Skip to content
2000
Volume 32, Issue 31
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Introduction

This study aimed to present the synthesis and characterization of four novel analogs of cyclophosphamide () and their related precursors () and assess their anticancer activity against breast cancerous (MCF-7) and normal (HUVEC) cells.

Methods

Notably, 2-(bis(2-chloroethyl)amino)-1,3,2-diazaphospholidine 2-oxide () and 2-(bis(2-hydroxyethyl)amino)-1,3,2-diazaphospholidine 2-oxide () exhibited concentration-dependent cytotoxicity against the MCF-7 cell line, with IC values of 8.98 and 28.74 M, respectively.

Results

Annexin V/PI staining and ROS assays demonstrated reduced cell viability and mitochondrial dysfunction. studies involving DFT-D optimization and Molegro virtual docking against B-DNA dodecamer and STAT3 receptors revealed enhanced interactions for certain compounds compared to cyclophosphamide.

Conclusion

Importantly, the and results corroborated each other, supporting the potential anticancer efficacy of these novel analogs.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673332921240920065129
2024-10-04
2025-10-23
Loading full text...

Full text loading...

References

  1. XuY. GongM. WangY. YangY. LiuS. ZengQ. Global trends and forecasts of breast cancer incidence and deaths.Sci. Data202310133410.1038/s41597‑023‑02253‑537244901
    [Google Scholar]
  2. WashingtonC.M. LeaverD.T. Principles and Practice of Radiation Therapy-E-Book.Elsevier Health Sciences2015
    [Google Scholar]
  3. KatzS.J. LantzP.M. JanzN.K. FagerlinA. SchwartzK. LiuL. DeapenD. SalemB. LakhaniI. MorrowM. Patient involvement in surgery treatment decisions for breast cancer.J. Clin. Oncol.200523245526553310.1200/JCO.2005.06.21716110013
    [Google Scholar]
  4. PerryM.C. The chemotherapy source book.Lippincott Williams & Wilkins2008
    [Google Scholar]
  5. PusztaiL. KarnT. SafonovA. Abu-KhalafM.M. BianchiniG. New strategies in breast cancer: immunotherapy.Clin. Cancer Res.20162292105211010.1158/1078‑0432.CCR‑15‑131526867935
    [Google Scholar]
  6. LiuY.P. ZhengC.C. HuangY.N. HeM.L. XuW.W. LiB. Molecular mechanisms of chemo and radiotherapy resistance and the potential implications for cancer treatment.Med. Comm20212331534010.1002/mco2.5534766149
    [Google Scholar]
  7. RbC. GhiringhelliF. Cytotoxic effects of chemotherapy on cancer and immune cells: how can it be modulated to generate novel therapeutic strategies?Future Oncol.201511192645265410.2217/fon.15.19826376787
    [Google Scholar]
  8. Garcia-OliveiraP. OteroP. PereiraA.G. ChamorroF. CarpenaM. EchaveJ. Fraga-CorralM. Simal-GandaraJ. PrietoM.A. Status and challenges of plant-anticancer compounds in cancer treatment.Pharmaceuticals (Basel)202114215710.3390/ph1402015733673021
    [Google Scholar]
  9. MoazzamF. Hatamian-ZarmiA. Ebrahimi HosseinzadehB. KhodagholiF. RookiM. RashidiF. Preparation and characterization of brain-targeted polymeric nanocarriers (Frankincense-PMBN-lactoferrin) and in-vivo evaluation on an Alzheimer's disease-like rat model induced by scopolamine.Brain Res.2024182214862210.1016/j.brainres.2023.14862237832760
    [Google Scholar]
  10. MollaeiM. HassanZ.M. KhorshidiF. LangroudiL. Chemotherapeutic drugs: Cell death- and resistance-related signaling pathways. Are they really as smart as the tumor cells?Transl. Oncol.202114510105610.1016/j.tranon.2021.10105633684837
    [Google Scholar]
  11. Cheung-OngK. GiaeverG. NislowC. DNA-damaging agents in cancer chemotherapy: serendipity and chemical biology.Chem. Biol.201320564865910.1016/j.chembiol.2013.04.00723706631
    [Google Scholar]
  12. GorgzadehA. HheidariA. GhanbarikondoriP. ArastonejadM. GhasemiG.T. AriaM. AllahyartorkamanA. MoazzamF. Investigating the properties and cytotoxicity of cisplatin-loaded nano-polybutylcyanoacrylate on breast cancer cells.As. Pacific J. Cancer Biol.20238434535010.31557/apjcb.2023.8.4.345‑350
    [Google Scholar]
  13. GlotzbeckerB. DuncanC. AlyeaE.III CampbellB. SoifferR. Important drug interactions in hematopoietic stem cell transplantation: what every physician should know.Biol. Blood Marrow Transplant.2012187989100610.1016/j.bbmt.2011.11.02922155504
    [Google Scholar]
  14. ColvinO.M. An overview of cyclophosphamide development and clinical applications.Curr. Pharm. Des.19995855556010.2174/138161280566623011021451210469891
    [Google Scholar]
  15. HuangZ. RoyP. WaxmanD.J. Role of human liver microsomal CYP3A4 and CYP2B6 in catalyzing N-dechloroethylation of cyclophosphamide and ifosfamide.Biochem. Pharmacol.200059896197210.1016/S0006‑2952(99)00410‑410692561
    [Google Scholar]
  16. HuL. Prodrugs: effective solutions for solubility, permeability and targeting challenges.IDrugs20047873674215334306
    [Google Scholar]
  17. HaounatiR. IghnihH. OuachtakH. MalekshahR.E. HafidN. JadaA. Ait AddiA. Z-Scheme g-C3N4/Fe3O4/Ag3PO4 @Sep magnetic nanocomposites as heterojunction photocatalysts for green malachite degradation and dynamic molecular studies.Colloids Surf. A Physicochem. Eng. Asp.202367113150910.1016/j.colsurfa.2023.131509
    [Google Scholar]
  18. IghnihH. HaounatiR. MalekshahR.E. OuachtakH. JadaA. AddiA.A. Photocatalytic degradation of RhB dye using hybrid nanocomposite BiOCl@Kaol under sunlight irradiation.J. Water Process Eng.20235410392510.1016/j.jwpe.2023.103925
    [Google Scholar]
  19. DorairajD.P. HaribabuJ. DharmasivamM. MalekshahR.E. Mohamed SubarkhanM.K. EcheverriaC. KarvembuR. Ru (II)-p-Cymene complexes of furoylthiourea ligands for anticancer applications against breast cancer cells.Inorg. Chem.20236230117611177410.1021/acs.inorgchem.3c0075737459067
    [Google Scholar]
  20. GholivandK. SabaghianM. BabaeiA. Eshaghi MalekshahR. Sadeghi-MohammadiS. Naderi-ManeshH. Phytic acid-modified graphene/cobalt oxide nanocomposites: synthesis, characterization, theoretical studies, antiproliferative properties, and catalytic activities.New J. Chem.202347178363838010.1039/D3NJ00091E
    [Google Scholar]
  21. MalekshahR.E. Biological studies and computational modeling of two new copper complexes derived from -diketones and their nano-complexes.J. Coord. Chem.20192233225010.1080/00958972.2019.1656334
    [Google Scholar]
  22. GaliniM. SalehiM. KubickiM. BayatM. MalekshahR.E. Synthesis, structural characterization, DFT and molecular simulation study of new zinc-Schiff base complex and its application as a precursor for preparation of ZnO nanoparticle.J. Mol. Struct.2020120712771510.1016/j.molstruc.2020.127715
    [Google Scholar]
  23. MalekshahR.E. SalehiM. KubickiM. KhaleghianA. Synthesis, structure, computational modeling and biological activity of two new Casiopenas complexes and their nanoparticles.J. Coord. Chem.201972132233225010.1080/00958972.2019.1656334
    [Google Scholar]
  24. DorairajD.P. HaribabuJ. MahendiranD. MalekshahR.E. HsuS.C.N. KarvembuR. Antiproliferative potential of copper(I) acylthiourea complexes with triphenylphosphine against breast cancer cells.Appl. Organomet. Chem.2023376e708710.1002/aoc.7087
    [Google Scholar]
  25. RoozbahaniP. SalehiM. MalekshahR.E. KubickiM. Synthesis, crystal structure, electrochemical behavior and docking molecular of poly-nuclear metal complexes of Schiff base ligand derived from 2-amino benzyl alcohol.Inorg. Chim. Acta201949611902210.1016/j.ica.2019.119022
    [Google Scholar]
  26. HanifaB. SirajuddinM. KubickiM. TiekinkE.R.T. Three isomeric 4-[(n-bromophenyl)carbamoyl]butanoic acids (n = 2, 3 and 4) as DNA intercalator: Synthesis, physicochemical characterization, antimicrobial activity, antioxidant potential and in silico study.J. Mol. Struct.2022126213303310.1016/j.molstruc.2022.133033
    [Google Scholar]
  27. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.Adv. Drug Deliv. Rev.20126441710.1016/j.addr.2012.09.01911259830
    [Google Scholar]
  28. DalalM. AntilN. KumarB. DeviJ. GargS. Exploring the novel aryltellurium(IV) complexes: Synthesis, characterization, antioxidant, antimicrobial, antimalarial, theoretical and ADMET studies.Inorg. Chem. Commun.202415911174310.1016/j.inoche.2023.111743
    [Google Scholar]
  29. WeberG.F. Molecular therapies of cancer.Springer201510.1007/978‑3‑319‑13278‑5
    [Google Scholar]
  30. DArcyM.S. Cell death: a review of the major forms of apoptosis, necrosis and autophagy.Cell Biol. Int.201943658259210.1002/cbin.1113730958602
    [Google Scholar]
  31. CengizM. SahinturkV. YildizS.C. ahinK. BiliciN. YamanS.O. AltunerY. Appak-BaskoyS. AyhanciA. Cyclophosphamide induced oxidative stress, lipid per oxidation, apoptosis and histopathological changes in rats: Protective role of boron.J. Trace Elem. Med. Biol.20206212657410.1016/j.jtemb.2020.12657432516632
    [Google Scholar]
  32. GholivandK. FaraghiM. FallahN. VahabiradM. MalekshahR.E. SalimiF. Pournasir-roudbanehM. New phosphoramides containing 2-amino-1,4-naphthaquinone moiety as anticancer and antibacterial agents: Experimental and theoretical evaluations.Process Biochem.20231329710910.1016/j.procbio.2023.06.015
    [Google Scholar]
  33. GholivandK. SabaghianM. Eshaghi MalekshahR. Synthesis, characterization, cytotoxicity studies, theoretical approach of adsorptive removal and molecular calculations of four new phosphoramide derivatives and related graphene oxide.Bioorg. Chem.202111510519310.1016/j.bioorg.2021.10519334339976
    [Google Scholar]
  34. SalehiM. KubickiM. GaliniM. JafariM. MalekshahR.E. Synthesis, characterization and crystal structures of two novel sulfa drug Schiff base ligands derived sulfonamide and molecular docking study.J. Mol. Struct.2019118059560210.1016/j.molstruc.2018.12.002
    [Google Scholar]
  35. Eshaghi MalekshahR. SalehiM. KubickiM. KhaleghianA. Crystal structure, molecular docking, and biological activity of the zinc complexes with 2-thenoyltrifluoroacetone and N-donor heterocyclic ligands.J. Mol. Struct.2017115015516510.1016/j.molstruc.2017.08.079
    [Google Scholar]
  36. AfshariH. NourbakhshM. SalehiN. Mahboubi-RabbaniM. ZarghiA. NooriS. STAT3-mediated apoptotic-enhancing function of sclareol against breast cancer cells and cell sensitization to cyclophosphamide.Iran. J. Pharm. Res.202019139841232922496
    [Google Scholar]
  37. KumarA. BoraU. Molecular docking studies on inhibition of Stat3 dimerization by curcumin natural derivatives and its conjugates with amino acids.Bioinformation201282098899310.6026/9732063000898823275693
    [Google Scholar]
  38. YilmazV.T. IcselC. TurgutO.R. AygunM. ErkisaM. TurkdemirM.H. UlukayaE. Synthesis, structures and anticancer potentials of platinum(II) saccharinate complexes of tertiary phosphines with phenyl and cyclohexyl groups targeting mitochondria and DNA.Eur. J. Med. Chem.201815560962210.1016/j.ejmech.2018.06.03529920455
    [Google Scholar]
  39. RoyS. ColomboE. VinckR. MariC. RubbianiR. PatraM. GasserG. Increased lipophilicity of halogenated ruthenium(ii) polypyridyl complexes leads to decreased phototoxicity in vitro when used as photosensitizers for photodynamic therapy.ChemBioChem202021202966297310.1002/cbic.20200028932473056
    [Google Scholar]
  40. DasA. MaityR. SarkarT. DasP. BrandaoP. MaityT. SarkarK. SamantaB.C. Synthesis, crystal structure, lipophilicity, antioxidant activity, binding interactions, and antibacterial activity against methicillin-resistant Staphylococcus aureus of a Ni(ii) Schiff base complex: combined theoretical and experimental approaches.New J. Chem.20244822102261023810.1039/D3NJ05150A
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673332921240920065129
Loading
/content/journals/cmc/10.2174/0109298673332921240920065129
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): anticancer; breast cancer; Cyclophosphamide; docking studies; MTT assay; ROS assay
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test