Skip to content
2000
Volume 32, Issue 38
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Targeted therapy for colorectal cancer (CRC) appears to have great potential with lipid nanoparticles (LNPs). The advances in LNP-based techniques, such as liposomes, exosomes, micelles, solid lipid nanoparticles (SLNs), nano-cubosomes, and plant-derived LNPs (PDLNPs), are explored in detail in this thorough review. Every platform provides distinct advantages: liposomes enable precise drug release and improved delivery; exosomes function as organic nanocarriers for focused treatment; SLNs offer greater stability; micelles enhance drug solubility and resistance; nano-cubosomes tackle low bioavailability; and PDLNPs offer biocompatible substitutes. The mechanisms, benefits, drawbacks, and therapeutic potential of these LNP platforms in the treatment of colorectal cancer are highlighted in the review. The review highlights how crucial it is to use these technologies for efficient CRC management and looks at potential future developments for them. The controlled release properties of liposomes and solid liposome nanoparticles (SLNs) improve the stability and bioavailability of medicinal compounds. On the other hand, exosomes and micelles provide answers for medication resistance and solubility issues, respectively. Novel strategies for resolving bioavailability problems and enhancing biocompatibility include nano-cubosomes and PDLNPs. These LNP-based systems are promising in clinical applications for boosting therapeutic efficacy, decreasing systemic toxicity, and facilitating tailored drug delivery. By incorporating these nanotechnologies into CRC treatment plans, present therapeutic approaches may be completely changed, and more individualized and efficient treatment choices may be provided. To completely comprehend the advantages and drawbacks of these LNP systems in therapeutic settings, as well as to and optimize them, more study is recommended by the review. Treatment for colorectal cancer may be much improved in the future thanks to developments in LNP-based drug delivery systems. These technologies hold great promise for improving patient outcomes and advancing the field of oncology by tackling important issues related to medication delivery and bioavailability.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673327576241201145252
2025-01-16
2025-11-01
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2021.CA Cancer J. Clin.202171173310.3322/caac.2165433433946
    [Google Scholar]
  2. SarkarA. SahaS. PaulA. MajiA. RoyP. MaityT.K. Understanding stem cells and its pivotal role in regenerative medicine.Life Sci.202127311927010.1016/j.lfs.2021.11927033640402
    [Google Scholar]
  3. BudreviciuteA. DamiatiS. SabirD.K. OnderK. Schuller-GoetzburgP. PlakysG. KatileviciuteA. KhojaS. KodziusR. Management and prevention strategies for non-communicable diseases (NCDs) and their risk factors.Front. Public Health2020857411110.3389/fpubh.2020.57411133324597
    [Google Scholar]
  4. WengS. PanL. JiangD. XieW. ZhangZ. ShiC. LiangB. WuS. Idarubicin and IR780 co-loaded PEG-b-PTMC nanoparticle for non-Hodgkin's lymphoma therapy by photothermal/photodynamic strategy.Mater. Des.202323011200810.1016/j.matdes.2023.112008
    [Google Scholar]
  5. van den BergA.I.S. YunC.O. SchiffelersR.M. HenninkW.E. Polymeric delivery systems for nucleic acid therapeutics: Approaching the clinic.J. Control. Release202133112114110.1016/j.jconrel.2021.01.01433453339
    [Google Scholar]
  6. DengT. LuoD. ZhangR. ZhaoR. HuY. ZhaoQ. WangS. IqbalM.Z. KongX. DOX-loaded hydroxyapatite nanoclusters for colorectal cancer (CRC) chemotherapy: Evaluation based on the cancer cells and organoids.SLAS Technol.2023281223110.1016/j.slast.2022.10.00236328181
    [Google Scholar]
  7. BatemanA.C. Pathology of colorectal polyps and cancer.Surgery2023411152110.1016/j.mpsur.2022.10.011
    [Google Scholar]
  8. XinJ. Critical signaling pathways governing colitis-associated colorectal cancer: Signaling, therapeutic implications, and challenges.Dig. Liver Dis.202355216917710.1016/j.dld.2022.08.01236002360
    [Google Scholar]
  9. Barberan ParragaC. SinghR. LinR. TamarizL. PalacioA. Colorectal cancer screening disparities among race: A zip code level analysis.Clin. Colorectal Cancer202322218318910.1016/j.clcc.2023.01.00136842869
    [Google Scholar]
  10. DaveR. PatelR. PatelM. Hybrid lipid-polymer nanoplatform: A systematic review for targeted colorectal cancer therapy.Eur. Polym. J.202318611187710.1016/j.eurpolymj.2023.111877
    [Google Scholar]
  11. MachariaJ.M. KaposztasZ. VarjasT. BudánF. ZandA. BodnarI. BenceR.L. Targeted lactate dehydrogenase genes silencing in probiotic lactic acid bacteria: A possible paradigm shift in colorectal cancer treatment?Biomed. Pharmacother.202316011437110.1016/j.biopha.2023.11437136758316
    [Google Scholar]
  12. CataniaL.J. Foundations of Artificial Intelligence in Healthcare and BioscienceElsevier2021
    [Google Scholar]
  13. MaoJ.J. PillaiG.G. AndradeC.J. LigibelJ.A. BasuP. CohenL. KhanI.A. MustianK.M. PuthiyedathR. DhimanK.S. LaoL. GhelmanR. Cáceres GuidoP. LopezG. Gallego-PerezD.F. SalicrupL.A. Integrative oncology: Addressing the global challenges of cancer prevention and treatment.CA Cancer J. Clin.202272214416410.3322/caac.2170634751943
    [Google Scholar]
  14. CollinsD. BossenmaierB. KollmorgenG. NiederfellnerG. Acquired resistance to antibody-drug conjugates.Cancers201911339410.3390/cancers1103039430897808
    [Google Scholar]
  15. HerdianaY. WathoniN. GozaliD. ShamsuddinS. MuchtaridiM. Chitosan-based nano-smart drug delivery system in breast cancer therapy.Pharmaceutics202315387910.3390/pharmaceutics1503087936986740
    [Google Scholar]
  16. ChenD. LiuX. LuX. TianJ. Nanoparticle drug delivery systems for synergistic delivery of tumor therapy.Front. Pharmacol.202314111199110.3389/fphar.2023.111199136874010
    [Google Scholar]
  17. MelvilleA.R. Kearsley-FleetL. BuchM.H. HyrichK.L. Understanding refractory rheumatoid arthritis: Implications for a therapeutic approach.Drugs202080984985710.1007/s40265‑020‑01309‑932361822
    [Google Scholar]
  18. YipH.Y.K. PapaA. Signaling pathways in cancer: Therapeutic targets, combinatorial treatments, and new developments.Cells202110365910.3390/cells1003065933809714
    [Google Scholar]
  19. DebelaD.T. MuzazuS.G.Y. HeraroK.D. NdalamaM.T. MeseleB.W. HaileD.C. KituiS.K. ManyazewalT. New approaches and procedures for cancer treatment: Current perspectives.SAGE Open Med.202192050312121103436610.1177/2050312121103436634408877
    [Google Scholar]
  20. Hernandez DominguezO. YilmazS. SteeleS.R. StageI.V. Stage IV colorectal cancer management and treatment.J. Clin. Med.2023125207210.3390/jcm1205207236902858
    [Google Scholar]
  21. FoppaC. MaroliA. LauricellaS. LubertoA. La RajaC. BuninoF. CarvelloM. SacchiM. De LuciaF. ClericoG. MontorsiM. SpinelliA. Different oncologic outcomes in early-onset and late-onset sporadic colorectal cancer: A regression analysis on 2073 patients.Cancers20221424623910.3390/cancers1424623936551724
    [Google Scholar]
  22. Sharifi-RadJ. QuispeC. PatraJ.K. SinghY.D. PandaM.K. DasG. AdetunjiC.O. MichaelO.S. SytarO. PolitoL. ŽivkovićJ. Cruz-MartinsN. Klimek-SzczykutowiczM. EkiertH. ChoudharyM.I. AyatollahiS.A. TynybekovB. KobarfardF. MunteanA.C. GrozeaI. DaştanS.D. ButnariuM. SzopaA. CalinaD. Paclitaxel: Application in modern oncology and nanomedicine-based cancer therapy.Oxid. Med. Cell. Longev.202120211368770010.1155/2021/368770034707776
    [Google Scholar]
  23. DickensE. AhmedS. Principles of cancer treatment by chemotherapy.J. Surg.2021394215220
    [Google Scholar]
  24. AnandU. DeyA. ChandelA.K.S. SanyalR. MishraA. PandeyD.K. De FalcoV. UpadhyayA. KandimallaR. ChaudharyA. DhanjalJ.K. DewanjeeS. VallamkonduJ. Pérez de la LastraJ.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics.Genes Dis.20231041367140110.1016/j.gendis.2022.02.00737397557
    [Google Scholar]
  25. HossenS. HossainM.K. BasherM.K. MiaM.N.H. RahmanM.T. UddinM.J. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review.J. Adv. Res.20191511810.1016/j.jare.2018.06.00530581608
    [Google Scholar]
  26. EbrahimiN. ManaviM.S. NazariA. MomayeziA. FaghihkhorasaniF. AbdulwahidA.-H.R.R. Rezaei- TazangiF. KaveiM. RezaeiR. MobarakH. Nano-scale delivery systems for siRNA delivery in cancer therapy: New era of gene therapy empowered by nanotechnology.Environ. Res.2023239Part 211726310.1016/j.envres.2023.117263
    [Google Scholar]
  27. MunaweeraI. YapaP. Principles and Applications of NanotherapeuticsCRC PressBoca Raton202410.1201/9781003442202
    [Google Scholar]
  28. ShuklaA. PrajapatiM. ShrivastavaV. A systematic review on nanoparticles: A ubiquitous approach for anti-tumour drug delivery and cancer management.Curr. Med. Chem.2023
    [Google Scholar]
  29. LôboG.C.N.B. PaivaK.L.R. SilvaA.L.G. SimõesM.M. RadicchiM.A. BáoS.N. Nanocarriers used in drug delivery to enhance immune system in cancer therapy.Pharmaceutics2021138116710.3390/pharmaceutics1308116734452128
    [Google Scholar]
  30. CaiS.S. LiT. AkinadeT. ZhuY. LeongK.W. Drug delivery carriers with therapeutic functions.Adv. Drug Deliv. Rev.202117611388410.1016/j.addr.2021.11388434302897
    [Google Scholar]
  31. RosicG. Cancer signaling, cell/gene therapy, diagnosis and role of nanobiomaterials.Adv. Bio. Earth Sci.20249Special Issue113410.62476/abes9s11
    [Google Scholar]
  32. RahmanM.M. IslamM.R. AkashS. Harun-Or-RashidM. RayT.K. RahamanM.S. IslamM. AnikaF. HosainM.K. AoviF.I. HemegH.A. RaufA. WilairatanaP. Recent advancements of nanoparticles application in cancer and neurodegenerative disorders: At a glance.Biomed. Pharmacother.202215311330510.1016/j.biopha.2022.11330535717779
    [Google Scholar]
  33. BiswasA. ChoudhuryA.D. BisenA.C. AgrawalS. SanapS.N. VermaS.K. MishraA. KumarS. BhattaR.S. Trends in formulation approaches for sustained drug delivery to the posterior segment of the eye.AAPS PharmSciTech202324821710.1208/s12249‑023‑02673‑x37891392
    [Google Scholar]
  34. KhanS. 2 - Classification and properties of nanoparticles.Nanoparticle-Based Polymer CompositesWoodhead Publishing2022155410.1016/B978‑0‑12‑824272‑8.00009‑9
    [Google Scholar]
  35. HuangR. ShenY.W. GuanY.Y. JiangY.X. WuY. RahmanK. ZhangL.J. LiuH.J. LuanX. Mesoporous silica nanoparticles: Facile surface functionalization and versatile biomedical applications in oncology.Acta Biomater.202011611510.1016/j.actbio.2020.09.00932911102
    [Google Scholar]
  36. YangC. MerlinD. Lipid-based drug delivery nanoplatforms for colorectal cancer therapy.Nanomaterials2020107142410.3390/nano1007142432708193
    [Google Scholar]
  37. LangC. MissionE.G. Ahmad FuaadA.A-H. ShaalanM. Nanoparticle tools to improve and advance precision practices in the Agrifoods Sector towards sustainability - A review.J. Clean. Prod.202129312606310.1016/j.jclepro.2021.126063
    [Google Scholar]
  38. YangM. ZhangY. MaY. YanX. GongL. ZhangM. ZhangB. Nanoparticle-based therapeutics of inflammatory bowel diseases: A narrative review of the current state and prospects.J. BioX. Res.20203415717310.1097/JBR.0000000000000078
    [Google Scholar]
  39. MaY. LiS. LinX. ChenY. Bioinspired spatiotemporal management toward RNA therapies.ACS Nano20231724245392456310.1021/acsnano.3c0821938091941
    [Google Scholar]
  40. AliyandiA. Reker-SmitC. ZuhornI.S. SalvatiA. Cell surface biotinylation to identify the receptors involved in nanoparticle uptake into endothelial cells.Acta Biomater.202315550752010.1016/j.actbio.2022.11.01036371002
    [Google Scholar]
  41. FernándezM. JavaidF. ChudasamaV. Advances in targeting the folate receptor in the treatment/imaging of cancers.Chem. Sci. (Camb.)20189479081010.1039/C7SC04004K29675145
    [Google Scholar]
  42. HaniU. HonnavalliY.K. BegumM.Y. YasminS. OsmaniR.A.M. AnsariM.Y. Colorectal cancer: A comprehensive review based on the novel drug delivery systems approach and its management.J. Drug Deliv. Sci. Technol.20216310253210.1016/j.jddst.2021.102532
    [Google Scholar]
  43. YounisN.K. RoumiehR. BassilE.P. GhoubairaJ.A. KobeissyF. EidA.H. Nanoparticles: Attractive tools to treat colorectal cancer.Semin. Cancer Biol.202286Part 211310.1016/j.semcancer.2022.08.006
    [Google Scholar]
  44. JainA. BhattacharyaS. Recent advances in nanomedicine preparative methods and their therapeutic potential for colorectal cancer: A critical review.Front. Oncol.202313121160310.3389/fonc.2023.121160337427139
    [Google Scholar]
  45. AjmeeraD. AjumeeraR. Drug repurposing: A novel strategy to target cancer stem cells and therapeutic resistance.Genes Dis.202411114817510.1016/j.gendis.2022.12.01337588226
    [Google Scholar]
  46. AnjumT. HussainN. Hafsa IqbalH.M.N. JedrzakA. JesionowskiT. BilalM. Magnetic nanomaterials as drug delivery vehicles and therapeutic constructs to treat cancer.J. Drug Deliv. Sci. Technol.20238010410310.1016/j.jddst.2022.104103
    [Google Scholar]
  47. BanerjeeM. Devi RajeswariV. Inhibition of WNT signaling by conjugated microRNA nano-carriers: A new therapeutic approach for treating triple-negative breast cancer a perspective review.Crit. Rev. Oncol. Hematol.202318210390110.1016/j.critrevonc.2022.10390136584723
    [Google Scholar]
  48. Ulusam SeçkinerS. KoçA. Agent-based simulation and simulation optimization approaches to energy planning under different scenarios: A hospital application case.Comput. Ind. Eng.202216910816310.1016/j.cie.2022.108163
    [Google Scholar]
  49. SheoranS. AroraS. SamsonrajR. GovindaiahP. vureeS. Lipid-based nanoparticles for treatment of cancer.Heliyon202285e0940310.1016/j.heliyon.2022.e0940335663739
    [Google Scholar]
  50. AnselmoA.C. MitragotriS. Nanoparticles in the clinic: An update post COVID-19 vaccines.Bioeng. Transl. Med.202163e1024610.1002/btm2.1024634514159
    [Google Scholar]
  51. Sousa de AlmeidaM. SusnikE. DraslerB. Taladriz-BlancoP. Petri-FinkA. Rothen-RutishauserB. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine.Chem. Soc. Rev.20215095397543410.1039/D0CS01127D33666625
    [Google Scholar]
  52. MarichalL. Giraudon--ColasG. CousinF. ThillA. LabarreJ. BoulardY. AudeJ.C. PinS. RenaultJ.P. Protein- nanoparticle interactions: What are the protein-corona thickness and organization?Langmuir20193533108311083710.1021/acs.langmuir.9b0137331333024
    [Google Scholar]
  53. MeansN. ElechalawarC.K. ChenW.R. BhattacharyaR. MukherjeeP. Revealing macropinocytosis using nanoparticles.Mol. Aspects Med.20228310099310.1016/j.mam.2021.10099334281720
    [Google Scholar]
  54. RichardsC.J. BurgersT.C.Q. VlijmR. RoosW.H. ÅbergC. Rapid internalization of nanoparticles by human cells at the single particle level.ACS Nano20231717165171652910.1021/acsnano.3c0112437642490
    [Google Scholar]
  55. ZhangW. Taheri-LedariR. GanjaliF. MirmohammadiS.S. QaziF.S. SaeidiradM. Effects of morphology and size of nanoscale drug carriers on cellular uptake and internalization process: A review.Curr. Med. Chem.202313180114
    [Google Scholar]
  56. RajS. KhuranaS. ChoudhariR. KesariK.K. KamalM.A. GargN. RuokolainenJ. DasB.C. KumarD. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy.Semin. Cancer Biol.20216916617710.1016/j.semcancer.2019.11.00231715247
    [Google Scholar]
  57. YusufA. AlmotairyA.R.Z. HenidiH. AlshehriO.Y. AldughaimM.S. Nanoparticles as drug delivery systems: A review of the implication of nanoparticles’ physicochemical properties on responses in biological systems.Polymers2023157159610.3390/polym1507159637050210
    [Google Scholar]
  58. CorreiaA.C. MonteiroA.R. SilvaR. MoreiraJ.N. Sousa LoboJ.M. SilvaA.C. Lipid nanoparticles strategies to modify pharmacokinetics of central nervous system targeting drugs: Crossing or circumventing the blood–brain barrier (BBB) to manage neurological disorders.Adv. Drug Deliv. Rev.202218911448510.1016/j.addr.2022.11448535970274
    [Google Scholar]
  59. BahadurS. JhaM.K. Emerging nanoformulations for drug targeting to brain through intranasal delivery: A comprehensive review.J. Drug Deliv. Sci. Technol.20227810393210.1016/j.jddst.2022.103932
    [Google Scholar]
  60. YetisginA.A. CetinelS. ZuvinM. KosarA. KutluO. Therapeutic nanoparticles and their targeted delivery applications.Molecules2020259219310.3390/molecules2509219332397080
    [Google Scholar]
  61. LeiS. ZhangX. MenK. GaoY. YangX. WuS. DuanX. WeiY. TongR. Efficient colorectal cancer gene therapy with IL-15 mRNA nanoformulation.Mol. Pharm.20201793378339110.1021/acs.molpharmaceut.0c0045132787272
    [Google Scholar]
  62. ZahidJ.A. OrhanA. EkeloefS. GögenurI. Myocardial injury after colorectal cancer surgery and postoperative 90-day mortality and morbidity: A retrospective cohort study.Dis. Colon Rectum202164121531154110.1097/DCR.000000000000206134508013
    [Google Scholar]
  63. RussoS. TorrisiC. CardulloN. MuccilliV. La MantiaA. CastelliF. AcquavivaR. SarpietroM.G. Ethyl protocatechuate encapsulation in solid lipid nanoparticles: Assessment of pharmacotechnical parameters and preliminary in vitro evaluation for colorectal cancer treatment.Pharmaceutics202315239410.3390/pharmaceutics1502039436839716
    [Google Scholar]
  64. MohamedJ.M. AlqahtaniA. AhmadF. KrishnarajuV. KalpanaK. Pectin co-functionalized dual layered solid lipid nanoparticle made by soluble curcumin for the targeted potential treatment of colorectal cancer.Carbohydr. Polym.202125211718010.1016/j.carbpol.2020.11718033183627
    [Google Scholar]
  65. ShakibZ. MahmoudiA. MoosavianS.A. Malaekeh-NikoueiB. PEGylated solid lipid nanoparticles functionalized by aptamer for targeted delivery of docetaxel in mice bearing C26 tumor.Drug Dev. Ind. Pharm.2022482697810.1080/03639045.2022.209539835758194
    [Google Scholar]
  66. AlidadiH. AshtariA. SamimiA. KaramiM.A. KhorsandiL. Myricetin loaded in solid lipid nanoparticles induces apoptosis in the HT-29 colorectal cancer cells via mitochondrial dysfunction.Mol. Biol. Rep.20224998537854510.1007/s11033‑022‑07683‑935767106
    [Google Scholar]
  67. ParvezS. KaroleA. MudavathS.L. Fabrication, physicochemical characterization and in vitro anticancer activity of nerolidol encapsulated solid lipid nanoparticles in human colorectal cell line.Colloids Surf. B. Biointerfaces202221511252010.1016/j.colsurfb.2022.11252035489319
    [Google Scholar]
  68. SmithT. AfframK. NottinghamE.L. HanB. AmissahF. KrishnanS. TrevinoJ. AgyareE. Application of smart solid lipid nanoparticles to enhance the efficacy of 5-fluorouracil in the treatment of colorectal cancer.Sci. Rep.20201011698910.1038/s41598‑020‑73218‑633046724
    [Google Scholar]
  69. BhaskaranN.A. JittaS.R. Salwa CherukuS. KumarN. KumarL. Orally delivered solid lipid nanoparticles of irinotecan coupled with chitosan surface modification to treat colon cancer: Preparation, in-vitro and in-vitro evaluations.Int. J. Biol. Macromol.202221130131510.1016/j.ijbiomac.2022.05.06035568152
    [Google Scholar]
  70. XingR. MustaphaO. AliT. RehmanM. ZaidiS.S. BaseerA. BatoolS. MukhtiarM. ShafiqueS. MalikM. SohailS. AliZ. ZahidF. ZebA. ShahF. YousafA. DinF. Development, characterization, and evaluation of SLN-loaded thermoresponsive hydrogel system of topotecan as biological macromolecule for colorectal delivery.BioMed Res. Int.2021202111410.1155/2021/996860234285920
    [Google Scholar]
  71. Senthil KumarC. ThangamR. MaryS.A. KannanP.R. ArunG. MadhanB. Targeted delivery and apoptosis induction of trans-resveratrol-ferulic acid loaded chitosan coated folic acid conjugate solid lipid nanoparticles in colon cancer cells.Carbohydr. Polym.202023111568210.1016/j.carbpol.2019.11568231888816
    [Google Scholar]
  72. RajpootK. JainS.K. 99m Tc-labelled and pH-awakened microbeads entrapping surface-modified lipid nanoparticles for the augmented effect of oxaliplatin in the therapy of colorectal cancer.J. Microencapsul.202037860962310.1080/02652048.2020.182914132985297
    [Google Scholar]
  73. AlajamiH.N. FouadE.A. AshourA.E. KumarA. YassinA.E.B. Celecoxib-loaded solid lipid nanoparticles for colon delivery: formulation optimization and in vitro assessment of anti-cancer activity.Pharmaceutics202214113110.3390/pharmaceutics1401013135057027
    [Google Scholar]
  74. LotfiN. YousefiZ. GolabiM. KhalilianP. GhezelbashB. MontazeriM. ShamsM.H. BaghbadoraniP.Z. EskandariN. The potential anti-cancer effects of quercetin on blood, prostate and lung cancers: An update.Front. Immunol.202314107753110.3389/fimmu.2023.107753136926328
    [Google Scholar]
  75. MohamedJ.M.M. AhmadF. El-SherbinyM. Al MohainiM.A. VenkatesanK. AlrashdiY.B.A. EldesoquiM.B. IbrahimA.E. DawoodA.F. IbrahimA.M. El DeebS. Optimization and characterization of quercetin-loaded solid lipid nanoparticles for biomedical application in colorectal cancer.Cancer Nanotechnol.20241511610.1186/s12645‑024‑00249‑3
    [Google Scholar]
  76. WangR. QuJ. TangX. ZhangJ. OuA. LiQ. ChenG. ZhengC. MuhitdinovB. HuangY. Lactoferrin-modified gambogic acid liposomes for colorectal cancer treatment.Mol. Pharm.20232083925393610.1021/acs.molpharmaceut.3c0005237505210
    [Google Scholar]
  77. WangM. RousseauB. QiuK. HuangG. ZhangY. SuH. Le Bihan-BenjaminC. KhatiI. ArtzO. FooteM.B. Killing tumor-associated bacteria with a liposomal antibiotic generates neoantigens that induce anti-tumor immune responses.J. Nanobiotechnology20232111237749267
    [Google Scholar]
  78. WuS. YunJ. TangW. FamiliariG. RelucentiM. WuJ. LiX. ChenH. ChenR. Therapeutic m6A eraser ALKBH5 mRNA-loaded exosome-liposome hybrid nanoparticles inhibit progression of colorectal cancer in preclinical tumor models.ACS Nano20231712118381185410.1021/acsnano.3c0305037310898
    [Google Scholar]
  79. WangS. GaoS. ZengY. ZhuL. MoY. WongC.C. BaoY. SuP. ZhaiJ. WangL. SoaresF. XuX. ChenH. HezavehK. CiX. HeA. McGahaT. O’BrienC. RottapelR. KangW. WuJ. ZhengG. CaiZ. YuJ. HeH.H. N6-methyladenosine reader YTHDF1 promotes ARHGEF2 translation and RhoA signaling in colorectal cancer.Gastroenterology202216241183119610.1053/j.gastro.2021.12.26934968454
    [Google Scholar]
  80. DiaoW. YangB. SunS. WangA. KouR. GeQ. ShiM. LianB. SunT. WuJ. BaiJ. QuM. WangY. YuW. GaoZ. PNA-modified liposomes improve the delivery efficacy of CAPIRI for the synergistic treatment of colorectal cancer.Front. Pharmacol.20221389315110.3389/fphar.2022.89315135784721
    [Google Scholar]
  81. TaciakB. BiałasekM. BraniewskaA. SasZ. SawickaP. KiragaŁ. RygielT. KrólM. Evaluation of phenotypic and functional stability of RAW 264.7 cell line through serial passages.PLoS One2018136e019894310.1371/journal.pone.019894329889899
    [Google Scholar]
  82. KarkosP. LeongS. KarkosC. SivajiN. AssimakopoulosD. Spirulina in clinical practice: Evidence-based human applications.Evid. Based Complement. Alternat. Med.201153105310.1093/ecam/nen05818955364
    [Google Scholar]
  83. ElFarO.A. BillaN. LimH.R. ChewK.W. CheahW.Y. MunawarohH.S.H. BalakrishnanD. ShowP.L. Advances in delivery methods of Arthrospira platensis (spirulina) for enhanced therapeutic outcomes.Bioengineered2022136146811471810.1080/21655979.2022.210086335946342
    [Google Scholar]
  84. GuZ. HaoY. SchomannT. OssendorpF. ten DijkeP. CruzL.J. Enhancing anti-tumor immunity through liposomal oxaliplatin and localized immunotherapy via STING activation.J. Control. Release202335753154410.1016/j.jconrel.2023.04.01137030544
    [Google Scholar]
  85. AzarifarZ. AminiR. TanzadehpanahH. AfsharS. NajafiR. In vitro co-delivery of 5-fluorouracil and all-trans retinoic acid by PEGylated liposomes for colorectal cancer treatment.Mol. Biol. Rep.20235012100471005910.1007/s11033‑023‑08888‑237902908
    [Google Scholar]
  86. YavariM. JaafariM.R. MirzaviF. MosayebiG. GhazaviA. GanjiA. Anti-tumor effects of PEGylated-nanoliposomes containing ginger extract in colorectal cancer-bearing mice.Iran. J. Basic Med. Sci.202225789089636033959
    [Google Scholar]
  87. SongL. HaoY. WangC. HanY. ZhuY. FengL. MiaoL. LiuZ. Liposomal oxaliplatin prodrugs loaded with metformin potentiate immunotherapy for colorectal cancer.J. Control. Release202235092293210.1016/j.jconrel.2022.09.01336108810
    [Google Scholar]
  88. JananiB. VijayakumarM. PriyaK. KimJ.H. PrabakaranD.S. ShahidM. Al-GhamdiS. AlsaidanM. Othman BahakimN. Hassan AbdelzaherM. RameshT. EGFR-based targeted therapy for colorectal cancer - Promises and challenges.Vaccines202210449910.3390/vaccines1004049935455247
    [Google Scholar]
  89. QiQ.-R. TianH. YueB.-S. ZhaiB.-T. ZhaoF. Research progress of SN38 drug delivery system in cancer treatment.Int. J. Nanomedicine20241994596410.2147/IJN.S435407
    [Google Scholar]
  90. HodaeiM. VarshosazJ. Cationic Okra gum coated nanoliposomes as a pH-sensitive carrier for co-delivery of hesperetin and oxaliplatin in colorectal cancers.Pharm. Dev. Technol.202227777378410.1080/10837450.2022.211924936040153
    [Google Scholar]
  91. GuoJ. HuangL. Formulation of two lipid-based membrane–core nanoparticles for FOLFOX combination therapy.Nat. Protoc.20221781818183110.1038/s41596‑022‑00698‑335650451
    [Google Scholar]
  92. AlrumaihiF. KhanM.A. BabikerA.Y. AlsaweedM. AzamF. AllemailemK.S. AlmatroudiA.A. AhamadS.R. AlsugoorM.H. AlharbiK.N. AlmansourN.M. KhanA. Lipid-based nanoparticle formulation of diallyl trisulfide chemosensitizes the growth inhibitory activity of doxorubicin in colorectal cancer model: A novel in vitro, in vivo and in silico analysis.Molecules2022277219210.3390/molecules2707219235408590
    [Google Scholar]
  93. KeshavarzF. SoltanshahiM. KhosravaniF. BakhshiyanF. GhanbariA. HassanzadehS. AmirpourM. GhalamfarsaG. Thymol-loaded liposomes effectively induced apoptosis and decreased EGFR expression in colorectal cancer cells.Naunyn Schmiedebergs Arch. Pharmacol.202439775157516510.1007/s00210‑024‑02945‑838240780
    [Google Scholar]
  94. TefasL.R. TomaI. SesarmanA. BanciuM. JurjA. Berindan-NeagoeI. RusL. StiufiucR. TomutaI. Co-delivery of gemcitabine and salinomycin in PEGylated liposomes for enhanced anticancer efficacy against colorectal cancer.J. Liposome Res.202333323425010.1080/08982104.2022.215313936472146
    [Google Scholar]
  95. OrtizA.C. CasasI. MellaP. NaranjoO. PizarroN. VegaA. Cerda-OpazoP. GarcíaL. MoralesJ.O. Cepeda-PlazaM. Aptamer-functionalized lipid-core micelles loaded with rhenium tricarbonyl complex.Pharmaceutics202113114963
    [Google Scholar]
  96. LuY. ZhongL. JiangZ. PanH. ZhangY. ZhuG. BaiL. TongR. ShiJ. DuanX. Cationic micelle-based siRNA delivery for efficient colon cancer gene therapy.Nanoscale Res. Lett.201914119310.1186/s11671‑019‑2985‑z31165329
    [Google Scholar]
  97. HuY. HeY. JiJ. ZhengS. ChengY. Tumor targeted curcumin delivery by folate-modified MPEG-PCL self-assembly micelles for colorectal cancer therapy.Int. J. Nanomedicine2020151239125210.2147/IJN.S23277732110020
    [Google Scholar]
  98. SeiwertN. FahrerJ. NagelG. FrankJ. BehnamD. KainaB. Curcumin administered as micellar solution suppresses intestinal inflammation and colorectal carcinogenesis.Nutr. Cancer202173468669310.1080/01635581.2020.177138432468854
    [Google Scholar]
  99. BaraniM. BilalM. RahdarA. ArshadR. KumarA. HamishekarH. KyzasG.Z. Nanodiagnosis and nanotreatment of colorectal cancer: An overview.J. Nanobiotechnology202123125
    [Google Scholar]
  100. KuaiR. YuanW. SonS. NamJ. XuY. FanY. SchwendemanA. MoonJ. Elimination of established tumors with nanodisc-based combination chemoimmunotherapy.Sci. Adv.201844eaao173610.1126/sciadv.aao173629675465
    [Google Scholar]
  101. DaneE.L. Belessiotis-RichardsA. BacklundC. WangJ. HidakaK. MillingL.E. BhagchandaniS. MeloM.B. WuS. LiN. DonahueN. NiK. MaL. OkaniwaM. StevensM.M. Alexander-KatzA. IrvineD.J. STING agonist delivery by tumour-penetrating PEG-lipid nanodiscs primes robust anticancer immunity.Nat. Mater.202221671072010.1038/s41563‑022‑01251‑z35606429
    [Google Scholar]
  102. SaberM.M. Al-mahallawiA.M. NassarN.N. StorkB. ShoumanS.A. Targeting colorectal cancer cell metabolism through development of cisplatin and metformin nano-cubosomes.BMC Cancer201818182210.1186/s12885‑018‑4727‑530111296
    [Google Scholar]
  103. AlmoshariY. AlamM.I. BakkariM.A. SalawiA. AlshamraniM. SabeiF.Y. SafhiA.Y. AlamoudiJ.A. IbrahimI.M. Formulation, characterization, and evaluation of doxorubicin-loaded cubosome as a cytotoxic potentiator against HCT-116 colorectal cancer cells.Int. J. Pharm.202256723731
    [Google Scholar]
  104. SalariehZ. EsmaeiliA. PadM.H. Synthesis of cubosomes containing cerium oxide nanoparticles from Lactobacillus acidophilus loaded with glatiramer acetate and carboxymethylcellulose coating.Int. J. Biol. Macromol.202323112321510.1016/j.ijbiomac.2023.12321536642361
    [Google Scholar]
  105. NematiM. SinghB. MirR.A. NematiM. BabaeiA. AhmadiM. RasmiY. GolezaniA.G. RezaieJ. Plant-derived extracellular vesicles: A novel nanomedicine approach with advantages and challenges.Cell Commun. Signal.20222016910.1186/s12964‑022‑00889‑135606749
    [Google Scholar]
  106. AshfaqR. RasulA. AsgharS. KovácsA. BerkóS. Budai-SzűcsM. Lipid nanoparticles: An effective tool to improve the bioavailability of nutraceuticals.Int. J. Mol. Sci.202324211576410.3390/ijms24211576437958750
    [Google Scholar]
  107. YangC. ZhangM. SungJ. WangL. JungY. MerlinD. Isolation and characterization of exosomes from mouse feces.Bio Protoc.2020108e358410.21769/BioProtoc.358432440530
    [Google Scholar]
  108. YangC. ZhangM. SungJ. WangL. JungY. MerlinD. Autologous exosome transfer: A new personalized treatment concept to prevent colitis in a murine model.J. Crohn’s Colitis202014684185510.1093/ecco‑jcc/jjz18431710674
    [Google Scholar]
  109. LiangG. ZhuY. AliD.J. TianT. XuH. SiK. SunB. ChenB. XiaoZ. Engineered exosomes for targeted co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon cancer.J. Nanobiotechnology20201811010.1186/s12951‑019‑0563‑231918721
    [Google Scholar]
  110. WeiX. YangZ. ChenG. HuangJ. VMP1 promotes exosome secretion and enhances 5-FU resistance in colon cancer cells.Tissue Cell20227710185110.1016/j.tice.2022.10185135696974
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673327576241201145252
Loading
/content/journals/cmc/10.2174/0109298673327576241201145252
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test