Skip to content
2000
Volume 32, Issue 38
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Cervical cancer remains a significant global health concern, making it essential to investigate new treatment options continuously. This page provides an overview of the latest advancements and best practices in detection and intervention, including Pap smears, colposcopy, biopsy, immunotherapy, targeted therapies, chemotherapy, radiation therapy, and surgery. Surgical techniques such as radical hysterectomy and minimally invasive procedures have advanced to enhance patient outcomes and quality of life. Simultaneously, radiation therapy methods have been refined to maximize tumour control while reducing adverse effects. Chemotherapy remains vital, with new drugs and combination regimens demonstrating improved tolerance and efficacy. Immunotherapy, notably immune checkpoint inhibitors, has shown promise in advanced stages of cervical cancer. Additionally, targeted therapies that focus on specific biochemical pathways offer the potential for personalized treatment approaches. This review critically assesses ongoing research, evaluates existing data, and emphasizes the opportunities and challenges of each therapeutic approach. Ultimately, integrating these diverse treatment strategies is the key to enhancing patient outcomes.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673337745241123054840
2025-01-22
2025-11-01
Loading full text...

Full text loading...

References

  1. RoyP.S. SaikiaB.J. Cancer and cure: A critical analysis.Indian J. Cancer201653344144210.4103/0019‑509X.20065828244479
    [Google Scholar]
  2. TorreL.A. SiegelR.L. WardE.M. JemalA. Global cancer incidence and mortality rates and trends-An update.Cancer Epidemiol. Biomarkers Prev.2016251162710.1158/1055‑9965.EPI‑15‑057826667886
    [Google Scholar]
  3. MalagónT. LouvantoK. RamanakumarA.V. KoushikA. CoutléeF. FrancoE.L. Viral load of human papillomavirus types 16/18/31/33/45 as a predictor of cervical intraepithelial neoplasia and cancer by age.Gynecol. Oncol.2019155224525310.1016/j.ygyno.2019.09.01031604665
    [Google Scholar]
  4. SeifertF. EisenblätterR. BeckmannJ. SchürmannP. HanelP. JentschkeM. BöhmerG. StraußH.G. HirchenhainC. SchmidmayrM. MüllerF. FaschingP. LuytenA. HäfnerN. DürstM. RunnebaumI.B. HillemannsP. DörkT. RamachandranD. Association of two genomic variants with HPV type-specific risk of cervical cancer.Tumour Virus Research20231620026910.1016/j.tvr.2023.20026937499979
    [Google Scholar]
  5. BurmeisterC.A. KhanS.F. SchäferG. MbataniN. AdamsT. MoodleyJ. PrinceS. Cervical cancer therapies: Current challenges and future perspectives.Tumour Virus Res.20221320023
    [Google Scholar]
  6. PerkinsR.B. WentzensenN. GuidoR.S. SchiffmanM. Cervical cancer screening.JAMA2023330654755810.1001/jama.2023.1317437552298
    [Google Scholar]
  7. Muhammad HusniC. Agus PriyoW. Upik AnderianiM. BertiN. RinaM. SyahrulR. SyarifuddinW. Detection of human papilloma virus (HPV) in parafin block of cervical cancer patients using multiplex polymerase chain reaction (PCR) and reverse line blot methods.Medicina Clínica Práctica20214100225
    [Google Scholar]
  8. LiX. ZhangY. WuH. LiS. GeS. GaoJ. A case of neoadjuvant chemotherapy in pregnancy with cervical cancer (IB3).Cancer Treat. Res. Commun.20243810074910.1016/j.ctarc.2023.10074938184968
    [Google Scholar]
  9. PlummerM. PetoJ. FranceschiS. Time since first sexual intercourse and the risk of cervical cancer.Int. J. Cancer2012130112638264410.1002/ijc.2625021702036
    [Google Scholar]
  10. ZhangS. XuH. ZhangL. QiaoY. Cervical cancer: Epidemiology, risk factors and screening.Chin. J. Cancer Res.202032672072810.21147/j.issn.1000‑9604.2020.06.0533446995
    [Google Scholar]
  11. ChenQ. HuangY. ShaoL. Han-ZhangH. YangF. WangY. LiuJ. GanJ. An EGFR-amplified cervical squamous cell carcinoma patient with pulmonary metastasis benefits from afatinib: A case report.OncoTargets Ther.2020131845184910.2147/OTT.S23638232184619
    [Google Scholar]
  12. TewariK.S. SillM.W. LongH.J.III PensonR.T. HuangH. RamondettaL.M. LandrumL.M. OakninA. ReidT.J. LeitaoM.M. MichaelH.E. MonkB.J. Improved survival with bevacizumab in advanced cervical cancer.N. Engl. J. Med.2014370873474310.1056/NEJMoa130974824552320
    [Google Scholar]
  13. ThibultM.L. MamessierE. Gertner-DardenneJ. PastorS. Just-LandiS. XerriL. ChetailleB. OliveD. PD-1 is a novel regulator of human B-cell activation.Int. Immunol.201325212913710.1093/intimm/dxs09823087177
    [Google Scholar]
  14. BhatlaN. BerekJ.S. Cuello FredesM. DennyL.A. GrenmanS. KarunaratneK. KehoeS.T. KonishiI. OlawaiyeA.B. PratJ. SankaranarayananR. BrierleyJ. MutchD. QuerleuD. CibulaD. QuinnM. BothaH. SigurdL. RiceL. RyuH.S. NganH. MäenpääJ. AndrijonoA. PurwotoG. MaheshwariA. BafnaU.D. PlanteM. NatarajanJ. Revised FIGO staging for carcinoma of the cervix uteri.Int. J. Gynaecol. Obstet.2019145112913510.1002/ijgo.1274930656645
    [Google Scholar]
  15. BhatlaN. AokiD. SharmaD.N. SankaranarayananR. Cancer of the cervix uteri.Int. J. Gynaecol. Obstet.2018143S2Suppl. 2223610.1002/ijgo.1261130306584
    [Google Scholar]
  16. NicoletV. CarignanL. BourdonF. ProsmanneO. MR imaging of cervical carcinoma: A practical staging approach.Radiographics20002061539154910.1148/radiographics.20.6.g00nv11153911112809
    [Google Scholar]
  17. NanthamongkolkulK. HanprasertpongJ. Predictive factors of pelvic lymph node metastasis in early-stage cervical cancer.Oncol. Res. Treat.201841419419810.1159/00048584029562222
    [Google Scholar]
  18. ŠarenacT. MikovM. Cervical cancer, different treatments and importance of bile acids as therapeutic agents in this disease.Front Pharmacol201910484
    [Google Scholar]
  19. BerekJ.S. MatsuoK. GrubbsB.H. GaffneyD.K. LeeS.I. KilcoyneA. CheonG.J. YooC.W. LiL. ShaoY. ChenT. KimM. MikamiM. Multidisciplinary perspectives on newly revised 2018 FIGO staging of cancer of the cervix uteri.J. Gynecol. Oncol.2019302e4010.3802/jgo.2019.30.e4030740962
    [Google Scholar]
  20. MatsuoK. MachidaH. MandelbaumR.S. KonishiI. MikamiM. Validation of the 2018 FIGO cervical cancer staging system.Gynecol. Oncol.20191521879310.1016/j.ygyno.2018.10.02630389105
    [Google Scholar]
  21. Otero-GarcíaM.M. Mesa-ÁlvarezA. NikolicO. Blanco-LobatoP. Basta-NikolicM. de Llano-OrtegaR.M. Paredes-VelázquezL. NikolicN. Szewczyk-BiedaM. Role of MRI in staging and follow-up of endometrial and cervical cancer: Pitfalls and mimickers.Insights Imaging20191011910.1186/s13244‑019‑0696‑830758678
    [Google Scholar]
  22. BalleyguierC. SalaE. Da CunhaT. BergmanA. BrkljacicB. DanzaF. ForstnerR. HammB. Kubik-HuchR. LopezC. ManfrediR. McHugoJ. OleagaL. TogashiK. KinkelK. Staging of uterine cervical cancer with MRI: Guidelines of the European Society of Urogenital Radiology.Eur. Radiol.20112151102111010.1007/s00330‑010‑1998‑x21063710
    [Google Scholar]
  23. ValentiniA.L. GuiB. MiccòM. GiulianiM. RodolfinoE. NinivaggiV. IacobucciM. MarinoM. GambacortaM.A. TestaA.C. ZannoniG.F. BonomoL. MRI anatomy of parametrial extension to better identify local pathways of disease spread in cervical cancer.Diagn. Interv. Radiol.201622431932510.5152/dir.2015.1528227165471
    [Google Scholar]
  24. HricakH. MRI of the female pelvis: A review.AJR Am. J. Roentgenol.198614661115112210.2214/ajr.146.6.11153486556
    [Google Scholar]
  25. ChoiH.J. JuW. MyungS.K. KimY. Diagnostic performance of computer tomography, magnetic resonance imaging, and positron emission tomography or positron emission tomography/computer tomography for detection of metastatic lymph nodes in patients with cervical cancer: Meta-analysis.Cancer Sci.201010161471147910.1111/j.1349‑7006.2010.01532.x20298252
    [Google Scholar]
  26. PannuH.K. CorlF.M. FishmanE.K. CT evaluation of cervical cancer: Spectrum of disease.Radiographics20012151155116810.1148/radiographics.21.5.g01se31115511553823
    [Google Scholar]
  27. WrightJ.D. MatsuoK. HuangY. TergasA.I. HouJ.Y. Khoury-ColladoF. St ClairC.M. AnanthC.V. NeugutA.I. HershmanD.L. Prognostic performance of the 2018 international federation of gynecology and obstetrics cervical cancer staging guidelines.Obstet. Gynecol.20191341495710.1097/AOG.000000000000331131188324
    [Google Scholar]
  28. AyhanA. AslanK. ÖzM. TohmaY.A. KuşçuE. MeydanliM.M. Para-aortic lymph node involvement revisited in the light of the revised 2018 FIGO staging system for cervical cancer.Arch. Gynecol. Obstet.2019300367568210.1007/s00404‑019‑05232‑731263988
    [Google Scholar]
  29. NishioS. MatsuoK. YonemotoK. ShimokawaM. HosakaM. KodamaM. MiyakeT.M. UshijimaK. KamuraT. WestinS.N. SolimanP.T. ColemanR.L. Race and nodal disease status are prognostic factors in patients with stage IVB cervical cancer.Oncotarget2018964323213233010.18632/oncotarget.2596230190789
    [Google Scholar]
  30. RockallA.G. GhoshS. Alexander-SefreF. BabarS. YounisM.T.S. NazS. JacobsI.J. ReznekR.H. Can MRI rule out bladder and rectal invasion in cervical cancer to help select patients for limited EUA?Gynecol. Oncol.2006101224424910.1016/j.ygyno.2005.10.01216310245
    [Google Scholar]
  31. LiH. WuX. ChengX. Advances in diagnosis and treatment of metastatic cervical cancer.J. Gynecol. Oncol.2016274e4310.3802/jgo.2016.27.e4327171673
    [Google Scholar]
  32. JainM.A. LimaiemF. Cervical Squamous Cell Carcinoma.StatPearlsStatPearls Publishing2024
    [Google Scholar]
  33. TakeuchiS. Biology and treatment of cervical adenocarcinoma.Chin. J. Cancer Res.201628225426210.21147/j.issn.1000‑9604.2016.02.1127198186
    [Google Scholar]
  34. GienL.T. BeaucheminM.C. ThomasG. Adenocarcinoma: A unique cervical cancer.Gynecol. Oncol.2010116114014610.1016/j.ygyno.2009.09.04019880165
    [Google Scholar]
  35. StolnicuS. HoangL. Hanko-BauerO. BarsanI. TerinteC. PesciA. Aviel-RonenS. KiyokawaT. Alvarado-CabreroI. OlivaE. ParkK.J. SoslowR.A. Retracted article: Cervical adenosquamous carcinoma: Detailed analysis of morphology, immunohistochemical profile, and clinical outcomes in 59 cases.Mod. Pathol.201932226927910.1038/s41379‑018‑0123‑630258209
    [Google Scholar]
  36. BoustaniJ. AchkarS. BertautA. GenestieC. GouyS. PautierP. MoriceP. Haie-MederC. ChargariC. Glassy cell carcinoma of the uterine cervix: 20-year experience from a comprehensive cancer center.Cancer Radiother.202125320721210.1016/j.canrad.2020.07.00733408051
    [Google Scholar]
  37. TalermanA. AlenghatE. OkagakiT. Glassy cell carcinoma of the uterine cervix.APMIS1991Suppl 2311925
    [Google Scholar]
  38. TempferC.B. TischoffI. DoganA. HilalZ. SchultheisB. KernP. RezniczekG.A. Neuroendocrine carcinoma of the cervix: A systematic review of the literature.BMC Cancer201818153010.1186/s12885‑018‑4447‑x29728073
    [Google Scholar]
  39. KumarT. NigamJ.S. KumariM. SwatiJ. PandeyJ. Cervical neuroendocrine carcinoma: A rare case report.Cureus2021136e1553210.7759/cureus.1553234269772
    [Google Scholar]
  40. MirabelloL. ClarkeM. NelsonC. DeanM. WentzensenN. YeagerM. CullenM. BolandJ. SchiffmanM. BurkR. The intersection of HPV epidemiology, genomics and mechanistic studies of HPV-mediated carcinogenesis.Viruses20181028010.3390/v1002008029438321
    [Google Scholar]
  41. ChenA.A. GheitT. FranceschiS. TommasinoM. CliffordG.M. Human papillomavirus 18 genetic variation and cervical cancer risk worldwide.J. Virol.20158920106801068710.1128/JVI.01747‑1526269181
    [Google Scholar]
  42. De BrotL. PellegriniB. MorettiS.T. CarraroD.M. SoaresF.A. RochaR.M. BaiocchiG. da CunhaI.W. de AndradeV.P. Infections with multiple high-risk HPV types are associated with high-grade and persistent low-grade intraepithelial lesions of the cervix.Cancer Cytopathol.2017125213814310.1002/cncy.2178927870295
    [Google Scholar]
  43. CornetI. GheitT. FranceschiS. VignatJ. BurkR.D. SyllaB.S. TommasinoM. CliffordG.M. Human papillomavirus type 16 genetic variants: Phylogeny and classification based on E6 and LCR.J. Virol.201286126855686110.1128/JVI.00483‑1222491459
    [Google Scholar]
  44. ChenA.A. HeidemanD.A.M. BoonD. ChenZ. BurkR.D. De VuystH. GheitT. SnijdersP.J.F. TommasinoM. FranceschiS. CliffordG.M. Human papillomavirus 33 worldwide genetic variation and associated risk of cervical cancer.Virology201444835636210.1016/j.virol.2013.10.03324314666
    [Google Scholar]
  45. ChenA.A. HeidemanD.A.M. BoonD. GheitT. SnijdersP.J.F. TommasinoM. FranceschiS. CliffordG.M. Human papillomavirus 45 genetic variation and cervical cancer risk worldwide.J. Virol.20148884514452110.1128/JVI.03534‑1324501412
    [Google Scholar]
  46. Cancer Genome Atlas Research Network. Integrated genomic and molecular characterization of cervical cancerNature2017543764537838410.1038/nature2138628112728
    [Google Scholar]
  47. HenkenF.E. WiltingS.M. OvermeerR.M. van RietschotenJ.G.I. NygrenA.O.H. ErramiA. SchoutenJ.P. MeijerC.J.L.M. SnijdersP.J.F. SteenbergenR.D.M. Sequential gene promoter methylation during HPV-induced cervical carcinogenesis.Br. J. Cancer200797101457146410.1038/sj.bjc.660405517971771
    [Google Scholar]
  48. DongS.M. KimH.S. RhaS.H. SidranskyD. Promoter hypermethylation of multiple genes in carcinoma of the uterine cervix.Clin. Cancer Res.2001771982198611448914
    [Google Scholar]
  49. SartorM.A. DolinoyD.C. JonesT.R. ColacinoJ.A. PrinceM.E.P. CareyT.E. RozekL.S. Genome-wide methylation and expression differences in HPV(+) and HPV(-) squamous cell carcinoma cell lines are consistent with divergent mechanisms of carcinogenesis.Epigenetics20116677778710.4161/epi.6.6.1621621613826
    [Google Scholar]
  50. CurtyG. MenezesA.N. BrantA.C. de Mulder RougvieM. MoreiraM.Â.M. SoaresM.A. Expression of retroelements in cervical cancer and their interplay with HPV infection and host gene expression.Cancers20211314351310.3390/cancers1314351334298727
    [Google Scholar]
  51. HeltA.M. FunkJ.O. GallowayD.A. Inactivation of both the retinoblastoma tumor suppressor and p21 by the human papillomavirus type 16 E7 oncoprotein is necessary to inhibit cell cycle arrest in human epithelial cells.J. Virol.20027620105591056810.1128/JVI.76.20.10559‑10568.200212239337
    [Google Scholar]
  52. ShinM.K. BalsitisS. BrakeT. LambertP.F. Human papillomavirus E7 oncoprotein overrides the tumor suppressor activity of p21Cip1 in cervical carcinogenesis.Cancer Res.200969145656566310.1158/0008‑5472.CAN‑08‑371119584294
    [Google Scholar]
  53. WijetungaN.A. BelbinT.J. BurkR.D. WhitneyK. AbadiM. GreallyJ.M. EinsteinM.H. SchlechtN.F. Novel epigenetic changes in CDKN2A are associated with progression of cervical intraepithelial neoplasia.Gynecol. Oncol.2016142356657310.1016/j.ygyno.2016.07.00627401842
    [Google Scholar]
  54. McLaughlin-DrubinM.E. ParkD. MungerK. Tumor suppressor p16 INK4A is necessary for survival of cervical carcinoma cell lines.Proc. Natl. Acad. Sci. USA201311040161751618010.1073/pnas.131043211024046371
    [Google Scholar]
  55. KarimR. MeyersC. BackendorfC. LudigsK. OffringaR. van OmmenG.J.B. MeliefC.J.M. van der BurgS.H. BoerJ.M. Human papillomavirus deregulates the response of a cellular network comprising of chemotactic and proinflammatory genes.PLoS One201163e1784810.1371/journal.pone.001784821423754
    [Google Scholar]
  56. AgarwalS.M. RaghavD. SinghH. RaghavaG.P.S. CCDB: A curated database of genes involved in cervix cancer.Nucleic Acids Res.201139DatabaseSuppl. 1D975D97910.1093/nar/gkq102421045064
    [Google Scholar]
  57. NgoC. SamuelsS. BagrintsevaK. SlockerA. HupéP. KenterG. PopovicM. SametN. TrescaP. von der LeyenH. DeutschE. RouzierR. BelinL. KamalM. SchollS. From prospective biobanking to precision medicine: BIO-RAIDs – An EU study protocol in cervical cancer.BMC Cancer201515184210.1186/s12885‑015‑1801‑026531748
    [Google Scholar]
  58. SangwaiyaA. GillM. BairwaS. ChaudhryM. SenR. Prakash KatariaS. Utility of P16/INK4a and Ki-67 in preneoplasticand neoplastic lesions of cervix.Iran. J. Pathol.201813330831630636953
    [Google Scholar]
  59. GonçalvesJ.E.S. AndradeC.V. RussomanoF.B. NuovoG.J. Amaro-FilhoS.M. CarvalhoM.O.O. NicolA.F. The role of p16 as putative biomarker for cervical neoplasia: A controversial issue?MedicalExpress201746410.5935/MedicalExpress.2017.06.01
    [Google Scholar]
  60. McCluggageW.G. Immunohistochemical and functional biomarkers of value in female genital tract lesions.Int. J. Gynecol. Pathol.200625210112010.1097/01.pgp.0000192269.14666.6816633059
    [Google Scholar]
  61. ChenG. WeiK. LingY. SuS. ZhuM. ChenG. The prognostic role of Ki-67/MIB-1 in cervical cancer: A systematic review with meta-analysis.Med. Sci. Monit.20152188288910.12659/MSM.89280725807305
    [Google Scholar]
  62. CavalcanteJ. SampaioJ. FilhoJ. VieiraR. EleutérioJ. LimaR. RibeiroR. AlmeidaP. Progressive loss of E-cadherin immunoexpression during cervical carcinogenesis.Acta Cirurgica Brasileira201429667674
    [Google Scholar]
  63. MaX. GeA. HanJ. KangJ. ZhangY. LiuX. XingL. LiuX. DongL. Meta-analysis of downregulated E-cadherin as a diagnostic biomarker for cervical cancer.Arch. Gynecol. Obstet.2022307233134110.1007/s00404‑022‑06475‑735279729
    [Google Scholar]
  64. ShahU.J. NasiruddinM. DarS.A. KhanM.K.A. AkhterM.R. SinghN. RabaanA.A. HaqueS. Emerging biomarkers and clinical significance of HPV genotyping in prevention and management of cervical cancer.Microb. Pathog.202014310413110.1016/j.micpath.2020.10413132169490
    [Google Scholar]
  65. VieillardV. PaulM. Physicochemical stability study of a biosimilar of Bevacizumab in vials and after dilution in 0.9% NaCl in polyolefin intravenous bags.Pharm. Technol. Hosp. Pharm.2023812022000710.1515/pthp‑2022‑0007
    [Google Scholar]
  66. GarciaJ. HurwitzH.I. SandlerA.B. MilesD. ColemanR.L. DeurlooR. ChinotO.L. Bevacizumab (Avastin®) in cancer treatment: A review of 15 years of clinical experience and future outlook.Cancer Treat. Rev.20208610201710.1016/j.ctrv.2020.10201732335505
    [Google Scholar]
  67. SainiJ. BansalV. ChandraA. MadanJ. JainU.K. ChandraR. JainS.M. Bleomycin sulphate loaded nanostructured lipid particles augment oral bioavailability, cytotoxicity and apoptosis in cervical cancer cells.Colloids Surf. B Biointerfaces201411810111010.1016/j.colsurfb.2014.03.03624732397
    [Google Scholar]
  68. ColomboN. DubotC. LorussoD. CaceresM.V. HasegawaK. Shapira-FrommerR. TewariK.S. SalmanP. Hoyos UstaE. YañezE. GümüşM. Olivera Hurtado de MendozaM. SamouëlianV. CastonguayV. ArkhipovA. TokerS. LiK. KeefeS.M. MonkB.J. Pembrolizumab for persistent, recurrent, or metastatic cervical cancer.N. Engl. J. Med.2021385201856186710.1056/NEJMoa211243534534429
    [Google Scholar]
  69. AgostinelliV. MusacchioL. CamardaF. SalutariV. CarboneM.V. GhizzoniV. NeroC. RicciC. PerriM.T. GiudiceE. LardinoS. BerardiR. ScambiaG. LorussoD. Therapeutic potential of tisotumab vedotin in the treatment of recurrent or metastatic cervical cancer: A short report on the emerging data.Cancer Manag. Res.2023151063107210.2147/CMAR.S29408037790898
    [Google Scholar]
  70. SachanP.L. SinghM. PatelM.L. SachanR. A study on cervical cancer screening using pap smear test and clinical correlation.Asia Pac. J. Oncol. Nurs.20185333734110.4103/apjon.apjon_15_1829963597
    [Google Scholar]
  71. BurnessJ.V. SchroederJ.M. WarrenJ.B. Cervical colposcopy: Indications and risk assessment.Am. Fam. Physician20201021394832603071
    [Google Scholar]
  72. VallsJ. BaenaA. VenegasG. CelisM. GonzálezM. SosaC. SantinJ.L. OrtegaM. SoilánA. TurciosE. FigueroaJ. Rodríguez de la PeñaM. FigueredoA. BeracocheaA.V. PérezN. Martínez-BetterJ. LoraO. JiménezJ.Y. GiménezD. FleiderL. SalgadoY. MartínezS. Bellido-FuentesY. FloresB. TattiS. VillagraV. Cruz-ValdezA. TeránC. SánchezG.I. RodríguezG. PicconiM.A. FerreraA. MendozaL. CalderónA. MurilloR. WiesnerC. BroutetN. LucianiS. PérezC. DarraghT.M. JerónimoJ. HerreroR. AlmonteM. Performance of standardised colposcopy to detect cervical precancer and cancer for triage of women testing positive for human papillomavirus: Results from the ESTAMPA multicentric screening study.Lancet Glob. Health2023113e350e36010.1016/S2214‑109X(22)00545‑936796982
    [Google Scholar]
  73. OguntayoA.O. The role of punch biopsy in the management of carcinoma of the cervix in a low resource centre.Open J. Clin. Diagn.20133417117210.4236/ojcd.2013.34031
    [Google Scholar]
  74. GageJ.C. DugganM.A. NationJ.G. GaoS. CastleP.E. Detection of cervical cancer and its precursors by endocervical curettage in 13, 115 colposcopically guided biopsy examinations.Am. J. Obstet. Gynecol.20102035481
    [Google Scholar]
  75. MassadL.S. PerkinsR.B. NareshA. NelsonE.L. SpirydaL. GecsiK.S. MulhemE. Kostas-PolstonE. ZouT. GilesT.L. WentzensenN. Colposcopy standards: Guidelines for endocervical curettage at colposcopy.J. Low. Genit. Tract Dis.20232719710136222824
    [Google Scholar]
  76. AbrahamC. KimR. OnerC. BucknorA. Colposcopy and loop electrosurgical excision procedure: A simulated exercise.MedEdPORTAL2023191134410.15766/mep_2374‑8265.1134437691878
    [Google Scholar]
  77. YangE.J. KimN.R. ChoiJ.Y. KimW.Y. LeeS.J. Loop electrosurgical excision procedure combined with cold coagulation for cervical intraepithelial neoplasia and adenocarcinoma in-situ: A feasible treatment with a low risk of residual/recurrent disease.Infect. Agent. Cancer20201515810.1186/s13027‑020‑00326‑333042214
    [Google Scholar]
  78. ChivaL. ChaconE. Is conization a protective surgical maneuver in early cervical cancer?Ann. Surg. Oncol.20212873463346410.1245/s10434‑021‑09705‑533730225
    [Google Scholar]
  79. NicaA. CovensA. Cone biopsy (with pelvic lymphadenectomy) for fertility preservation in early stage cervical cancer: Ready for prime time?Gynecol. Oncol.2020158222923010.1016/j.ygyno.2020.07.00332778250
    [Google Scholar]
  80. KlapdorR. HertelH. DelebinskiL. HillemannsP. Association of preoperative cone biopsy with recurrences after radical hysterectomy.Arch. Gynecol. Obstet.2022305121522210.1007/s00404‑021‑06145‑034291339
    [Google Scholar]
  81. BourgiotiC. ChatoupisK. MoulopoulosL.A. Current imaging strategies for the evaluation of uterine cervical cancer.World J. Radiol.20168434235410.4329/wjr.v8.i4.34227158421
    [Google Scholar]
  82. PoliU. BidingerP.D. GowrishankarS. Visual inspection with acetic acid (via) screening program: 7 years experience in early detection of cervical cancer and pre-cancers in rural South India.Indian J. Community Med.201540320320710.4103/0970‑0218.15887326170547
    [Google Scholar]
  83. SmithE.S. MoonA.S. O’HanlonR. LeitaoM.M.Jr SonodaY. Abu-RustumN.R. MuellerJ.J. Radical trachelectomy for the treatment of early-stage cervical cancer.Obstet. Gynecol.2020136353354210.1097/AOG.000000000000395232769648
    [Google Scholar]
  84. RamirezP.T. FrumovitzM. ParejaR. LopezA. VieiraM. RibeiroR. BudaA. YanX. ShuzhongY. ChettyN. IslaD. TamuraM. ZhuT. RobledoK.P. GebskiV. AsherR. BehanV. NicklinJ.L. ColemanR.L. ObermairA. Minimally invasive versus abdominal radical hysterectomy for cervical cancer.N. Engl. J. Med.2018379201895190410.1056/NEJMoa180639530380365
    [Google Scholar]
  85. YangJ. CaiH. XiaoZ.X. WangH. YangP. Effect of radiotherapy on the survival of cervical cancer patients.Medicine20199830e1642110.1097/MD.000000000001642131348242
    [Google Scholar]
  86. ChaoJ. SilinL. CheW. JieC. JinW. XinyueZ. JinluM. MengjiaoC. Relationship between visceral obesity and prognosis in patients with stage IVB cervical cancer receiving radiotherapy and chemotherapy.Cancer Pathog Ther.202323180186
    [Google Scholar]
  87. FengX. MengX. TangD. GuoS. LiaoQ. ChenJ. XieQ. LiuF. FangY. SunC. HanY. AiJ. LiK. Reversal of the immunosuppressive tumor microenvironment via platinum-based neoadjuvant chemotherapy in cervical cancer.Cancer Pathogenesis and Therapy202421384910.1016/j.cpt.2023.07.00338328710
    [Google Scholar]
  88. HuangZ. YaoW. ZhongZ. YangG. LiuJ. GuH. HuangJ. Chemotherapy alone versus chemotherapy plus 125I brachytherapy for the second-line treatment of locally recurrent cervical cancer after/with radical treatment: A propensity score analysis.Heliyon2024102e2466610.1016/j.heliyon.2024.e2466638298696
    [Google Scholar]
  89. TsudaN. WatariH. UshijimaK. Chemotherapy and molecular targeting therapy for recurrent cervical cancer.Chin. J. Cancer Res.201628224125310.21147/j.issn.1000‑9604.2016.02.1427199523
    [Google Scholar]
  90. GawdeK.A. SauS. TatipartiK. KashawS.K. MehrmohammadiM. AzmiA.S. IyerA.K. Paclitaxel and di-fluorinated curcumin loaded in albumin nanoparticles for targeted synergistic combination therapy of ovarian and cervical cancers.Colloids Surf. B Biointerfaces201816781910.1016/j.colsurfb.2018.03.04629625422
    [Google Scholar]
  91. MahalakshmiM. KumarP. Phloroglucinol-conjugated gold nanoparticles targeting mitochondrial membrane potential of human cervical (HeLa) cancer cell lines.Spectrochim. Acta A Mol. Biomol. Spectrosc.201921945045610.1016/j.saa.2019.04.06031063960
    [Google Scholar]
  92. JiaY. HuangX. LiS. WuY. WuJ. DuanZ. LuoM. TangJ. Engineering of surface-altered polydopamine nanocomposites for successive drug release and in vivo antitumor effects in cervical cancer therapy: Investigation of antiproliferative effects and apoptosis.J. Drug Deliv. Sci. Technol.20249110518910.1016/j.jddst.2023.105189
    [Google Scholar]
  93. NascimentoJ. do Canto OlegárioI. MariotC. de OliveiraT.V. dos Santos ChavesP. OliveiraR. de OliveiraE.G. GuterresS.S. BuffonA. PilgerD.A. BeckR.C.R. Encapsulation of orlistat in biodegradable polymeric nanocapsules improves its cytotoxic effect against cervical cancer cells.J. Drug Deliv. Sci. Technol.20238910508610.1016/j.jddst.2023.105086
    [Google Scholar]
  94. TomaoS. TomaoF. RossiL. ZaccarelliE. CarusoD. ZorattoF. Benedetti PaniciP. PapaA. Angiogenesis and antiangiogenic agents in cervical cancer.OncoTargets Ther.201472237224810.2147/OTT.S6828625506227
    [Google Scholar]
  95. CohenA.C. RoaneB.M. LeathC.A.III Novel therapeutics for recurrent cervical cancer: Moving towards personalized therapy.Drugs202080321722710.1007/s40265‑019‑01249‑z31939072
    [Google Scholar]
  96. MonkB.J. Mas LopezL. ZarbaJ.J. OakninA. TarpinC. TermrungruanglertW. AlberJ.A. DingJ. StuttsM.W. PanditeL.N. Phase II, open-label study of pazopanib or lapatinib monotherapy compared with pazopanib plus lapatinib combination therapy in patients with advanced and recurrent cervical cancer.J. Clin. Oncol.201028223562356910.1200/JCO.2009.26.957120606083
    [Google Scholar]
  97. ChanJ.K. DengW. HigginsR.V. TewariK.S. BonebrakeA.J. HicksM. GaillardS. RamirezP.T. ChafeW. MonkB.J. AghajanianC. A phase II evaluation of brivanib in the treatment of persistent or recurrent carcinoma of the cervix: An NRG Oncology/Gynecologic Oncology Group study.Gynecol. Oncol.2017146355455910.1016/j.ygyno.2017.05.03328728751
    [Google Scholar]
  98. LiuZ. ChenH. LvF. WangJ. ZhaoS. LiY. XueX. LiuY. WeiG. LuW. Sequential release of paclitaxel and imatinib from core–shell microparticles prepared by coaxial electrospray for vaginal therapy of cervical cancer.Int. J. Mol. Sci.20212216876010.3390/ijms2216876034445466
    [Google Scholar]
  99. CandelariaM. Arias-BonfillD. Chávez-BlancoA. ChanonaJ. CantúD. PérezC. Dueñas-GonzálezA. Lack in efficacy for imatinib mesylate as second-line treatment of recurrent or metastatic cervical cancer expressing platelet-derived growth factor receptor alpha.Int. J. Gynecol. Cancer20091991632163710.1111/IGC.0b013e3181a80bb519955950
    [Google Scholar]
  100. EskanderR.N. TewariK.S. Targeting angiogenesis in advanced cervical cancer.Ther. Adv. Med. Oncol.20146628029210.1177/175883401454379425364393
    [Google Scholar]
  101. KagabuM. NagasawaT. SatoC. FukagawaY. KawamuraH. TomabechiH. TakemotoS. ShojiT. BabaT. Immunotherapy for uterine cervical cancer using checkpoint inhibitors: Future directions.Int. J. Mol. Sci.2020217233510.3390/ijms2107233532230938
    [Google Scholar]
  102. Peralta-ZaragozaO. Bermúdez-MoralesV.H. Pérez-PlasenciaC. Salazar-LeónJ. Gómez-CerónC. Madrid-MarinaV. Targeted treatments for cervical cancer: A review.OncoTargets Ther.2012531532810.2147/OTT.S2512323144564
    [Google Scholar]
  103. JazaeriA.A. ZsirosE. AmariaR.N. ArtzA.S. EdwardsR.P. WenhamR.M. SlomovitzB.M. WaltherA. ThomasS.S. ChesneyJ.A. MorrisR. MatsuoK. GaillardS. RoseP.G. DonasJ.G. TrompJ.M. TavakkoliF. LiH. FardisM. MonkB.J. Safety and efficacy of adoptive cell transfer using autologous tumor infiltrating lymphocytes (LN-145) for treatment of recurrent, metastatic, or persistent cervical carcinoma.J. Clin. Oncol.20193715_supplSuppl.2538253810.1200/JCO.2019.37.15_suppl.2538
    [Google Scholar]
  104. KenterG.G. WeltersM.J.P. ValentijnA.R.P.M. LowikM.J.G. Berends-van der MeerD.M.A. VloonA.P.G. EssahsahF. FathersL.M. OffringaR. DrijfhoutJ.W. WafelmanA.R. OostendorpJ. FleurenG.J. van der BurgS.H. MeliefC.J.M. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia.N. Engl. J. Med.2009361191838184710.1056/NEJMoa081009719890126
    [Google Scholar]
  105. EskanderR.N. TewariK.S. Immunotherapy: An evolving paradigm in the treatment of advanced cervical cancer.Clin. Ther.2015371203810.1016/j.clinthera.2014.11.01025592089
    [Google Scholar]
  106. EmensL.A. AsciertoP.A. DarcyP.K. DemariaS. EggermontA.M.M. RedmondW.L. SeligerB. MarincolaF.M. Cancer immunotherapy: Opportunities and challenges in the rapidly evolving clinical landscape.Eur. J. Cancer20178111612910.1016/j.ejca.2017.01.03528623775
    [Google Scholar]
  107. EnwereE.K. KornagaE.N. DeanM. KoulisT.A. PhanT. KalantarianM. KöbelM. GhatageP. MaglioccoA.M. Lees-MillerS.P. DollC.M. Expression of PD-L1 and presence of CD8-positive T cells in pre-treatment specimens of locally advanced cervical cancer.Mod. Pathol.201730457758610.1038/modpathol.2016.22128059093
    [Google Scholar]
  108. ReddyO.L. ShintakuP.I. MoatamedN.A. Programmed death-ligand 1 (PD-L1) is expressed in a significant number of the uterine cervical carcinomas.Diagn. Pathol.20171214510.1186/s13000‑017‑0631‑628623908
    [Google Scholar]
  109. MezacheL. PanicciaB. NyinawaberaA. NuovoG.J. Enhanced expression of PDL1 in cervical intraepithelial neoplasia and cervical cancers.Mod. Pathol.201528121594160210.1038/modpathol.2015.10826403783
    [Google Scholar]
  110. BrowneI. FennellyD.W. CrownJ. MurrayH. The efficacy and safety of pembrolizumab in advanced cervical cancer-A real world treatment study in an irish healthcare setting.J. Clin. Oncol.20203815_supple18007e1800710.1200/JCO.2020.38.15_suppl.e18007
    [Google Scholar]
  111. FrenelJ.S. Le TourneauC. O’NeilB. OttP.A. Piha-PaulS.A. Gomez-RocaC. van BrummelenE.M.J. RugoH.S. ThomasS. SarafS. RangwalaR. VargaA. Safety and efficacy of pembrolizumab in advanced, programmed death ligand 1–positive cervical cancer: Results from the phase Ib KEYNOTE-028 trial.J. Clin. Oncol.201735364035404110.1200/JCO.2017.74.547129095678
    [Google Scholar]
  112. NaumannR.W. HollebecqueA. MeyerT. DevlinM.J. OakninA. KergerJ. López-PicazoJ.M. MachielsJ.P. DelordJ.P. EvansT.R.J. BoniV. CalvoE. TopalianS.L. ChenT. SoumaoroI. LiB. GuJ. ZwirtesR. MooreK.N. Safety and efficacy of nivolumab monotherapy in recurrent or metastatic cervical, vaginal, or vulvar carcinoma: Results from the phase I/II checkmate 358 trial.J. Clin. Oncol.201937312825283410.1200/JCO.19.0073931487218
    [Google Scholar]
  113. LeachD.R. KrummelM.F. AllisonJ.P. Enhancement of antitumor immunity by CTLA-4 blockade.Science199627152561734173610.1126/science.271.5256.17348596936
    [Google Scholar]
  114. DurantiS. PietragallaA. DanieleG. NeroC. CiccaroneF. ScambiaG. LorussoD. Role of immune checkpoint inhibitors in cervical cancer: From preclinical to clinical data.Cancers2021139208910.3390/cancers1309208933925884
    [Google Scholar]
  115. LheureuxS. ButlerM.O. ClarkeB. CristeaM.C. MartinL.P. TonkinK. FlemingG.F. TinkerA.V. HirteH.W. TsorefD. MackayH. DhaniN.C. GhatageP. WeberpalsJ. WelchS. PhamN.A. MottaV. SotovV. WangL. KarakasisK. UdaganiS. Kamel-ReidS. StreicherH.Z. ShawP. OzaA.M. Association of ipilimumab with safety and antitumor activity in women with metastatic or recurrent human papillomavirus–related cervical carcinoma.JAMA Oncol.201847e17377610.1001/jamaoncol.2017.377629145543
    [Google Scholar]
  116. NaumannR.W. OakninA. MeyerT. Lopez-PicazoJ.M. LaoC. BangY.J. BoniV. SharfmanW.H. ParkJ.C. DevrieseL.A. HaranoK. ChungC.H. TopalianS.L. ZakiK. ChenT. GuJ. LiB. BarrowsA. HorvathA. MooreK.N. Efficacy and safety of nivolumab (Nivo) + ipilimumab (Ipi) in patients (pts) with recurrent/metastatic (R/M) cervical cancer: Results from CheckMate 358.Ann. Oncol.201930v898v89910.1093/annonc/mdz394.059
    [Google Scholar]
  117. Da SilvaD.M. EnserroD.M. MayadevJ.S. SkeateJ.G. MatsuoK. PhamH.Q. LankesH.A. MoxleyK.M. GhamandeS.A. LinY.G. SchilderR.J. BirrerM.J. KastW.M. Immune activation in patients with locally advanced cervical cancer treated with ipilimumab following definitive chemoradiation (GOG-9929).Clin. Cancer Res.202026215621563010.1158/1078‑0432.CCR‑20‑077632816895
    [Google Scholar]
  118. MauricioD. ZeybekB. Tymon-RosarioJ. HaroldJ. SantinA.D. Immunotherapy in cervical cancer.Curr. Oncol. Rep.20212366110.1007/s11912‑021‑01052‑833852056
    [Google Scholar]
  119. Geukes FoppenM.H. DoniaM. SvaneI.M. HaanenJ.B.A.G. Tumor-infiltrating lymphocytes for the treatment of metastatic cancer.Mol. Oncol.20159101918193510.1016/j.molonc.2015.10.01826578452
    [Google Scholar]
  120. WrzesinskiC. RestifoN.P. Less is more: Lymphodepletion followed by hematopoietic stem cell transplant augments adoptive T-cell-based anti-tumor immunotherapy.Curr. Opin. Immunol.200517219520110.1016/j.coi.2005.02.00215766681
    [Google Scholar]
  121. StevanovićS. DraperL.M. LanghanM.M. CampbellT.E. KwongM.L. WunderlichJ.R. DudleyM.E. YangJ.C. SherryR.M. KammulaU.S. RestifoN.P. RosenbergS.A. HinrichsC.S. Complete regression of metastatic cervical cancer after treatment with human papillomavirus-targeted tumor-infiltrating T cells.J. Clin. Oncol.201533141543155010.1200/JCO.2014.58.909325823737
    [Google Scholar]
  122. LiaoJ.B. Immunotherapy for gynecologic cancers.Gynecol. Oncol.201614213510.1016/j.ygyno.2016.05.02927242186
    [Google Scholar]
  123. BasuP. MehtaA. JainM. GuptaS. NagarkarR.V. JohnS. PetitR. A randomized phase 2 study of ADXS11-001 listeria monocytogenes–listeriolysin o immunotherapy with or without cisplatin in treatment of advanced cervical cancer.Int. J. Gynecol. Cancer201828476477210.1097/IGC.000000000000123529538258
    [Google Scholar]
  124. BorysiewiczL.K. FianderA. NimakoM. ManS. WilkinsonG.W.G. WestmorelandD. EvansA.S. AdamsM. StaceyS.N. BoursnellM.E.G. RutherfordE. HicklingJ.K. InglisS.C. A recombinant vaccinia virus encoding human papillomavirus types 16 and 18, E6 and E7 proteins as immunotherapy for cervical cancer.Lancet199634790141523152710.1016/S0140‑6736(96)90674‑18684105
    [Google Scholar]
  125. KaufmannA.M. SternP.L. RankinE.M. SommerH. NuesslerV. SchneiderA. AdamsM. OnonT.S. BauknechtT. WagnerU. KroonK. HicklingJ. BoswellC.M. StaceyS.N. KitchenerH.C. GillardJ. WandersJ. RobertsJ.S. ZwierzinaH. Safety and immunogenicity of TA-HPV, a recombinant vaccinia virus expressing modified human papillomavirus (HPV)-16 and HPV-18 E6 and E7 genes, in women with progressive cervical cancer.Clin. Cancer Res.20028123676368512473576
    [Google Scholar]
  126. RomanL.D. WilczynskiS. MuderspachL.I. BurnettA.F. O’MearaA. BrinkmanJ.A. KastW.M. FacioG. FelixJ.C. AldanaM. WeberJ.S. A phase II study of Hsp-7 (SGN-00101) in women with high-grade cervical intraepithelial neoplasia.Gynecol. Oncol.2007106355856610.1016/j.ygyno.2007.05.03817631950
    [Google Scholar]
  127. GarciaF. PetryK.U. MuderspachL. GoldM.A. BralyP. CrumC.P. MagillM. SilvermanM. UrbanR.G. HedleyM.L. BeachK.J. ZYC101a for treatment of high-grade cervical intraepithelial neoplasia: A randomized controlled trial.Obstet. Gynecol.2004103231732610.1097/01.AOG.0000110246.93627.1714754702
    [Google Scholar]
  128. TrimbleC.L. MorrowM.P. KraynyakK.A. ShenX. DallasM. YanJ. EdwardsL. ParkerR.L. DennyL. GiffearM. BrownA.S. Marcozzi-PierceK. ShahD. SlagerA.M. SylvesterA.J. KhanA. BroderickK.E. JubaR.J. HerringT.A. BoyerJ. LeeJ. SardesaiN.Y. WeinerD.B. BagarazziM.L. Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: A randomised, double-blind, placebo-controlled phase 2b trial.Lancet2015386100082078208810.1016/S0140‑6736(15)00239‑126386540
    [Google Scholar]
  129. RischinD. Gil-MartinM. González-MartinA. BrañaI. HouJ.Y. ChoD. FalchookG.S. FormentiS. JabbourS. MooreK. NaingA. PapadopoulosK.P. BarandaJ. FuryW. FengM. StankevichE. LiJ. Yama-DangN.A. YooS.Y. LowyI. MathiasM. FuryM.G. PD-1 blockade in recurrent or metastatic cervical cancer: Data from cemiplimab phase I expansion cohorts and characterization of PD-L1 expression in cervical cancer.Gynecol. Oncol.2020159232232810.1016/j.ygyno.2020.08.02632917410
    [Google Scholar]
  130. O’MalleyD.M. OakninA. MonkB.J. SelleF. RojasC. GladieffL. BertonD. LearyA. MooreK.N. Estevez-DizM.D.P. Hardy-BessardA.C. AlexandreJ. OppermanC.P. de AzevedoC.R.A.S. RandallL.M. FeliuW.O. AncukiewiczM. Ray-CoquardI. Phase II study of the safety and efficacy of the anti-PD-1 antibody balstilimab in patients with recurrent and/or metastatic cervical cancer.Gynecol. Oncol.2021163227428010.1016/j.ygyno.2021.08.01834452745
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673337745241123054840
Loading
/content/journals/cmc/10.2174/0109298673337745241123054840
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test