Lancet Oncol.202122121721173110.1016/S1470‑2045(21)00531‑334715071
    [Google Scholar]
  49. TuttA.N.J. GarberJ.E. KaufmanB. VialeG. FumagalliD. RastogiP. GelberR.D. de AzambujaE. FieldingA. BalmañaJ. DomchekS.M. GelmonK.A. HollingsworthS.J. KordeL.A. LinderholmB. BandosH. SenkusE. SugaJ.M. ShaoZ. PippasA.W. NoweckiZ. HuzarskiT. GanzP.A. LucasP.C. BakerN. LoiblS. McConnellR. PiccartM. SchmutzlerR. StegerG.G. CostantinoJ.P. ArahmaniA. WolmarkN. McFaddenE. KarantzaV. LakhaniS.R. YothersG. CampbellC. GeyerC.E.Jr. OlympiA Clinical Trial Steering Committee and Investigators Adjuvant Olaparib for Patients with BRCA1 - or BRCA2 -Mutated Breast Cancer.N. Engl. J. Med.2021384252394240510.1056/NEJMoa210521534081848
    [Google Scholar]
  50. BraunD.A. StreetK. BurkeK.P. CookmeyerD.L. DenizeT. PedersenC.B. GohilS.H. SchindlerN. PomeranceL. HirschL. BakounyZ. HouY. FormanJ. HuangT. LiS. CuiA. KeskinD.B. SteinharterJ. BouchardG. SunM. PimentaE.M. XuW. MahoneyK.M. McGregorB.A. HirschM.S. ChangS.L. LivakK.J. McDermottD.F. ShuklaS.A. OlsenL.R. SignorettiS. SharpeA.H. IrizarryR.A. ChoueiriT.K. WuC.J. Progressive immune dysfunction with advancing disease stage in renal cell carcinoma.Cancer Cell2021395632648.e810.1016/j.ccell.2021.02.01333711273
    [Google Scholar]
  51. LiuJ. GuM. XueY. WangQ. RenY. HuangW. Clinical significance of PD-L1 expression and CD8-Positive tumor-Infiltrating lymphocytes in patients with cavitary lung adenocarcinoma.Oncologie202123343945210.32604/oncologie.2021.017220
    [Google Scholar]
  52. ChenY. WuH. JiaoA. TongJ. ZhuJ. ZhangM. LiZ. LiP. Chinese herbal prescription QYSL prevents progression of lung cancer by targeting tumor microenvironment.Oncologie202224229530710.32604/oncologie.2022.022116
    [Google Scholar]
  53. ZouR. JiangQ. JinT. ChenM. YaoL. DingH. Pan-cancer analyses and molecular subtypes based on the cancer-associated fibroblast landscape and tumor microenvironment infiltration characterization reveal clinical outcome and immunotherapy response in epithelial ovarian cancer.Front. Immunol.20221395622410.3389/fimmu.2022.95622436032075
    [Google Scholar]
  54. FuJ. LiK. ZhangW. WanC. ZhangJ. JiangP. LiuX.S. Large-scale public data reuse to model immunotherapy response and resistance.Genome Med.20201212110.1186/s13073‑020‑0721‑z32102694
    [Google Scholar]
  55. Barroso-GonzálezJ. García-ExpósitoL. HoangS.M. LynskeyM.L. RoncaioliJ.L. GhoshA. WallaceC.T. de VitisM. ModestiM. BernsteinK.A. SarkarS.N. WatkinsS.C. O’SullivanR.J. RAD51AP1 is an essential mediator of alternative lengthening of telomeres.Mol. Cell20197611126.e710.1016/j.molcel.2019.06.04331400850
    [Google Scholar]
  56. ZhaoH. GaoY. ChenQ. LiJ. RenM. ZhaoX. YueW. RAD51AP1 promotes progression of ovarian cancer via TGF-β/Smad signalling pathway.J. Cell. Mol. Med.20212541927193810.1111/jcmm.1587733314567
    [Google Scholar]
  57. LiuR. ZhuG. LiM. CaoP. LiX. ZhangX. HuangH. SongZ. ChenJ. Systematic pan-cancer analysis showed that RAD51AP1 was associated with immune microenvironment, tumor stemness, and prognosis.Front. Genet.20221397103310.3389/fgene.2022.97103336468013
    [Google Scholar]
  58. BridgesA.E. RamachandranS. PathaniaR. ParwalU. LesterA. RajpurohitP. MoreraD.S. PatelN. SinghN. KorkayaH. ManicassamyS. PrasadP.D. LokeshwarV.B. LokeshwarB.L. GanapathyV. ThangarajuM. RAD51AP1 deficiency reduces tumor growth by targeting stem cell self-renewal.Cancer Res.202080183855386610.1158/0008‑5472.CAN‑19‑371332665355
    [Google Scholar]
  59. SaleemM. GhazaliM.B. WahabM.A.M.A. YusoffN.M. MahsinH. SengC.E. KhalidI.A. RahmanM.N.G. YahayaB.H. The BRCA1 and BRCA2 genes in early-onset breast cancer patients.Adv. Exp. Med. Biol.2020129211229687286
    [Google Scholar]
  60. LeeA. MoonB.I. KimT.H. BRCA1/BRCA2 pathogenic variant breast cancer: Treatment and prevention strategies.Ann. Lab. Med.202040211412110.3343/alm.2020.40.2.11431650727
    [Google Scholar]
  61. BarnesD.R. SilvestriV. LeslieG. McGuffogL. DennisJ. YangX. AdlardJ. AgnarssonB.A. AhmedM. AittomäkiK. AndrulisI.L. ArasonA. ArnoldN. AuberB. AzzolliniJ. BalmañaJ. BarkardottirR.B. BarrowdaleD. BarwellJ. BelottiM. BenitezJ. BerthetP. BoonenS.E. BorgÅ. BozsikA. BradyA.F. BrennanP. BrewerC. BrunetJ. BucaloA. BuysS.S. CaldésT. CaligoM.A. CampbellI. CassinghamH. ChristensenL.L. CiniG. ClaesK.B.M. CookJ. CoppaA. CortesiL. DamanteG. DarderE. DavidsonR. de la HoyaM. De LeeneerK. de PutterR. Del ValleJ. DiezO. DingY.C. DomchekS.M. DonaldsonA. EasonJ. EelesR. EngelC. EvansD.G. FeliubadalóL. FostiraF. FroneM. FrostD. GallagherD. GehrigA. GiraudS. GlendonG. GodwinA.K. GoldgarD.E. GreeneM.H. GregoryH. GrossE. HahnenE. HamannU. HansenT.V.O. HansonH. HentschelJ. HorvathJ. IzattL. IzquierdoA. JamesP.A. JanaviciusR. JensenU.B. JohannssonO.T. JohnE.M. KramerG. KroeldrupL. KruseT.A. LautrupC. LazaroC. LesueurF. Lopez-FernándezA. MaiP.L. ManoukianS. MatraiZ. MatricardiL. MaxwellK.N. MebiroukN. MeindlA. MontagnaM. MonteiroA.N. MorrisonP.J. MuranenT.A. MurrayA. NathansonK.L. NeuhausenS.L. NevanlinnaH. Nguyen-DumontT. NiederacherD. OlahE. OlopadeO.I. PalliD. ParsonsM.T. PedersenI.S. PeisselB. Perez-SeguraP. PeterlongoP. PetersenA.H. PintoP. PorteousM.E. PottingerC. PujanaM.A. RadiceP. RamserJ. RantalaJ. RobsonM. RogersM.T. RønlundK. RumpA. Sánchez de AbajoA.M. ShahP.D. SharifS. SideL.E. SingerC.F. StadlerZ. SteeleL. Stoppa-LyonnetD. SutterC. TanY.Y. TeixeiraM.R. TeuléA. ThullD.L. TischkowitzM. TolandA.E. TommasiS. TossA. TrainerA.H. TripathiV. ValentiniV. van AsperenC.J. VenturelliM. VielA. VijaiJ. WalkerL. Wang-GohrkeS. WappenschmidtB. WhaiteA. ZannaI. OffitK. ThomassenM. CouchF.J. SchmutzlerR.K. SimardJ. EastonD.F. Chenevix-TrenchG. AntoniouA.C. OttiniL. GEMO Study Collaborators EMBRACE Collaborators KConFab Investigators HEBON Investigators Consortium of Investigators of Modifiers of BRCA1 and BRCA2 Breast and prostate cancer risks for male BRCA1 and BRCA2 pathogenic variant carriers using polygenic risk scores.J. Natl. Cancer Inst.2022114110912210.1093/jnci/djab14734320204
    [Google Scholar]
  62. YangZ. LiuB. LinT. ZhangY. ZhangL. WangM. Multiomics analysis on DNA methylation and the expression of both messenger RNA and microRNA in lung adenocarcinoma.J. Cell. Physiol.201923457579758610.1002/jcp.2752030370535
    [Google Scholar]
  63. BaoG. GuanX. LiangJ. YaoY. XiangY. LiT. ZhongX. A germline mutation in ATR is associated with lung adenocarcinoma in Asian patients.Front. Oncol.20221285530510.3389/fonc.2022.85530535712480
    [Google Scholar]
  64. HanB. SunY. YangD. ZhangH. MoS. ChenX. LuH. MaoX. HuJ. USP22 promotes development of lung adenocarcinoma through ubiquitination and immunosuppression.Aging (Albany NY)20201286990700510.18632/aging.10305632294625
    [Google Scholar]
  65. LeiK. TanB. LiangR. LyuY. WangK. WangW. WangK. HuX. WuD. LinH. WangM. Development and clinical validation of a necroptosis-related gene signature for prediction of prognosis and tumor immunity in lung adenocarcinoma.Am. J. Cancer Res.202212115160518236504901
    [Google Scholar]
  66. XuQ. ChenY. An aging-related gene signature-based model for risk stratification and prognosis prediction in lung adenocarcinoma.Front. Cell Dev. Biol.2021968537910.3389/fcell.2021.68537934277626
    [Google Scholar]
  67. ZhaoM. ChenZ. ZhengY. LiangJ. HuZ. BianY. JiangT. LiM. ZhanC. FengM. WangQ. Identification of cancer stem cell-related biomarkers in lung adenocarcinoma by stemness index and weighted correlation network analysis.J. Cancer Res. Clin. Oncol.202014661463147210.1007/s00432‑020‑03194‑x32221746
    [Google Scholar]
  68. ZhaoY. FengH.M. YanW.J. QinY. Identification of the signature genes and network of reactive oxygen species related genes and DNA repair genes in lung adenocarcinoma.Front. Med.2022983382910.3389/fmed.2022.83382935308531
    [Google Scholar]
  69. ZhangL. ChenJ. YangH. PanC. LiH. LuoY. ChengT. Multiple microarray analyses identify key genes associated with the development of non-small cell lung cancer from chronic obstructive pulmonary disease.J. Cancer2021124996101010.7150/jca.5126433442399
    [Google Scholar]
  70. FrostM.G. Mazloumi AboukheiliA.M. TothR. WaldenH. Characterization of FANCL variants observed in patient cancer cells.Biosci. Rep.2020406BSR2019130410.1042/BSR2019130432420600
    [Google Scholar]
  71. del ValleJ. RofesP. Moreno-CabreraJ.M. López-DórigaA. BelhadjS. Vargas-ParraG. TeuléÀ. CuestaR. MuñozX. CamposO. SalinasM. de CidR. BrunetJ. GonzálezS. CapelláG. PinedaM. FeliubadalóL. LázaroC. Exploring the role of mutations in Fanconi anemia genes in hereditary cancer patients.Cancers.202012482910.3390/cancers1204082932235514
    [Google Scholar]
  72. CornwellM.J. ThomsonG.J. CoatesJ. BelotserkovskayaR. WaddellI.D. JacksonS.P. GalantyY. Small-molecule inhibition of UBE2T/FANCL-mediated ubiquitylation in the Fanconi anemia pathway.ACS Chem. Biol.20191410acschembio.9b0057010.1021/acschembio.9b0057031525021
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673333745240927074414
Loading
/content/journals/cmc/10.2174/0109298673333745240927074414
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test