Skip to content
2000
Volume 32, Issue 38
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Histone deacetylases (HDACs) play a crucial role in the regulation of cancer progression and have emerged as key targets for antitumor therapy. Histone Deacetylase Inhibitors (HDACis) effectively suppress tumor cell proliferation, induce apoptosis, and cause cell cycle arrest, demonstrating broad-spectrum antitumor activity. This article primarily focuses on enhancing the selectivity of HDACis through structural modification using natural compounds. It provides detailed insights into the structure modification of histone deacetylase 8 (HDAC8) and histone deacetylase 10 (HDAC10), as well as dual- target inhibitors and their pharmacological effects. Furthermore, conventional HDAC inhibitors are susceptible to off-target effects and the development of drug resistance. Our research focuses on augmenting the targeting specificity of HDAC inhibitors through their combination with proteolysis targeting chimera (PROTAC). Lastly, the latest advancements in clinical research on HDAC inhibitors were summarized, revealing that these inhibitors possess limitations in their clinical applications due to intrinsic or acquired resistance. Consequently, this article primarily focuses on summarizing the current status and prospects of structural modifications for HDAC inhibitors, with the aim of inspiring researchers to develop novel HDAC inhibitors exhibiting enhanced activity for improved application in clinical research.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673332285241104091609
2025-01-09
2025-11-01
Loading full text...

Full text loading...

References

  1. LiangT. WangF. ElhassanR.M. ChengY. TangX. ChenW. FangH. HouX. Targeting histone deacetylases for cancer therapy: Trends and challenges.Acta Pharm. Sin. B20231362425246310.1016/j.apsb.2023.02.00737425042
    [Google Scholar]
  2. ChengB. PanW. XiaoY. DingZ. ZhouY. FeiX. LiuJ. SuZ. PengX. ChenJ. HDAC-targeting epigenetic modulators for cancer immunotherapy.Eur. J. Med. Chem.202426511612910.1016/j.ejmech.2024.11612938211468
    [Google Scholar]
  3. ParveenR. HariharD. ChatterjiB.P. Recent histone deacetylase inhibitors in cancer therapy.Cancer2023129213372338010.1002/cncr.3497437560925
    [Google Scholar]
  4. LiuY.M. LiouJ.P. An updated patent review of histone deacetylase (HDAC) inhibitors in cancer (2020 – present).Expert Opin. Ther. Pat.202333534936910.1080/13543776.2023.221939337249104
    [Google Scholar]
  5. SerranoL. Martínez-RedondoP. Marazuela-DuqueA. VazquezB.N. DooleyS.J. VoigtP. BeckD.B. Kane- GoldsmithN. TongQ. RabanalR.M. FondevilaD. MuñozP. KrügerM. TischfieldJ.A. VaqueroA. The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation.Genes Dev.201327663965310.1101/gad.211342.11223468428
    [Google Scholar]
  6. YanginlarC. LogieC. HDAC11 is a regulator of diverse immune functions.Biochim. Biophys. Acta. Gene Regul. Mech.201818611545910.1016/j.bbagrm.2017.12.00229222071
    [Google Scholar]
  7. VerdinE. DequiedtF. KaslerH.G. Class II histone deacetylases: Versatile regulators.Trends Genet.200319528629310.1016/S0168‑9525(03)00073‑812711221
    [Google Scholar]
  8. SetoE. YoshidaM. Erasers of histone acetylation: The histone deacetylase enzymes.Cold Spring Harb. Perspect. Biol.201464a01871310.1101/cshperspect.a01871324691964
    [Google Scholar]
  9. DangF. WeiW. Targeting the acetylation signaling pathway in cancer therapy.Semin. Cancer Biol.20228520921810.1016/j.semcancer.2021.03.00133705871
    [Google Scholar]
  10. NeganovaM.E. KlochkovS.G. AleksandrovaY.R. AlievG. Histone modifications in epigenetic regulation of cancer: Perspectives and achieved progress.Semin. Cancer Biol.20228345247110.1016/j.semcancer.2020.07.01532814115
    [Google Scholar]
  11. Di CerboV. SchneiderR. Cancers with wrong HATs: The impact of acetylation.Brief. Funct. Genomics201312323124310.1093/bfgp/els06523325510
    [Google Scholar]
  12. KouzaridesT. Chromatin modifications and their function.Cell2007128469370510.1016/j.cell.2007.02.00517320507
    [Google Scholar]
  13. HoT.C.S. ChanA.H.Y. GanesanA. Thirty years of HDAC inhibitors: 2020 insight and hindsight.J. Med. Chem.20206321124601248410.1021/acs.jmedchem.0c0083032608981
    [Google Scholar]
  14. ZhaoA. ZhouH. YangJ. LiM. NiuT. Epigenetic regulation in hematopoiesis and its implications in the targeted therapy of hematologic malignancies.Signal Transduct. Target. Ther.2023817110.1038/s41392‑023‑01342‑636797244
    [Google Scholar]
  15. WillhoftO. CostaA. A structural framework for DNA replication and transcription through chromatin.Curr. Opin. Struct. Biol.202171515810.1016/j.sbi.2021.05.00834218162
    [Google Scholar]
  16. NitschS. Zorro ShahidianL. SchneiderR. Histone acylations and chromatin dynamics: Concepts, challenges, and links to metabolism.EMBO Rep.2021227e5277410.15252/embr.20215277434159701
    [Google Scholar]
  17. LiB. CareyM. WorkmanJ.L. The role of chromatin during transcription.Cell2007128470771910.1016/j.cell.2007.01.01517320508
    [Google Scholar]
  18. EckschlagerT. PlchJ. StiborovaM. HrabetaJ. Histone deacetylase inhibitors as anticancer drugs.Int. J. Mol. Sci.2017187141410.3390/ijms1807141428671573
    [Google Scholar]
  19. LiG. TianY. ZhuW.G. The roles of histone deacetylases and their inhibitors in cancer therapy.Front. Cell Dev. Biol.2020857694610.3389/fcell.2020.57694633117804
    [Google Scholar]
  20. KaratiD. MukherjeeS. RoyS. Emerging therapeutic strategies in cancer therapy by HDAC inhibition as the chemotherapeutic potent and epigenetic regulator.Med. Oncol.20244148410.1007/s12032‑024‑02303‑x38438564
    [Google Scholar]
  21. KimY.B. KiS.W. YosnidaM. HorinouchiS. Mechanism of cell cycle arrest caused by histone deacetylase inhibitors in human carcinoma cells.J. Antibiot. (Tokyo)200053101191120010.7164/antibiotics.53.119111132966
    [Google Scholar]
  22. ChunP. Histone deacetylase inhibitors in hematological malignancies and solid tumors.Arch. Pharm. Res.201538693394910.1007/s12272‑015‑0571‑125653088
    [Google Scholar]
  23. SuB. LimD. QiC. ZhangZ. WangJ. ZhangF. DongC. FengZ. VPA mediates bidirectional regulation of cell cycle progression through the PPP2R2A-Chk1 signaling axis in response to HU.Cell Death Dis.202314211410.1038/s41419‑023‑05649‑836781846
    [Google Scholar]
  24. GongP. WangY. JingY. Apoptosis induction byHistone deacetylase inhibitors in cancer cells: Role of Ku70.Int. J. Mol. Sci.2019207160110.3390/ijms2007160130935057
    [Google Scholar]
  25. ZhangJ. ZhongQ. Histone deacetylase inhibitors and cell death.Cell. Mol. Life Sci.201471203885390110.1007/s00018‑014‑1656‑624898083
    [Google Scholar]
  26. LiuY.L. YangP.M. ShunC.T. WuM.S. WengJ.R. ChenC.C. Autophagy potentiates the anti-cancer effects of the histone deacetylase inhibitors in hepatocellular carcinoma.Autophagy2010681057106510.4161/auto.6.8.1336520962572
    [Google Scholar]
  27. SykesS.M. MellertH.S. HolbertM.A. LiK. MarmorsteinR. LaneW.S. McMahonS.B. Acetylation of the p53 DNA-binding domain regulates apoptosis induction.Mol. Cell200624684185110.1016/j.molcel.2006.11.02617189187
    [Google Scholar]
  28. WatanabeM. AdachiS. MatsubaraH. ImaiT. YuiY. MizushimaY. HiraumiY. WatanabeK. KamitsujiY. ToyokuniS. HosoiH. SugimotoT. ToguchidaJ. NakahataT. Induction of autophagy in malignant rhabdoid tumor cells by the histone deacetylase inhibitor FK228 through AIF translocation.Int. J. Cancer20091241556710.1002/ijc.2389718821579
    [Google Scholar]
  29. StengelK.R. HiebertS.W. ClassI. Class I HDACs affect DNA replication, repair, and chromatin structure: Implications for cancer therapy.Antioxid. Redox Signal.2015231516510.1089/ars.2014.591524730655
    [Google Scholar]
  30. NishidaN. YanoH. NishidaT. KamuraT. KojiroM. Angiogenesis in cancer.Vasc. Health Risk Manag.20062321321910.2147/vhrm.2006.2.3.21317326328
    [Google Scholar]
  31. ZecchinA. PattariniL. GutierrezM.I. ManoM. MaiA. ValenteS. MyersM.P. PantanoS. GiaccaM. Reversible acetylation regulates vascular endothelial growth factor receptor-2 activity.J. Mol. Cell Biol.20146211612710.1093/jmcb/mju01024620033
    [Google Scholar]
  32. LiB. ChanH.L. ChenP. Immune checkpoint inhibitors: Basics and challenges.Curr. Med. Chem.201926173009302510.2174/092986732466617080414370628782469
    [Google Scholar]
  33. BlaszczakW. LiuG. ZhuH. BarczakW. ShresthaA. AlbayrakG. ZhengS. KerrD. SamsonovaA. La ThangueN.B. Immune modulation underpins the anti-cancer activity of HDAC inhibitors.Mol. Oncol.202115123280329810.1002/1878‑0261.1295333773029
    [Google Scholar]
  34. GaoY. NihiraN.T. BuX. ChuC. ZhangJ. KolodziejczykA. FanY. ChanN.T. MaL. LiuJ. WangD. DaiX. LiuH. OnoM. NakanishiA. InuzukaH. NorthB.J. HuangY.H. SharmaS. GengY. XuW. LiuX.S. LiL. MikiY. SicinskiP. FreemanG.J. WeiW. Acetylation-dependent regulation of PD-L1 nuclear translocation dictates the efficacy of anti-PD-1 immunotherapy.Nat. Cell Biol.20202291064107510.1038/s41556‑020‑0562‑432839551
    [Google Scholar]
  35. JuengelE. MakarevićJ. TsaurI. BartschG. NelsonK. HaferkampA. BlahetaR.A. Resistance after chronic application of the HDAC-inhibitor valproic acid is associated with elevated Akt activation in renal cell carcinoma in vivo.PLoS One201381e5310010.1371/journal.pone.005310023372654
    [Google Scholar]
  36. HayN. Reprogramming glucose metabolism in cancer: Can it be exploited for cancer therapy?Nat. Rev. Cancer2016161063564910.1038/nrc.2016.7727634447
    [Google Scholar]
  37. LinX. XiaoZ. ChenT. LiangS.H. GuoH. Glucose metabolism on tumor plasticity, diagnosis, and treatment.Front. Oncol.20201031710.3389/fonc.2020.0031732211335
    [Google Scholar]
  38. YucelN. WangY.X. MaiT. PorpigliaE. LundP.J. MarkovG. GarciaB.A. BendallS.C. AngeloM. BlauH.M. Glucose metabolism drives Histone Acetylation landscape transitions that dictate muscle stem cell function.Cell Rep.2019271339393955.e610.1016/j.celrep.2019.05.09231242425
    [Google Scholar]
  39. ZhangR. ShenM. WuC. ChenY. LuJ. LiJ. ZhaoL. MengH. ZhouX. HuangG. ZhaoX. LiuJ. HDAC8-dependent deacetylation of PKM2 directs nuclear localization and glycolysis to promote proliferation in hepatocellular carcinoma.Cell Death Dis.20201112103610.1038/s41419‑020‑03212‑333279948
    [Google Scholar]
  40. NegriniS. GorgoulisV.G. HalazonetisT.D. Genomic instability — an evolving hallmark of cancer.Nat. Rev. Mol. Cell Biol.201011322022810.1038/nrm285820177397
    [Google Scholar]
  41. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell2011144564667410.1016/j.cell.2011.02.01321376230
    [Google Scholar]
  42. YanoM. MiyazawaM. OganeN. OgasawaraA. HasegawaK. NaraharaH. YasudaM. Up-regulation of HDAC6 results in poor prognosis and chemoresistance in patients with advanced ovarian high-grade serous Carcinoma.Anticancer Res.20214131647165410.21873/anticanres.1492733788761
    [Google Scholar]
  43. ZhouL. XuX. LiuH. HuX. ZhangW. YeM. ZhuX. Prognosis analysis of histone Deacetylases mRNA Expression in ovarian cancer patients.J. Cancer20189234547455510.7150/jca.2678030519361
    [Google Scholar]
  44. ShenY.F. WeiA.M. KouQ. ZhuQ.Y. ZhangL. Histone deacetylase 4 increases progressive epithelial ovarian cancer cells via repression of p21 on fibrillar collagen matrices.Oncol. Rep.201635294895410.3892/or.2015.442326572940
    [Google Scholar]
  45. RoosW.P. KrummA. The multifaceted influence of histone deacetylases on DNA damage signalling and DNA repair.Nucleic Acids Res.20164421gkw92210.1093/nar/gkw92227738139
    [Google Scholar]
  46. BiersackB. PolatS. HöpfnerM. Anticancer properties of chimeric HDAC and kinase inhibitors.Semin. Cancer Biol.20228347248610.1016/j.semcancer.2020.11.00533189849
    [Google Scholar]
  47. ZhangX.H. Qin-Ma WuH.P. KhamisM.Y. LiY.H. MaL.Y. LiuH.M. A review of progress in Histone Deacetylase 6 inhibitors research: Structural specificity and functional diversity.J. Med. Chem.20216431362139110.1021/acs.jmedchem.0c0178233523672
    [Google Scholar]
  48. LiY. WangF. ChenX. WangJ. ZhaoY. LiY. HeB. Zinc-dependent Deacetylase (HDAC) inhibitors with different Zinc binding groups.Curr. Top. Med. Chem.201919322324110.2174/156802661966619012214494930674261
    [Google Scholar]
  49. VerverisK. HiongA. KaragiannisT.C. LicciardiP.V. Histone deacetylase inhibitors (HDACIs): Multitargeted anticancer agents.Biologics20137476023459471
    [Google Scholar]
  50. RuJ. WangY. LiZ. WangJ. RenC. ZhangJ. Technologies of targeting histone deacetylase in drug discovery: Current progress and emerging prospects.Eur. J. Med. Chem.202326111580010.1016/j.ejmech.2023.11580037708798
    [Google Scholar]
  51. LianB. ChenX. ShenK. Inhibition of histone deacetylases attenuates tumor progression and improves immunotherapy in breast cancer.Front. Immunol.202314116451410.3389/fimmu.2023.116451436969235
    [Google Scholar]
  52. RajaselviN.D. JidaM.D. AjeeshkumarK.K. NairS.N. JohnP. AzizZ. NishaA.R. Antineoplastic activity of plant-derived compounds mediated through inhibition of histone deacetylase: A review.Amino Acids202355121803181710.1007/s00726‑023‑03298‑x37389730
    [Google Scholar]
  53. BianJ. luanY. WangC. ZhangL. Discovery of N-hydroxy-4-(1H-indol-3-yl)butanamide as a histone deacetylase inhibitor.Drug Discov. Ther.201610316316610.5582/ddt.2016.0103127169369
    [Google Scholar]
  54. ChenY. ZhangL. ZhangL. JiangQ. ZhangL. Discovery of indole-3-butyric acid derivatives as potent histone deacetylase inhibitors.J. Enzyme Inhib. Med. Chem.202136142543610.1080/14756366.2020.187045733445997
    [Google Scholar]
  55. LeeH.Y. ChangC.Y. SuC.J. HuangH.L. MehndirattaS. ChaoY.H. HsuC.M. KumarS. SungT.Y. HuangY.Z. LiY.H. YangC.R. LiouJ.P. 2-(Phenylsulfonyl)quinoline N -hydroxyacrylamides as potent anticancer agents inhibiting histone deacetylase.Eur. J. Med. Chem.20161229210110.1016/j.ejmech.2016.06.02327344487
    [Google Scholar]
  56. LeeH.Y. NepaliK. HuangF.I. ChangC.Y. LaiM.J. LiY.H. HuangH.L. YangC.R. LiouJ.P. ( N -Hydroxycarbonylbenylamino)quinolines as selective Histone Deacetylase 6 inhibitors suppress growth of multiple Myeloma in vitro and in vivo.J. Med. Chem.201861390591710.1021/acs.jmedchem.7b0140429304284
    [Google Scholar]
  57. MehndirattaS. ChenM.C. ChaoY.H. LeeC.H. LiouJ.P. LaiM.J. LeeH.Y. Effect of 3-subsitution of quinolinehydroxamic acids on selectivity of histone deacetylase isoforms.J. Enzyme Inhib. Med. Chem.2021361748410.1080/14756366.2020.183944633161799
    [Google Scholar]
  58. YaoD. LiC. JiangJ. HuangJ. WangJ. HeZ. ZhangJ. Design, synthesis and biological evaluation of novel HDAC inhibitors with improved pharmacokinetic profile in breast cancer.Eur. J. Med. Chem.202020511264810.1016/j.ejmech.2020.11264832791401
    [Google Scholar]
  59. ZhangS.W. GongC.J. SuM.B. ChenF. HeT. ZhangY.M. ShenQ.Q. SuY. DingJ. LiJ. ChenY. NanF.J. Synthesis and in vitro and in vivo biological evaluation of tissue-specific Bisthiazole Histone Deacetylase (HDAC) inhibitors.J. Med. Chem.202063280481510.1021/acs.jmedchem.9b0179231855601
    [Google Scholar]
  60. ZhaoY. YaoZ. RenW. YangX. HouX. CaoS. FangH. Design, synthesis and bioactivity evaluations of 8-substituted-quinoline-2-carboxamide derivatives as novel histone deacetylase (HDAC) inhibitors.Bioorg. Med. Chem.20238511724210.1016/j.bmc.2023.11724237079967
    [Google Scholar]
  61. ChenX. DingX. FangJ. MaoC. GongX. ZhangY. ZhangN. YanF. LouY. ChenZ. DingW. MaZ. Natural derivatives of selective HDAC8 inhibitors with potent in vivo antitumor efficacy against breast cancer.J. Med. Chem.20246716146091463210.1021/acs.jmedchem.4c0143839110628
    [Google Scholar]
  62. ZhuS. ZhuW. ZhaoK. YuJ. LuW. ZhouR. FanS. KongW. YangF. ShanP. Discovery of a novel hybrid coumarin-hydroxamate conjugate targeting the HDAC1-Sp1-FOSL2 signaling axis for breast cancer therapy.Cell Commun. Signal.202422136110.1186/s12964‑024‑01733‑439010083
    [Google Scholar]
  63. OmidkhahN. GhodsiR. NO-HDAC dual inhibitors.Eur. J. Med. Chem.202222711393410.1016/j.ejmech.2021.11393434700268
    [Google Scholar]
  64. BassA.K.A. El-ZoghbiM.S. NageebE.S.M. MohamedM.F.A. BadrM. Abuo-RahmaG.E.D.A. Comprehensive review for anticancer hybridized multitargeting HDAC inhibitors.Eur. J. Med. Chem.202120911290410.1016/j.ejmech.2020.11290433077264
    [Google Scholar]
  65. FuR. SunY. ShengW. LiaoD. Designing multi-targeted agents: An emerging anticancer drug discovery paradigm.Eur. J. Med. Chem.201713619521110.1016/j.ejmech.2017.05.01628494256
    [Google Scholar]
  66. ChoudharyG.S. Al-harbiS. MazumderS. HillB.T. SmithM.R. BodoJ. HsiE.D. AlmasanA. MCL-1 and BCL-xL-dependent resistance to the BCL-2 inhibitor ABT-199 can be overcome by preventing PI3K/AKT/mTOR activation in lymphoid malignancies.Cell Death Dis.201561e159310.1038/cddis.2014.52525590803
    [Google Scholar]
  67. BaillyC. Contemporary challenges in the design of topoisomerase II inhibitors for cancer chemotherapy.Chem. Rev.201211273611364010.1021/cr200325f22397403
    [Google Scholar]
  68. ZhangW.X. HuangJ. TianX.Y. LiuY.H. JiaM.Q. WangW. JinC.Y. SongJ. ZhangS.Y. A review of progress in o-aminobenzamide-based HDAC inhibitors with dual targeting capabilities for cancer therapy.Eur. J. Med. Chem.202325911567310.1016/j.ejmech.2023.11567337487305
    [Google Scholar]
  69. RoyR. RiaT. RoyMahaPatraD. SkU.H. Single inhibitors versus dual inhibitors: Role of HDAC in cancer.ACS Omega2023819165321654410.1021/acsomega.3c0022237214715
    [Google Scholar]
  70. VanhaesebroeckB. Guillermet-GuibertJ. GrauperaM. BilangesB. The emerging mechanisms of isoform-specific PI3K signalling.Nat. Rev. Mol. Cell Biol.201011532934110.1038/nrm288220379207
    [Google Scholar]
  71. ThakurA. TawaG.J. HendersonM.J. DanchikC. LiuS. ShahP. WangA.Q. DunnG. KabirM. PadilhaE.C. XuX. SimeonovA. KharbandaS. StoneR. GrewalG. Design, synthesis, and biological evaluation of Quinazolin-4-one-based Hydroxamic acids as dual PI3K/HDAC inhibitors.J. Med. Chem.20206384256429210.1021/acs.jmedchem.0c0019332212730
    [Google Scholar]
  72. ZhangK. LaiF. LinS. JiM. ZhangJ. ZhangY. JinJ. FuR. WuD. TianH. XueN. ShengL. ZouX. LiY. ChenX. XuH. Design, synthesis, and biological evaluation of 4-methyl quinazoline derivatives as anticancer agents simultaneously targeting phosphoinositide 3-kinases and histone deacetylases.J. Med. Chem.201962156992701410.1021/acs.jmedchem.9b0039031117517
    [Google Scholar]
  73. BlazekD. Therapeutic potential of CDK11 in cancer.Clin. Transl. Med.2023133e120110.1002/ctm2.120136855776
    [Google Scholar]
  74. ChengC. YunF. UllahS. YuanQ. Discovery of novel cyclin-dependent kinase (CDK) and histone deacetylase (HDAC) dual inhibitors with potent in vitro and in vivo anticancer activity.Eur. J. Med. Chem.202018911207310.1016/j.ejmech.2020.11207331991336
    [Google Scholar]
  75. YuY. RanD. JiangJ. PanT. DanY. TangQ. LiW. ZhangL. GanL. GanZ. Discovery of novel 9H-purin derivatives as dual inhibitors of HDAC1 and CDK2.Bioorg. Med. Chem. Lett.201929162136214010.1016/j.bmcl.2019.06.05931272794
    [Google Scholar]
  76. ZubairT. BandyopadhyayD. Small molecule EGFR inhibitors as anti-cancer agents: discovery, mechanisms of action, and opportunities.Int. J. Mol. Sci.2023243265110.3390/ijms2403265136768973
    [Google Scholar]
  77. GoehringerN. BiersackB. PengY. SchobertR. HerlingM. MaA. NitzscheB. HöpfnerM. Anticancer activity and mechanisms of action of new chimeric EGFR/HDAC-inhibitors.Int. J. Mol. Sci.20212216843210.3390/ijms2216843234445133
    [Google Scholar]
  78. WicknerS. NguyenT.L.L. GenestO. The bacterial Hsp90 Chaperone: Cellular functions and mechanism of action.Annu. Rev. Microbiol.202175171973910.1146/annurev‑micro‑032421‑03564434375543
    [Google Scholar]
  79. WangL. ZhangQ. YouQ. Targeting the HSP90–CDC37–kinase chaperone cycle: A promising therapeutic strategy for cancer.Med. Res. Rev.202242115618210.1002/med.2180733846988
    [Google Scholar]
  80. ChowdhuryS.R. KoleyT. SinghM. EthayathullaA.S. KaurP. Association of Hsp90 with p53 and fizzy related homolog (Fzr) synchronizing anaphase promoting complex (APC/C): An unexplored ally towards oncogenic pathway.Biochim. Biophys. Acta Rev. Cancer20231878318888310.1016/j.bbcan.2023.18888336972769
    [Google Scholar]
  81. DernovšekJ. TomašičT. Following the design path of isoform-selective Hsp90 inhibitors: Small differences, great opportunities.Pharmacol. Ther.202324510839610.1016/j.pharmthera.2023.10839637001734
    [Google Scholar]
  82. YoussefM.E. CavaluS. HasanA.M. YahyaG. Abd-EldayemM.A. SaberS. Role of Ganetespib, an HSP90 inhibitor, in cancer therapy: From molecular mechanisms to clinical practice.Int. J. Mol. Sci.2023245501410.3390/ijms2405501436902446
    [Google Scholar]
  83. OjhaR. HuangH.L. HuangFuW.C. WuY.W. NepaliK. LaiM.J. SuC.J. SungT.Y. ChenY.L. PanS.L. LiouJ.P. 1-Aroylindoline-hydroxamic acids as anticancer agents, inhibitors of HSP90 and HDAC.Eur. J. Med. Chem.201815066767710.1016/j.ejmech.2018.03.00629567459
    [Google Scholar]
  84. OjhaR. NepaliK. ChenC.H. ChuangK.H. WuT.Y. LinT.E. HsuK.C. ChaoM.W. LaiM.J. LinM.H. HuangH.L. ChangC.D. PanS.L. ChenM.C. LiouJ.P. Isoindoline scaffold-based dual inhibitors of HDAC6 and HSP90 suppressing the growth of lung cancer in vitro and in vivo.Eur. J. Med. Chem.202019011208610.1016/j.ejmech.2020.11208632058238
    [Google Scholar]
  85. LiuT. WanY. XiaoY. XiaC. DuanG. Dual-target inhibitors based on HDACs: Novel antitumor agents for cancer therapy.J. Med. Chem.202063178977900210.1021/acs.jmedchem.0c0049132320239
    [Google Scholar]
  86. HauguelC. DucellierS. ProvotO. IbrahimN. LamaaD. BalcerowiakC. LetribotB. NascimentoM. BlanchardV. AskenatzisL. LevaiqueH. BignonJ. BaschieriF. BauvaisC. BollotG. RenkoD. DeroussentA. ProstB. LaisneM.C. MichalletS. LafanechèreL. PapotS. MontagnacG. TranC. AlamiM. ApcherS. HamzeA. Design, synthesis and biological evaluation of quinoline-2-carbonitrile-based hydroxamic acids as dual tubulin polymerization and histone deacetylases inhibitors.Eur. J. Med. Chem.202224011457310.1016/j.ejmech.2022.11457335797900
    [Google Scholar]
  87. LiangX. TangS. LiuX. LiuY. XuQ. WangX. SaidahmatovA. LiC. WangJ. ZhouY. ZhangY. GengM. HuangM. LiuH. Discovery of novel Pyrrolo[2,3- d ]pyrimidine-based derivatives as potent JAK/HDAC dual inhibitors for the treatment of refractory solid tumors.J. Med. Chem.20226521243126410.1021/acs.jmedchem.0c0211133586434
    [Google Scholar]
  88. RenY. LiS. ZhuR. WanC. SongD. ZhuJ. CaiG. LongS. KongL. YuW. Discovery of STAT3 and Histone Deacetylase (HDAC) dual-pathway inhibitors for the treatment of solid cancer.J. Med. Chem.202164117468748210.1021/acs.jmedchem.1c0013634043359
    [Google Scholar]
  89. PanT. DanY. GuoD. JiangJ. RanD. ZhangL. TianB. YuanJ. YuY. GanZ. Discovery of 2,4-pyrimidinediamine derivatives as potent dual inhibitors of ALK and HDAC.Eur. J. Med. Chem.202122411367210.1016/j.ejmech.2021.11367234237620
    [Google Scholar]
  90. MustafaM. Abd El-HafeezA.A. AbdelhamidD. KatkarG.D. MostafaY.A. GhoshP. HayallahA.M. Abuo-RahmaG.E.D.A. A first-in-class anticancer dual HDAC2/FAK inhibitors bearing hydroxamates/benzamides capped by pyridinyl-1,2,4-triazoles.Eur. J. Med. Chem.202122211356910.1016/j.ejmech.2021.11356934111829
    [Google Scholar]
  91. FengL. WangG. ChenY. HeG. LiuB. LiuJ. ChiangC.M. OuyangL. Dual-target inhibitors of bromodomain and extra-terminal proteins in cancer: A review from medicinal chemistry perspectives.Med. Res. Rev.202242271074310.1002/med.2185934633088
    [Google Scholar]
  92. HeS. DongG. LiY. WuS. WangW. ShengC. Potent dual BET/HDAC inhibitors for efficient treatment of pancreatic cancer.Angew. Chem. Int. Ed.20205983028303210.1002/anie.20191589631943585
    [Google Scholar]
  93. GhazyE. ZeyenP. HerpD. HügleM. SchmidtkunzK. ErdmannF. RobaaD. SchmidtM. MoralesE.R. RomierC. GüntherS. JungM. SipplW. Design, synthesis, and biological evaluation of dual targeting inhibitors of histone deacetylase 6/8 and bromodomain BRPF1.Eur. J. Med. Chem.202020011233810.1016/j.ejmech.2020.11233832497960
    [Google Scholar]
  94. HamdiA. ElhusseinyW.M. OthmanD.I.A. HaikalA. BakheitA.H. El-AzabA.S. Al-AgamyM.H.M. Abdel-AzizA.A.M. Synthesis, antitumor, and apoptosis-inducing activities of novel 5-arylidenethiazolidine-2,4- dione derivatives: Histone deacetylases inhibitory activity and molecular docking study.Eur. J. Med. Chem.202224411482710.1016/j.ejmech.2022.11482736242988
    [Google Scholar]
  95. LiA. ZhengW. XiaoB. HuangW. LiL. LuoM. LiuZ. ChuB. JiangY. Design, synthesis and biological evaluation of pyrimidine base hydroxamic acid derivatives as dual JMJD3 and HDAC inhibitors.Bioorg. Med. Chem. Lett.20239412946610.1016/j.bmcl.2023.12946637660833
    [Google Scholar]
  96. WangK.L. YehT.Y. HsuP.C. WongT.H. LiuJ.R. ChernJ.W. LinM.H. YuC.W. Discovery of novel anaplastic lymphoma kinase (ALK) and histone deacetylase (HDAC) dual inhibitors exhibiting antiproliferative activity against non-small cell lung cancer.J. Enzyme Inhib. Med. Chem.2024391231864510.1080/14756366.2024.231864538465731
    [Google Scholar]
  97. SomozaJ. R. SkeneR. J. KatzB. A. MolC. HoJ. D. JenningsA. J. LuongC. ArvaiA. BuggyJ. J. ChiE. TangJ. SangB. C. VernerE. WynandsR. LeahyE. M. DouganD. R. SnellG. NavreM. KnuthM. W. SwansonR. V. McReeD. E. TariL. W. Structural snapshots of human HDAC8 provide insights into the class I histone deacetylasesStructure20041271325134
    [Google Scholar]
  98. FontanaA. CursaroI. CarulloG. GemmaS. ButiniS. CampianiG. A therapeutic perspective of hdac8 in different diseases: An overview of selective inhibitors.Int. J. Mol. Sci.202223171001410.3390/ijms23171001436077415
    [Google Scholar]
  99. HassanM.M. IsraelianJ. NawarN. GandaG. ManaswiyoungkulP. RaoufY.S. ArmstrongD. SedighiA. OlaoyeO.O. ErdoganF. CabralA.D. AngelesF. AltintasR. de AraujoE.D. GunningP.T. Characterization of conformationally constrained Benzanilide scaffolds for potent and selective HDAC8 targeting.J. Med. Chem.202063158634864810.1021/acs.jmedchem.0c0102532672458
    [Google Scholar]
  100. Pantelaiou-ProkakiG. MieczkowskaI. SchmidtG.E. FritzscheS. ProkakisE. GallwasJ. WegwitzF. HDAC8 suppresses the epithelial phenotype and promotes EMT in chemotherapy-treated basal-like breast cancer.Clin. Epigenetics2022141710.1186/s13148‑022‑01228‑435016723
    [Google Scholar]
  101. MekalaJ.R. RamalingamP.S. MathavanS. YamajalaR.B.R.D. MoparthiN.R. KurappalliR.K. ManyamR.R. Synthesis, in vitro and structural aspects of cap substituted Suberoylanilide hydroxamic acid analogs as potential inducers of apoptosis in Glioblastoma cancer cells via HDAC /microRNA regulation.Chem. Biol. Interact.202235710987610.1016/j.cbi.2022.10987635283086
    [Google Scholar]
  102. MoinulM. AminS.A. KhatunS. DasS. JhaT. GayenS. A detail survey and analysis of selectivity criteria for indole-based histone deacetylase 8 (HDAC8) inhibitors.J. Mol. Struct.2022
    [Google Scholar]
  103. Garrido GonzálezF.P. Mancilla PercinoT. Synthesis, docking study and inhibitory activity of 2,6-diketopiperazines derived from α-amino acids on HDAC8.Bioorg. Chem.202010210408010.1016/j.bioorg.2020.10408032683182
    [Google Scholar]
  104. DarwishS. GhazyE. HeimburgT. HerpD. ZeyenP. Salem-AltintasR. RidingerJ. RobaaD. SchmidtkunzK. ErdmannF. SchmidtM. RomierC. JungM. OehmeI. SipplW. Design, synthesis and biological characterization of Histone Deacetylase 8 (HDAC8) Proteolysis targeting Chimeras (PROTACs) with anti-neuroblastoma activity.Int. J. Mol. Sci.20222314753510.3390/ijms2314753535886887
    [Google Scholar]
  105. SunZ. DengB. YangZ. MaiR. HuangJ. MaZ. ChenT. ChenJ. Discovery of pomalidomide-based PROTACs for selective degradation of histone deacetylase 8.Eur. J. Med. Chem.202223911454410.1016/j.ejmech.2022.11454435759908
    [Google Scholar]
  106. HuangJ. ZhangJ. XuW. WuQ. ZengR. LiuZ. TaoW. ChenQ. WangY. ZhuW.G. Structure-based discovery of selective Histone Deacetylase 8 degraders with potent anticancer activity.J. Med. Chem.20236621186120910.1021/acs.jmedchem.2c0073936516047
    [Google Scholar]
  107. ZhaoC. ChenD. SuoF. SetroikromoR. QuaxW.J. DekkerF.J. Discovery of highly potent HDAC8 PROTACs with anti-tumor activity.Bioorg. Chem.202313610654610.1016/j.bioorg.2023.10654637098288
    [Google Scholar]
  108. LambonaC. ZwergelC. FioravantiR. ValenteS. MaiA. Histone deacetylase 10: A polyamine deacetylase from the crystal structure to the first inhibitors.Curr. Opin. Struct. Biol.20238210266810.1016/j.sbi.2023.10266837542907
    [Google Scholar]
  109. Herbst-GervasoniC.J. ChristiansonD.W. X-ray crystallographic snapshots of substrate binding in the active site of Histone Deacetylase 10.Biochemistry202160430331310.1021/acs.biochem.0c0093633449614
    [Google Scholar]
  110. GéraldyM. MorgenM. SehrP. SteimbachR.R. MoiD. RidingerJ. OehmeI. WittO. MalzM. NogueiraM.S. KochO. GunkelN. MillerA.K. Selective inhibition of Histone Deacetylase 10: Hydrogen bonding to the gatekeeper residue is implicated.J. Med. Chem.20196294426444310.1021/acs.jmedchem.8b0193630964290
    [Google Scholar]
  111. HerpD. RidingerJ. RobaaD. ShinskyS.A. SchmidtkunzK. YesilogluT.Z. BayerT. SteimbachR.R. Herbst-GervasoniC.J. MerzA. RomierC. SehrP. GunkelN. MillerA.K. ChristiansonD.W. OehmeI. SipplW. JungM. First Fluorescent Acetylspermidine Deacetylation assay for HDAC10 identifies selective inhibitors with cellular target engagement.ChemBioChem20222314e20220018010.1002/cbic.20220018035608330
    [Google Scholar]
  112. MorgenM. SteimbachR.R. GéraldyM. HellwegL. SehrP. RidingerJ. WittO. OehmeI. Herbst-GervasoniC.J. OskoJ.D. PorterN.J. ChristiansonD.W. GunkelN. MillerA.K. Design and synthesis of Dihydroxamic Acids as HDAC6/8/10 inhibitors.ChemMedChem202015131163117410.1002/cmdc.20200014932348628
    [Google Scholar]
  113. SteimbachR.R. Herbst-GervasoniC.J. LechnerS. StewartT.M. KlinkeG. RidingerJ. GéraldyM.N.E. TihanyiG. FoleyJ.R. UhrigU. KusterB. PoschetG. CaseroR.A.Jr MédardG. OehmeI. ChristiansonD.W. GunkelN. MillerA.K. Aza-SAHA derivatives are selective Histone Deacetylase 10 chemical probes that inhibit Polyamine Deacetylation and phenocopy HDAC10 knockout.J. Am. Chem. Soc.202214441188611887510.1021/jacs.2c0503036200994
    [Google Scholar]
  114. JiangQ. TangY. HuQ. WangB. RuanX. ZhouQ. Discovery of novel itaconimide-based derivatives as potent HDAC inhibitors for the efficient treatment of prostate cancer.Eur. J. Med. Chem.202426911631510.1016/j.ejmech.2024.11631538503167
    [Google Scholar]
  115. SchechA. KaziA. YuS. ShahP. SabnisG. Histone Deacetylase inhibitor entinostat inhibits tumor-initiating cells in triple-negative breast cancer cells.Mol. Cancer Ther.20151481848185710.1158/1535‑7163.MCT‑14‑077826037781
    [Google Scholar]
  116. ZhangK. LiuZ. YaoY. QiuY. LiF. ChenD. HamiltonD.J. LiZ. JiangS. Structure-based design of a selective class I Histone Deacetylase (HDAC) Near-Infrared (NIR) probe for epigenetic regulation detection in triple-negative breast cancer (TNBC).J. Med. Chem.20216474020403310.1021/acs.jmedchem.0c0216133745280
    [Google Scholar]
  117. MaccalliniC. AmmazzalorsoA. De FilippisB. FantacuzziM. GiampietroL. AmorosoR. HDAC inhibitors for the therapy of triple negative breast cancer.Pharmaceuticals (Basel)202215666710.3390/ph1506066735745586
    [Google Scholar]
  118. BhagatS.D. ChanchalA. GujratiM. BanerjeeA. MishraR.K. SrivastavaA. Implantable HDAC-inhibiting chemotherapeutics derived from hydrophobic amino acids for localized anticancer therapy.Biomater. Sci.20219126127110.1039/D0BM01417F33196720
    [Google Scholar]
  119. RuzicD. EllingerB. DjokovicN. SantibanezJ.F. GulS. BeljkasM. DjuricA. GanesanA. PavicA. Srdic-RajicT. PetkovicM. NikolicK. Discovery of 1-Benzhydryl-Piperazine-based HDAC inhibitors with anti-breast cancer activity: Synthesis, molecular modeling, in vitro and in vivo biological evaluation.Pharmaceutics20221412260010.3390/pharmaceutics1412260036559094
    [Google Scholar]
  120. YaoD. JiangJ. ZhangH. HuangY. HuangJ. WangJ. Design, synthesis and biological evaluation of dual mTOR/HDAC6 inhibitors in MDA-MB-231 cells.Bioorg. Med. Chem. Lett.20214712820410.1016/j.bmcl.2021.12820434139324
    [Google Scholar]
  121. LiangT. HouX. ZhouY. YangX. FangH. Design, synthesis, and biological evaluation of 2,4-Imidazolinedione derivatives as HDAC6 Isoform-selective inhibitors.ACS Med. Chem. Lett.20191081122112710.1021/acsmedchemlett.9b0008431413795
    [Google Scholar]
  122. LiangT. XueJ. YaoZ. YeY. YangX. HouX. FangH. Design, synthesis and biological evaluation of 3, 4-disubstituted-imidazolidine-2, 5-dione derivatives as HDAC6 selective inhibitors.Eur. J. Med. Chem.202122111352610.1016/j.ejmech.2021.11352633992929
    [Google Scholar]
  123. LiangT. ZhouY. ElhassanR.M. HouX. YangX. FangH. HDAC–Bax multiple ligands enhance Bax-dependent Apoptosis in HeLa cells.J. Med. Chem.20206320120831209910.1021/acs.jmedchem.0c0145433021789
    [Google Scholar]
  124. KhetmalisY.M. FathimaA. SchweipertM. DebarnotC. BandaruN.V.M.R. MurugesanS. JammaT. Meyer-AlmesF.J. SekharK.V.G.C. Design, synthesis, and biological evaluation of Novel Quinazolin-4(3H)-one-based Histone Deacetylase 6 (HDAC6) inhibitors for anticancer activity.Int. J. Mol. Sci.202324131104410.3390/ijms24131104437446224
    [Google Scholar]
  125. SinatraL. BandolikJ.J. RoatschM. SönnichsenM. SchoederC.T. HamacherA. SchölerA. BorkhardtA. MeilerJ. BhatiaS. KassackM.U. HansenF.K. Hydroxamic acids immobilized on Resins (HAIRs): Synthesis of dual-targeting HDAC inhibitors and HDAC degraders (PROTACs).Angew. Chem. Int. Ed.20205950224942249910.1002/anie.20200672532780485
    [Google Scholar]
  126. SinghA. ChangT.Y. KaurN. HsuK.C. YenY. LinT.E. LaiM.J. LeeS.B. LiouJ.P. CAP rigidification of MS-275 and chidamide leads to enhanced antiproliferative effects mediated through HDAC1, 2 and tubulin polymerization inhibition.Eur. J. Med. Chem.202121511316910.1016/j.ejmech.2021.11316933588178
    [Google Scholar]
  127. IbrahimH.S. AbdelsalamM. ZeynY. ZessinM. MustafaA.H.M. FischerM.A. ZeyenP. SunP. BülbülE.F. VecchioA. ErdmannF. SchmidtM. RobaaD. BarinkaC. RomierC. SchutkowskiM. KrämerO.H. SipplW. Synthesis, molecular docking and biological characterization of Pyrazine Linked 2-Aminobenzamides as new class I selective Histone Deacetylase (HDAC) inhibitors with Anti-Leukemic activity.Int. J. Mol. Sci.202123136910.3390/ijms2301036935008795
    [Google Scholar]
  128. WangZ. ZhaoL. ZhangB. FengJ. WangY. ZhangB. JinH. DingL. WangN. HeS. Discovery of novel polysubstituted N -alkyl acridone analogues as histone deacetylase isoform-selective inhibitors for cancer therapy.J. Enzyme Inhib. Med. Chem.2023381220658110.1080/14756366.2023.220658137144599
    [Google Scholar]
  129. NepaliK. ChangT.Y. LaiM.J. HsuK.C. YenY. LinT.E. LeeS.B. LiouJ.P. Purine/purine isoster based scaffolds as new derivatives of benzamide class of HDAC inhibitors.Eur. J. Med. Chem.202019611229110.1016/j.ejmech.2020.11229132325365
    [Google Scholar]
  130. SinghA. PatelV.K. JainD.K. PatelP. RajakH. Panobinostat as pan-deacetylase inhibitor for the treatment of pancreatic cancer: Recent progress and future prospects.Oncol. Ther.201641738910.1007/s40487‑016‑0023‑128261641
    [Google Scholar]
  131. HellandØ. PopaM. BischofK. GjertsenB.T. McCormackE. BjørgeL. The HDACi panobinostat shows growth inhibition both in vitro and in a Bioluminescent Orthotopic surgical Xenograft model of ovarian cancer.PLoS One2016116e015820810.1371/journal.pone.015820827352023
    [Google Scholar]
  132. BotsM. VerbruggeI. MartinB.P. SalmonJ.M. GhisiM. BakerA. StanleyK. ShorttJ. OssenkoppeleG.J. ZuberJ. RappaportA.R. AtadjaP. LoweS.W. JohnstoneR.W. Differentiation therapy for the treatment of t(8;21) acute myeloid leukemia using histone deacetylase inhibitors.Blood201412391341135210.1182/blood‑2013‑03‑48811424415537
    [Google Scholar]
  133. LiX. JiangY. PetersonY.K. XuT. HimesR.A. LuoX. YinG. InksE.S. DolloffN. HaleneS. ChanS.S.L. ChouC.J. Design of hydrazide-bearing HDACIs based on Panobinostat and their p53 and FLT3-ITD dependency in antileukemia activity.J. Med. Chem.202063105501552510.1021/acs.jmedchem.0c0044232321249
    [Google Scholar]
  134. SakamotoK.M. KimK.B. KumagaiA. MercurioF. CrewsC.M. DeshaiesR.J. Protacs: Chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation.Proc. Natl. Acad. Sci. USA200198158554855910.1073/pnas.14123079811438690
    [Google Scholar]
  135. BurslemG.M. CrewsC.M. Small-molecule modulation of protein homeostasis.Chem. Rev.201711717112691130110.1021/acs.chemrev.7b0007728777566
    [Google Scholar]
  136. ChenS. ZhengY. LiangB. YinY. YaoJ. WangQ. LiuY. NeamatiN. The application of PROTAC in HDAC.Eur. J. Med. Chem.202326011574610.1016/j.ejmech.2023.11574637607440
    [Google Scholar]
  137. NalawanshaD.A. CrewsC.M. PROTACs: An emerging therapeutic modality in precision medicine.Cell Chem. Biol.2020278998101410.1016/j.chembiol.2020.07.02032795419
    [Google Scholar]
  138. LiX. SongY. Proteolysis-targeting chimera (PROTAC) for targeted protein degradation and cancer therapy.J. Hematol. Oncol.20201315010.1186/s13045‑020‑00885‑332404196
    [Google Scholar]
  139. GaoH. SunX. RaoY. PROTAC technology: Opportunities and challenges.ACS Med. Chem. Lett.202011323724010.1021/acsmedchemlett.9b0059732184950
    [Google Scholar]
  140. QiS.M. DongJ. XuZ.Y. ChengX.D. ZhangW.D. QinJ.J. PROTAC: An effective targeted protein degradation strategy for cancer therapy.Front. Pharmacol.20211269257410.3389/fphar.2021.69257434025443
    [Google Scholar]
  141. SmalleyJ.P. AdamsG.E. MillardC.J. SongY. NorrisJ.K.S. SchwabeJ.W.R. CowleyS.M. HodgkinsonJ.T. PROTAC-mediated degradation of class I histone deacetylase enzymes in corepressor complexes.Chem. Commun. (Camb.)202056324476447910.1039/D0CC01485K32201871
    [Google Scholar]
  142. SmalleyJ.P. BakerI.M. PytelW.A. LinL.Y. BowmanK.J. SchwabeJ.W.R. CowleyS.M. HodgkinsonJ.T. Optimization of class I Histone Deacetylase PROTACs reveals that HDAC1/2 degradation is critical to induce apoptosis and cell arrest in cancer cells.J. Med. Chem.20226575642565910.1021/acs.jmedchem.1c0217935293758
    [Google Scholar]
  143. XiaoY. WangJ. ZhaoL.Y. ChenX. ZhengG. ZhangX. LiaoD. Discovery of histone deacetylase 3 (HDAC3)-specific PROTACs.Chem. Commun. (Camb.)202056689866986910.1039/D0CC03243C32840532
    [Google Scholar]
  144. XiaoY. HaleS. AwastheeN. MengC. ZhangX. LiuY. DingH. HuoZ. LvD. ZhangW. HeM. ZhengG. LiaoD. HDAC3 and HDAC8 PROTAC dual degrader reveals roles of histone acetylation in gene regulation.Cell Chem. Biol.2023301114211435.e1210.1016/j.chembiol.2023.07.01037572669
    [Google Scholar]
  145. JiaQ. ZhangY. LiuF. DongW. ZhuL. WangF. JiangJ.H. Cell-specific degradation of Histone Deacetylase using warhead-caged proteolysis targeting chimeras.Anal. Chem.20239545164741648010.1021/acs.analchem.3c0123637903331
    [Google Scholar]
  146. LiY. SetoE. HDACs and HDAC inhibitors in cancer development and therapy.Cold Spring Harb. Perspect. Med.2016610a02683110.1101/cshperspect.a02683127599530
    [Google Scholar]
  147. VongP. Ouled-HaddouH. GarçonL. Histone Deacetylases function in the control of early Hematopoiesis and Erythropoiesis.Int. J. Mol. Sci.20222317979010.3390/ijms2317979036077192
    [Google Scholar]
  148. DingP. MaZ. LiuD. PanM. LiH. FengY. ZhangY. ShaoC. JiangM. LuD. HanJ. WangJ. YanX. Lysine acetylation/deacetylation modification of immune-related molecules in cancer immunotherapy.Front. Immunol.20221386597510.3389/fimmu.2022.86597535585975
    [Google Scholar]
  149. TavaresM.T. KozikowskiA.P. ShenS. Mercaptoacetamide: A promising zinc-binding group for the discovery of selective histone deacetylase 6 inhibitors.Eur. J. Med. Chem.202120911288710.1016/j.ejmech.2020.11288733035922
    [Google Scholar]
  150. HalsallJ.A. TurnerB.M. Histone deacetylase inhibitors for cancer therapy: An evolutionarily ancient resistance response may explain their limited success.BioEssays201638111102111010.1002/bies.20160007027717012
    [Google Scholar]
  151. FerroA. PantazakaE. AthanassopoulosC.M. CuendetM. Histone deacetylase-based dual targeted inhibition in multiple myeloma.Med. Res. Rev.20234362177223610.1002/med.2197237191917
    [Google Scholar]
  152. ShenL. LiY. LiN. ShenL. LiZ. Comprehensive analyses reveal the role of histone deacetylase genes in prognosis and immune response in low-grade glioma.PLoS One20221710e027612010.1371/journal.pone.027612036227941
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673332285241104091609
Loading
/content/journals/cmc/10.2174/0109298673332285241104091609
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cancer; clinical research; dual target inhibitors; HDAC10; HDAC8; HDACis; PROTAC
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test