Skip to content
2000
Volume 32, Issue 31
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Nickel nanomaterials play an important role in biological applications, but they have high toxicity and poor biocompatibility. To overcome these defects, we coated the surface of Ni nanotubes with different thicknesses of SiO to reduce cytotoxicity, improve biocompatibility, and broaden their biological application value.

Objective

This study aimed to construct Ni nanotubes with different thicknesses of SiO nanoshells; investigate the effects of silicon layer thickness, incubation time, and cell line category on the cytotoxicity of the as-synthesized materials, and evaluate the biocompatibility of the materials by biological enzymes. The Ni@SiO-NH was selected for use as an adsorbent for the adsorption and purification of histidine-rich proteins, such as Bovine Hemoglobin (BHb).

Methods

Magnetic Ni nanotubes were prepared by the template-chemical deposition method. A modified version of the Stöber process was used for the SiO coating of Ni@SiO nanotubes, and adjusted by changing the volume of TEOS for different thicknesses of SiO nanoshells.

Results

Different cell lines containing tumor cells and normal cells were used in the toxicity experiment, which confirmed the low cytotoxicity and good biocompatibility of Ni@SiO. To achieve high efficiency of immobilization and purification of histidine-rich proteins, Ni@SiO-NH was obtained by introducing the amino functional group. The Ni@SiO-NH was found to possess lower cytotoxicity and higher adsorption capacity compared to other synthesized materials. Besides, the Ni@SiO-NH also exhibited good selectivity of histidine-rich proteins.

Conclusion

This work has not only provided ideas for reducing the cytotoxicity and improving the biocompatibility of biological nanomaterials, but also laid a foundation for subsequent biological applications.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673307793240802062318
2024-08-07
2025-10-23
Loading full text...

Full text loading...

References

  1. Chandrashekar KollarahithluS. BalakrishnanR.M. Adsorption of pharmaceuticals pollutants, ibuprofen, acetaminophen, and streptomycin from the aqueous phase using amine functionalized superparamagnetic silica nanocomposite.J. Clean. Prod.202129412615510.1016/j.jclepro.2021.126155
    [Google Scholar]
  2. Geetanjali DhillonS.K. KunduP.P. Development of polypyrrole nanotube coated with chitosan and nickel oxide as a biocompatible anode to enhance the power generation in microbial fuel cell.J. Power Sources202253923159510.1016/j.jpowsour.2022.231595
    [Google Scholar]
  3. HuW. ZhenW. ZhangM. WangW. JiaX. AnS. WangY. GuoZ. JiangX. Development of nickel selenide@ polydopamine nanocomposites for magnetic resonance imaging guided NIR-II photothermal therapy.Adv. Healthc. Mater.20211023210154210.1002/adhm.20210154234643341
    [Google Scholar]
  4. DaiX. MaJ. ChenN. CaiY. HeY. LiX. GaoF. MSNs-based nanocomposite for biofilm imaging and NIR-activated chem/photothermal/photodynamic combination therapy.ACS Appl. Bio Mater.2021432810282010.1021/acsabm.1c0003435014320
    [Google Scholar]
  5. LiX. HuP. CaoY. ZhuG. ShenX. Composition-tunable Ni1−xCox nanotubes: Template synthesis, magnetic properties, and catalytic activities for the reduction of 4-nitrophenol.Mater. Lett.201822838739010.1016/j.matlet.2018.06.064
    [Google Scholar]
  6. ZhaoZ. LiuY. RuanS. HuY. Current anti-amyloid-β therapy for alzheimer’s disease treatment: from clinical research to nanomedicine.Int. J. Nanomedicine2023187825784510.2147/IJN.S44411538144511
    [Google Scholar]
  7. CaoY. ZhangR. The application of nanotechnology in treatment of Alzheimer’s disease.Front. Bioeng. Biotechnol.202210104298610.3389/fbioe.2022.104298636466349
    [Google Scholar]
  8. TangZ. ZhangM. GaoL. BaoY. LiP. WangM. ShaoT. WangG. LiuC. Optimal extraction of polysaccharides from Stevia rebaudiana roots for protection against hydrogen peroxide-induced oxidative damage in RAW264.7 cells.Nat. Prod. Res.2023331510.1080/14786419.2023.226390537791599
    [Google Scholar]
  9. ZhuL. ChenY. WeiC. YangX. ChengJ. YangZ. ChenC. JiZ. Anti-proliferative and pro-apoptotic effects of cinobufagin on human breast cancer MCF-7 cells and its molecular mechanism.Nat. Prod. Res.201832449349710.1080/14786419.2017.131557528412840
    [Google Scholar]
  10. SongA. DingT. WeiN. YangJ. MaM. ZhengS. JinH. Schisandrin B induces HepG2 cells pyroptosis by activating NK cells mediated anti-tumor immunity.Toxicol. Appl. Pharmacol.202347211657410.1016/j.taap.2023.11657437271225
    [Google Scholar]
  11. KongL. WuY. HuW. LiuL. XueY. LiangG. LiangG.Y. Mechanisms underlying reproductive toxicity induced by nickel nanoparticles identified by comprehensive gene expression analysis in GC-1 spg cells.Environ. Pollut.202127511655610.1016/j.envpol.2021.11655633588191
    [Google Scholar]
  12. CaiY. WuG. ChuD. LiuL. SunJ. WangM. LiX. Construction, pH-responsive drug release and in vitro cytotoxicity of Ni@C nanotubes.Mater. Chem. Phys.202228712634810.1016/j.matchemphys.2022.126348
    [Google Scholar]
  13. WangX. ZhuY. LuW. GuoX. ChenL. ZhangN. ChenS. GeC. XuS. Microcystin-LR-induced nuclear translocation of cGAS promotes mutagenesis in human hepatocytes by impeding homologous recombination repair.Toxicol. Lett.20233739410410.1016/j.toxlet.2022.11.01536435412
    [Google Scholar]
  14. MoY. JiangM. ZhangY. WanR. LiJ. ZhongC.J. LiH. TangS. ZhangQ. Comparative mouse lung injury by nickel nanoparticles with differential surface modification.J. Nanobiotechnology2019171210.1186/s12951‑018‑0436‑030616599
    [Google Scholar]
  15. WuG. ZhangC. LiuC. LiX. CaiY. WangM. ChuD. LiuL. MengT. ChenZ. Magnetic tubular nickel@silica-graphene nanocomposites with high preconcentration capacity for organothiophosphate pesticide removal in environmental water: Fabrication, magnetic solid-phase extraction, and trace detection.J. Hazard. Mater.202345713178810.1016/j.jhazmat.2023.13178837302192
    [Google Scholar]
  16. WangC. HaoL. SunX. YangY. YinQ. LiM. Response mechanism of psychrotolerant Bacillus cereus D2 towards Ni (II) toxicity and involvement of amino acids in Ni (II) toxicity reduction.J. Hazard. Mater.20224301512836310.1016/j.jhazmat.2022.12836335183050
    [Google Scholar]
  17. El SaftyA.M.K. SamirA.M. MekkawyM.K. FouadM.M. Genotoxic effects due to exposure to chromium and nickel among electroplating workers.Int. J. Toxicol.201837323424010.1177/109158181876408429554825
    [Google Scholar]
  18. GuoH. LiuH. JianZ. CuiH. FangJ. ZuoZ. DengJ. LiY. WangX. ZhaoL. GengY. OuyangP. LaiW. ChenZ. HuangC. Nickel induces inflammatory activation via NF-κB, MAPKs, IRF3 and NLRP3 inflammasome signaling pathways in macrophages.Aging (Albany NY)20191123116591167210.18632/aging.102570
    [Google Scholar]
  19. LiX. ZhongF. Nickel induces interleukin-1β secretion via the NLRP3–ASC–caspase-1 pathway.Inflammation201437245746610.1007/s10753‑013‑9759‑z
    [Google Scholar]
  20. ZhengJ. WangS. VarroneC. ZhouA. KongX. LiH. YuL. YueX. Mechanism, electrochemistry and biotoxicity analysis of the biodegradation of sulfadiazine on nickel(II)/manganese(II)-modified graphite felt bioanode.Environ. Res.202221011292810.1016/j.envres.2022.11292835151658
    [Google Scholar]
  21. GongN. ShaoK. FengW. LinZ. LiangC. SunY. Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris.Chemosphere201183451051610.1016/j.chemosphere.2010.12.05921216429
    [Google Scholar]
  22. SongX. GuK. ZhangQ. JinL. HeC. ZhangM. In situ fabrication of a NiO nanoparticles/single-layered MXene nanosheet schottky heterojunction toward sensing xylene and formaldehyde.J. Mater. Chem. A Mater. Energy Sustain.20231126144161442310.1039/D3TA02002A
    [Google Scholar]
  23. WangY. ZhangX.M. SunY. ChenH.L. ZhouL.Y. Cetuximab-decorated and NIR-activated nanoparticles based on platinum (IV)-prodrug: preparation, characterization and in-vitro anticancer activity in epidermoid carcinoma cells.Iran. J. Pharm. Res.202120137138334400966
    [Google Scholar]
  24. LiuY. FanQ. HuoY. LiuC. LiB. LiY. Liu, Chao, Li, B.; Li, Y.M. Construction of a mesoporous polydopamine@GO/ cellulose nanofibril composite hydrogel with an encapsulation structure for controllable drug release and toxicity shielding.ACS Appl. Mater. Interfaces20201251574105742010.1021/acsami.0c1546533289538
    [Google Scholar]
  25. PadervandM. HeidarpourH. GoshadehzehnM. HajiahmadiS. Photocatalytic degradation of 3-methyl-4-nitrophenol over Ag/AgCl-decorated/[MOYI]-coated/ZnO nanostructures: Material characterization, photocatalytic performance, and in-vivo toxicity assessment of the photoproducts.Environmental Technology & Innovation20212110121210.1016/j.eti.2020.101212
    [Google Scholar]
  26. FahmyH.M. MoslehA.M. ElghanyA.A. Shams-EldinE. Abu SereaE.S. AliS.A. ShalanA.E. Coated silver nanoparticles: synthesis, cytotoxicity, and optical properties.RSC Advances2019935201182013610.1039/C9RA02907A35514687
    [Google Scholar]
  27. AboushoushahS. AlshammariW. DarweshR. ElbailyN. Toxicity and biodistribution assessment of curcumin-coated iron oxide nanoparticles: Multidose administration.Life Sci.202127711962510.1016/j.lfs.2021.11962534015288
    [Google Scholar]
  28. WangY. RenX. ZhengY. TanL. LiB. FuC. WuQ. ChenZ. RenJ. YangD. YuS. MengX. Boosting microwave thermo-dynamic cancer therapy of TiMOF via COF-coating.Small202319492304440, 49, 230444010.1002/smll.20230444037544921
    [Google Scholar]
  29. WangM. NiY. LiuA. Fe3O4@resorcinol-formaldehyde resin/Cu2O composite microstructures: solution-phase construction, magnetic performance, and applications in antibacterial and catalytic fields.ACS Omega2017241505151210.1021/acsomega.7b0006430023638
    [Google Scholar]
  30. WangN. WangW. QiD. KangG. WangB. ZhangH. RuanJ. LeiR. ZhangZ. ZhangS. ZhouH. Development of efficient and economic Bi2O3/BN/Co3O4 composite photocatalyst: Degradation mechanism, pathway and toxicity study of norfloxacin.Chemosphere202435214148110.1016/j.chemosphere.2024.14148138395366
    [Google Scholar]
  31. ZhangH. YangZ. JuY. ChuX. DingY. HuangX. ZhuK. TangT. SuX. HouY. Galvanic displacement synthesis of monodisperse janusand satellite-like plasmonic–magnetic Ag–Fe@Fe3O4 heterostructures with reduced cytotoxicity.Adv. Sci. (Weinh.)201858180027110.1002/advs.201800271
    [Google Scholar]
  32. ZhouM. GeX. KeD.M. TangH. ZhangJ.Z. CalvaresiM. GaoB. SunL. SuQ. WangH. The Bioavailability, biodistribution, and toxic effects of silica-coated upconversion nanoparticles in vivo. Front Chem.2019721810.3389/fchem.2019.0021831024902
    [Google Scholar]
  33. CamaioniA. MassimianiM. LacconiV. MagriniA. SalustriA. SotiriouG.A. SinghD. BitounisD. BoccaB. PinoA. BaroneF. ProtaV. IavicoliI. ScimecaM. BonannoE. CasseeF.R. DemokritouP. PietroiustiA. CampagnoloL. Silica encapsulation of ZnO nanoparticles reduces their toxicity for cumulus cell-oocyte-complex expansion.Part. Fibre Toxicol.20211813310.1186/s12989‑021‑00424‑z34479598
    [Google Scholar]
  34. ZhangJ. TangB. ZhuZ. ZhaoG. Size-controlled microporous SiO2 coated TiO2 nanotube arrays for preferential photoelectrocatalytic oxidation of highly toxic PAEs.Appl. Catal. B202026811840010.1016/j.apcatb.2019.118400
    [Google Scholar]
  35. XingW. WangY. MaoX. GaoZ. YanX. YuanY. HuangL. TangJ. Improvement strategies for oil/water separation based on electrospun SiO2 nanofibers.J. Colloid Interface Sci.2024653Pt B1600161910.1016/j.jcis.2023.09.19637812837
    [Google Scholar]
  36. YangW. HuH. PanQ. DengX. ZhangY. ShaoZ. Iron-polydopamine coated multifunctional nanoparticle SiO2@PDA/Fe3+-FA mediated low temperature photothermal for chemodynamic therapy of cisplatin-insensitive osteosarcoma.Mater. Des.202322711178510.1016/j.matdes.2023.111785
    [Google Scholar]
  37. SunY. ShiT. ZhouY. ZhouL. SunB. Folate-decorated and NIR-triggered nanoparticles loaded with platinum(IV)-prodrug plus 5-fluorouracil for targeted and chemo-photothermal combination therapy.J. Drug Deliv. Sci. Technol.201848404810.1016/j.jddst.2018.08.021
    [Google Scholar]
  38. SunY. ShiT. ZhouL. ZhouY. SunB. LiuX. Folate-decorated and NIR-activated nanoparticles based on platinum(IV) prodrugs for targeted therapy of ovarian cancer.J. Microencapsul.201734767568610.1080/02652048.2017.139311429027828
    [Google Scholar]
  39. HongH. ZouQ. LiuY. WangS. ShenG. YanX. Supramolecular nanodrugs based on covalent assembly of therapeutic peptides toward in vitro synergistic anticancer therapy.ChemMedChem202116152381238510.1002/cmdc.20210023633908190
    [Google Scholar]
  40. KumarP. PatelM. ParkC. HanH. JeongB. KangH. PatelR. KohW.G. ParkC. Highly luminescent biocompatible CsPbBr3 @SiO2 core–shell nanoprobes for bioimaging and drug delivery.J. Mater. Chem. B Mater. Biol. Med.2020845103371034510.1039/D0TB01833C33078175
    [Google Scholar]
  41. HuangR.H. SobolN.B. YounesA. MamunT. LewisJ.S. UlijnR.V. O’BrienS. Comparison of methods for surface modification of barium titanate nanoparticles for aqueous dispersibility: toward biomedical utilization of perovskite oxides.ACS Appl. Mater. Interfaces20201246511355114710.1021/acsami.0c1006332988209
    [Google Scholar]
  42. AllenC. The question of toxicity of nanomaterials and nanoparticles.J. Control. Release201930428810.1016/j.jconrel.2019.06.00831185234
    [Google Scholar]
  43. LiuP. ShengT. XieZ. ChenJ. GuZ. Robust, highly visible, and facile bioconjugation colloidal crystal beads for bioassay.ACS Appl. Mater. Interfaces20181035293782938410.1021/acsami.8b1147230094987
    [Google Scholar]
  44. WeiX. QuX. DingL. HuJ. JiangW. Role of bovine serum albumin and humic acid in the interaction between SiO2 nanoparticles and model cell membranes.Environ. Pollut.20162191810.1016/j.envpol.2016.09.05927661722
    [Google Scholar]
  45. LimoM.J. Sola-RabadaA. BoixE. ThotaV. WestcottZ.C. PudduV. PerryC.C. Interactions between metal oxides and biomolecules: From fundamental understanding to applications.Chem. Rev.201811822111181119310.1021/acs.chemrev.7b0066030362737
    [Google Scholar]
  46. LiangT. WangF. ElhassanR.M. ChengY. TangX. ChenW. FangH. HouX. Targeting histone deacetylases for cancer therapy: Trends and challenges.Acta Pharm. Sin. B20231362425246310.1016/j.apsb.2023.02.00737425042
    [Google Scholar]
  47. TanwarS. WuL. ZahnN. RajP. GhaemiB. ChatterjeeA. BulteJ.W.M. BarmanI. Targeted enzyme activity imaging with quantitative phase microscopy.Nano Lett.202323104602460810.1021/acs.nanolett.3c0109037154678
    [Google Scholar]
  48. YangB. ChenY. ShiJ. Mesoporous silica/organosilica nanoparticles: Synthesis, biological effect and biomedical application.Mater. Sci. Eng. Rep.20191376610510.1016/j.mser.2019.01.001
    [Google Scholar]
  49. YangY. LiH. XieH. HaoJ. Carrier-free, pure nanodrugs based on dasatinib and 5-Fluorouracil show aggregation-induced emission and enhanced antitumor efficacy.J. Drug Deliv. Sci. Technol.20239010514210.1016/j.jddst.2023.105142
    [Google Scholar]
  50. YangM. DongQ. GuanY. ZhangY. Molecularly imprinted polymers with shape-memorable imprint cavities for efficient separation of hemoglobin from blood.Biomacromolecules20232431233124310.1021/acs.biomac.2c0128536811910
    [Google Scholar]
  51. JoseL. LeeC. HwangA. ParkJ.H. SongJ.K. PaikH. Magnetically steerable Fe3O4@Ni2+-NTA-polystyrene nanoparticles for the immobilization and separation of his6-protein.Eur. Polym. J.201911252452910.1016/j.eurpolymj.2019.01.024
    [Google Scholar]
  52. FanB. LiF. ChengY. WangZ. ZhangN. WuQ. BaiL. ZhangX. Rare-earth separations enhanced by magnetic field.Separ. Purif. Tech.202230112202510.1016/j.seppur.2022.122025
    [Google Scholar]
  53. XieX. HuQ. KeR. ZhenX. BuY. WangS. Facile preparation of photonic and magnetic dual responsive protein imprinted nanomaterial for specific recognition of bovine hemoglobin.Chem. Eng. J.201937113013710.1016/j.cej.2019.04.019
    [Google Scholar]
  54. ZhengX. JingZ. SunZ. DuL. XueZ. LuD. YasiG. WangY. Significantly improved separation efficiency of refractory weakly magnetic minerals by pulsating high- gradient magnetic separation coupling with magnetic fluid.ACS Sustain. Chem.& Eng.20221031101051011810.1021/acssuschemeng.2c00584
    [Google Scholar]
  55. LeT.D. SuttikhanaI. AshaoluT.J. State of the art on the separation and purification of proteins by magnetic nanoparticles.J. Nanobiotechnology202321136310.1186/s12951‑023‑02123‑737794459
    [Google Scholar]
  56. MediciS. PeanaM. PelucelliA. ZorodduM.A. An updated overview on metal nanoparticles toxicity.Semin. Cancer Biol.202176172610.1016/j.semcancer.2021.06.02034182143
    [Google Scholar]
  57. LiX-Z. HuP-J. ZhuZ-D. ZhuG-X. ShenX-Pi. WangM. SunY. FengD.X. Release mechanism and properties of ph-responsive drug nanocarriers.Wuji Huaxue Xuebao201834813991412
    [Google Scholar]
  58. BostanH.B. RezaeeR. ValokalaM.G. TsarouhasK. GolokhvastK. TsatsakisA.M. KarimiG. Cardiotoxicity of nano-particles.Life Sci.2016165919910.1016/j.lfs.2016.09.01727686832
    [Google Scholar]
  59. KhanI. SaeedK. KhanI. Nanoparticles: Properties, applications and toxicities.Arab. J. Chem.201912790893110.1016/j.arabjc.2017.05.011
    [Google Scholar]
  60. LiX. WangM. YeY. WuK. Boron-doping Ni@Au nanotubes: Facile synthesis, magnetic property, and in vitro cytotoxicity on Molt-4 cells.Mater. Lett.201310822222410.1016/j.matlet.2013.06.104
    [Google Scholar]
  61. KimJ. ChunS.H. AmornkitbamrungL. SongC. YukJ.S. AhnS.Y. KimB.W. LimY.T. OhB.K. UmS.H. Gold nanoparticle clusters for the investigation of therapeutic efficiency against prostate cancer under near-infrared irradiation.Nano Converg.202071510.1186/s40580‑019‑0216‑z32064551
    [Google Scholar]
  62. ZhangJ. HuangL. ZhengJ. XuJ. AsiriA.M. MarwaniH.M. ZhangM. SiO2-assisted synthesis of Fe3O4@SiO2@C-Ni nanochains for effective catalysis and protein adsorption.J. Magn. Magn. Mater.202049716601110.1016/j.jmmm.2019.166011
    [Google Scholar]
  63. ShaoP. LiangD. YangL. ShiH. XiongZ. DingL. YinX. ZhangK. LuoX. Evaluating the adsorptivity of organo-functionalized silica nanoparticles towards heavy metals: Quantitative comparison and mechanistic insight.J. Hazard. Mater.202038712167610.1016/j.jhazmat.2019.12167631759761
    [Google Scholar]
  64. XiaoZ. XuJ. NiuY. ZhuG. KouX. Effects of surface functional groups on the adhesion of SiO2 nanospheres to bio-based materials.Nanomaterials (Basel)2019910141110.3390/nano910141131623332
    [Google Scholar]
  65. ChenL. GaoT. WuX. HeM. WangX. TengF. LiY. Polycarboxylate functionalized magnetic nanoparticles Fe3O4@SiO2@CS-COOH: Preparation, characterization, and immobilization of bovine serum albumin.Int. J. Biol. Macromol.2024260Pt 212961710.1016/j.ijbiomac.2024.12961738266861
    [Google Scholar]
  66. LiX.Z. WuK.L. YeY. WeiX.W. Gas-assisted growth of boron-doped nickel nanotube arrays: rapid synthesis, growth mechanisms, tunable magnetic properties, and super-efficient reduction of 4-nitrophenol.Nanoscale2013593648365310.1039/c3nr00411b23546439
    [Google Scholar]
  67. KutluayS. ŞahinÖ. EceM.Ş. Fabrication and characterization of Fe3O4/perlite, Fe3O4/perlite@SiO2, and Fe3O4/perlite@SiO2@sulfanilamide magnetic nanomaterials.Appl. Phys., A Mater. Sci. Process.2022128322210.1007/s00339‑022‑05369‑4
    [Google Scholar]
  68. LiuR. ChiL. WangX. WangY. SuiY. XieT. ArandiyanH. Effective and selective adsorption of phosphate from aqueous solution via trivalent-metals-based amino-MIL-101 MOFs.Chem. Eng. J.201935715916810.1016/j.cej.2018.09.122
    [Google Scholar]
  69. QiaoY. LiW. BaoJ. ZhengY. FengL. MaY. YangK. WuA. BaiH. YangY. Controlled synthesis and luminescence properties of core-shell-shell structured SiO2@AIPA-S-Si-Eu@SiO2 and SiO2@AIPA-S-Si-Eu- phen@SiO2 nanocomposites.Sci. Rep.2020101352210.1038/s41598‑020‑60538‑w
    [Google Scholar]
  70. Ebrahimi-TazangiF. HekmataraS.H. Seyed-YazdiJ. Synthesis and remarkable microwave absorption properties of amine-functionalized magnetite/graphene oxide nanocomposites.J. Alloys Compd.201980915177910.1016/j.jallcom.2019.151779
    [Google Scholar]
  71. WangJ. ZhangM. XuJ. ZhengJ. HayatT. AlharbiN.S. Formation of Fe3O4 @C/Ni microtubes for efficient catalysis and protein adsorption.Dalton Trans.20184782791279810.1039/C7DT04491G29417120
    [Google Scholar]
  72. WangZ. WangW. MengZ. XueM. Mono-sized anion-exchange magnetic microspheres for protein adsorption.Int. J. Mol. Sci.2022239496310.3390/ijms2309496335563351
    [Google Scholar]
  73. SuY. QiuB. ChangC. LiX. ZhangM. ZhouB. YangY. Separation of bovine hemoglobin using novel magnetic molecular imprinted nanoparticles.RSC Advances20188116192619910.1039/C7RA12457K35539629
    [Google Scholar]
  74. LiuL. ChenL. MüllersW. SernoP. QianF. Water-resistant drug−polymer interaction contributes to the formation of nano-species during the dissolution of felodipine amorphous solid dispersions.Mol. Pharm.20221982888289910.1021/acs.molpharmaceut.2c0025035759395
    [Google Scholar]
  75. RanaD. MandalB.M. BhattacharyyaS.N. Miscibility and phase diagrams of poly(phenyl acrylate) and poly(styrene-co-acrylonitrile) blends.Polymer (Guildf.)19933471454145910.1016/0032‑3861(93)90861‑4
    [Google Scholar]
  76. RanaD. BagK. BhattacharyyaS.N. MandalB.M. Miscibility of poly(styrene-co-butyl acrylate) with poly(ethyl methacrylate): Existence of both UCST and LCST.J. Polym. Sci., B, Polym. Phys.200038336937510.1002/(SICI)1099‑0488(20000201)38:3<369::AID‑POLB3>3.0.CO;2‑W
    [Google Scholar]
  77. RanaD. MandalB.M. BhattacharyyaS.N. Analogue calorimetry of polymer blends: poly(styrene-co-acrylonitrile) and poly(phenyl acrylate) or poly(vinyl benzoate).Polymer (Guildf.)199637122439244310.1016/0032‑3861(96)85356‑0
    [Google Scholar]
  78. RanaD. MandalB.M. BhattacharyyaS.N. Analogue calorimetric studies of blends of poly(vinyl ester)s and polyacrylates.Macromolecules19962951579158310.1021/ma950954n
    [Google Scholar]
  79. DuM.X. YuanY.F. ZhangJ.M. LiuC.Y. Hydrogen-bonding interactions in polymer-organic solvent mixtures.Macromolecules202255114578458810.1021/acs.macromol.2c00799
    [Google Scholar]
  80. RashidZ. NaeimiH. ZarnaniA-H. MohammadiF. GhahremanzadehR. [41] Fatemeh, E.T.; Seyedeh, H.H.; Jamileh, S.Y. Synthesis and remarkable microwave absorption properties of amine-functionalized.Mater. Sci. Eng. C20178067067610.1016/j.msec.2017.07.014
    [Google Scholar]
  81. WangY. WeiY. GaoP. SunS. DuQ. WangZ. JiangY. Preparation of Fe3O4@PMAA@Ni microspheres towards the efficient and selective enrichment of Histidine-rich proteins.ACS Appl. Mater. Interfaces2021139111661117610.1021/acsami.0c1973433635047
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673307793240802062318
Loading
/content/journals/cmc/10.2174/0109298673307793240802062318
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test