Skip to content
2000
Volume 32, Issue 35
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

The novel coronavirus that caused the epidemic and pandemic resulting in the acute respiratory illness known as coronavirus disease 2019 (COVID-19) has plagued the world. This is unlike other coronavirus outbreaks that have occurred in the past, such as Middle East respiratory syndrome (MERS) or severe acute respiratory syndrome (SARS). COVID-19 has spread more quickly and posed special challenges due to the lack of appropriate treatments and vaccines. Real-time polymerase chain reaction (RT-PCR) and rapid antibody tests (surveillance tests) are the two most used tests (confirmation tests). However, the latter takes hours to complete, and the former may produce false positives. Scientists have invested significant effort to create a COVID-19 diagnostic system that is both highly sensitive and reasonably priced. Early detection of COVID-19 is a major area of focus for sensing devices based on nanomaterials. This overview enhanced insights into potential coronavirus biomarkers and, compared to earlier studies, introduced new avenues. Further, it covers the development of COVID-19 diagnostic systems from an analytical point of view, including clinical markers and their subsequent applications with biosensors.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673331044241031100627
2025-01-09
2025-11-01
Loading full text...

Full text loading...

References

  1. SunP. LuX. XuC. SunW. PanB. Understanding of COVID-19 based on current evidence.J. Med. Virol.202092654855110.1002/jmv.2572232096567
    [Google Scholar]
  2. ZhuN. ZhangD. WangW. LiX. YangB. SongJ. ZhaoX. HuangB. ShiW. LuR. NiuP. ZhanF. MaX. WangD. XuW. WuG. GaoG.F. TanW. A novel coronavirus from patients with pneumonia in China, 2019.N. Engl. J. Med.2020382872773310.1056/NEJMoa200101731978945
    [Google Scholar]
  3. HoffmannM. Kleine-WeberH. SchroederS. KrügerN. HerrlerT. ErichsenS. SchiergensT.S. HerrlerG. WuN.H. NitscheA. MüllerM.A. DrostenC. PöhlmannS. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor.Cell20201812271280.e810.1016/j.cell.2020.02.05232142651
    [Google Scholar]
  4. LiuC. ZhouQ. LiY. GarnerL.V. WatkinsS.P. CarterL.J. SmootJ. GreggA.C. DanielsA.D. JerveyS. AlbaiuD. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases.ACS Cent. Sci.20206331533110.1021/acscentsci.0c0027232226821
    [Google Scholar]
  5. GopinathN. Artificial intelligence: Potential tool to subside SARS-CoV-2 pandemic.Process Biochem.2021110949910.1016/j.procbio.2021.08.00134366689
    [Google Scholar]
  6. KabiA.K. PalM. GujjarappaR. MalakarC.C. RoyM. Overview of hydroxychloroquine and remdesivir on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).J. Heterocycl. Chem.202360216518210.1002/jhet.454135942205
    [Google Scholar]
  7. GralinskiL.E. MenacheryV.D. Return of the coronavirus: 2019-nCoV.Viruses202012213510.3390/v1202013531991541
    [Google Scholar]
  8. LuR. ZhaoX. LiJ. NiuP. YangB. WuH. WangW. SongH. HuangB. ZhuN. BiY. MaX. ZhanF. WangL. HuT. ZhouH. HuZ. ZhouW. ZhaoL. ChenJ. MengY. WangJ. LinY. YuanJ. XieZ. MaJ. LiuW.J. WangD. XuW. HolmesE.C. GaoG.F. WuG. ChenW. ShiW. TanW. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding.Lancet20203951022456557410.1016/S0140‑6736(20)30251‑832007145
    [Google Scholar]
  9. LiF. Structure, function, and evolution of coronavirus spike proteins.Annu. Rev. Virol.20163123726110.1146/annurev‑virology‑110615‑04230127578435
    [Google Scholar]
  10. LanJ. GeJ. YuJ. ShanS. ZhouH. FanS. ZhangQ. ShiX. WangQ. ZhangL. WangX. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor.Nature2020581780721522010.1038/s41586‑020‑2180‑532225176
    [Google Scholar]
  11. VennemaH. GodekeG.J. RossenJ.W. VoorhoutW.F. HorzinekM.C. OpsteltenD.J. RottierP.J. Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes.EMBO J.19961582020202810.1002/j.1460‑2075.1996.tb00553.x8617249
    [Google Scholar]
  12. HofmannH. PöhlmannS. Cellular entry of the SARS coronavirus.Trends Microbiol.2004121046647210.1016/j.tim.2004.08.00815381196
    [Google Scholar]
  13. SnijderE.J. DecrolyE. ZiebuhrJ. The nonstructural proteins directing coronavirus RNA synthesis and processingAdv. Virus Res.2016965912610.1016/bs.aivir.2016.08.008
    [Google Scholar]
  14. GaoY. YanL. HuangY. LiuF. ZhaoY. CaoL. WangT. SunQ. MingZ. ZhangL. GeJ. ZhengL. ZhangY. WangH. ZhuY. ZhuC. HuT. HuaT. ZhangB. YangX. LiJ. YangH. LiuZ. XuW. GuddatL.W. WangQ. LouZ. RaoZ. Structure of the RNA-dependent RNA polymerase from COVID-19 virus.Science2020368649277978210.1126/science.abb7498
    [Google Scholar]
  15. WrappD. WangN. CorbettK.S. GoldsmithJ.A. HsiehC.L. AbionaO. GrahamB.S. McLellanJ.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation.Science202036764831260126310.1126/science.aax0902
    [Google Scholar]
  16. RajV.S. MouH. SmitsS.L. DekkersD.H.W. MüllerM.A. DijkmanR. MuthD. DemmersJ.A.A. ZakiA. FouchierR.A.M. ThielV. DrostenC. RottierP.J.M. OsterhausA.D.M.E. BoschB.J. HaagmansB.L. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC.Nature2013495744025125410.1038/nature1200523486063
    [Google Scholar]
  17. HofmannH. PyrcK. van der HoekL. GeierM. BerkhoutB. PöhlmannS. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry.Proc. Natl. Acad. Sci. USA2005102227988799310.1073/pnas.040946510215897467
    [Google Scholar]
  18. LiW. MooreM.J. VasilievaN. SuiJ. WongS.K. BerneM.A. SomasundaranM. SullivanJ.L. LuzuriagaK. GreenoughT.C. ChoeH. FarzanM. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus.Nature2003426696545045410.1038/nature0214514647384
    [Google Scholar]
  19. EtienneE.E. NunnaB.B. TalukderN. WangY. LeeE.S. COVID-19 biomarkers and advanced sensing technologies for point-of-care (Poc) diagnosis.Bioengineering (Basel)2021879810.3390/bioengineering807009834356205
    [Google Scholar]
  20. GhodakeG.S. ShindeS.K. KadamA.A. SarataleR.G. SarataleG.D. SyedA. ElgorbanA.M. MarraikiN. KimD.Y. Biological characteristics and biomarkers of novel SARS-CoV-2 facilitated rapid development and implementation of diagnostic tools and surveillance measures.Biosens. Bioelectron.202117711296910.1016/j.bios.2021.11296933434780
    [Google Scholar]
  21. SamprathiM. JayashreeM. Biomarkers in COVID-19: An up-to-date review.Front Pediatr.2021860764710.3389/fped.2020.60764733859967
    [Google Scholar]
  22. HolzingerM. Le GoffA. CosnierS. Nanomaterials for biosensing applications: A review.Front Chem.201426310.3389/fchem.2014.0006325221775
    [Google Scholar]
  23. LakshmipriyaT. GopinathS.C.B. CitartanM. HashimU. TangT.H. Gold nanoparticle-mediated high-performance enzyme-linked immunosorbent assay for detection of tuberculosis ESAT-6 protein.Micro Nanosyst.201782929810.2174/1876402908666161026154223
    [Google Scholar]
  24. TeengamP. SiangprohW. TuantranontA. VilaivanT. ChailapakulO. HenryC.S. Electrochemical impedance-based DNA sensor using pyrrolidinyl peptide nucleic acids for tuberculosis detection.Anal. Chim. Acta2018104410210910.1016/j.aca.2018.07.04530442390
    [Google Scholar]
  25. LuanY. LuA. ChenJ. FuH. XuL. A label-free aptamer-based fluorescent assay for cadmium detection.Appl. Sci. (Basel)201661243210.3390/app6120432
    [Google Scholar]
  26. SandersM. LinY. WeiJ. BonoT. LindquistR.G. LindquistR.G. An enhanced LSPR fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers.Biosens. Bioelectron.2014619510110.1016/j.bios.2014.05.00924858997
    [Google Scholar]
  27. ChuC-H. ChangW-H. KaoW-J. LinC-L. ChangK-W. WangY-L. LeeG-B. FakanyaW.M. TothillI.E. KitayamaY. TakeuchiT. HillströmA. HagmanR. TvedtenH. Kjelgaard-HansenM. ChammemH. HafaidI. MeilhacO. MenaaF. MoraL. AbdelghaniA. IwasakiY. KimuraT. OrisakaM. KawasakiH. GodaT. YusaS. HerwigE. Marchetti-DeschmannM. WenzC. RüferA. RedlH. BahramiS. AllmaierG. GuptaR.K. PeriyakaruppanA. MeyyappanM. KoehneJ.E. JustinoC.I.L. DuarteK. LucasS. ChavesP. BettencourtP. FreitasA.C. PereiraR. CardosoS. DuarteA.C. Rocha-SantosT.A.P. VashistS.K. CzilwikG. van OordtT. von StettenF. ZengerleR. Marion SchneiderE. LuongJ.H.T. KhuseyinovaN. DupuyA.M. BadiouS. DescompsB. CristolJ.P. OremekG.M. LuksaiteR. BretschneiderI. HafnerG. LarkinT. PeetzD. ErbesH. EyresH. WrynnK. LacknerK.J. PhurimsakC. TarnM.D. PeymanS.A. GreenmanJ. PammeN. TugirimanaP.L. De ClercqD. HolderbekeA.L. KintJ.A. De CoomanL. DeprezP. DelangheJ.R. EgererK. FeistE. BurmesterG-R. Aptamer and detection method for C-reactive protein.Anal. Biochem.201486581584
    [Google Scholar]
  28. CunninghamJ.C. KoganM.R. TsaiY.-J. LuoL. RichardsI. CrooksR.M. Paper-based sensor for electrochemical detection of silver nanoparticle labels by galvanic exchangeACS Sensors201511404710.1021/acssensors.5b00051
    [Google Scholar]
  29. OngC.C. GopinathS.C.B. RebeccaL.W.X. PerumalV. LakshmipriyaT. SaheedM.S.M. Diagnosing human blood clotting deficiency.Int. J. Biol. Macromol.201811676577310.1016/j.ijbiomac.2018.05.08429775720
    [Google Scholar]
  30. QiuZ. ZhangX. JiaN. LiX. LiR. GopinathS.C.B. JiaoM. Zeolite nanomaterial-modified dielectrode oxide surface for diagnosing alzheimer’s disease by dual molecular probed impedance sensor.Turk Biyokim. Derg.202448666867410.1515/tjb‑2023‑0079
    [Google Scholar]
  31. ZhangH. GopinathS.C.B. HuY. Spinal cord injury immunosensor: Sensitive detection of S100β on interdigitated electrode sensor.Heliyon202399e1930410.1016/j.heliyon.2023.e1930437662784
    [Google Scholar]
  32. LiuL. GopinathS.C.B. WuY.S. ZhaoW. Gold-enhanced current-volt dielectrode junction for biosensing with an aptamer-insulin-like growth factor-1-antibody sandwich pattern.Mater. Express202212346447110.1166/mex.2022.2153
    [Google Scholar]
  33. LakshmipriyaT. HoriguchiY. NagasakiY. Co-immobilized poly(ethylene glycol)-block-polyamines promote sensitivity and restrict biofouling on gold sensor surface for detecting factor IX in human plasma.Analyst (Lond.)2014139163977398510.1039/C4AN00168K24922332
    [Google Scholar]
  34. LakshmipriyaT. FujimakiM. GopinathS.C.B. AwazuK. HoriguchiY. NagasakiY. A high-performance waveguide-mode biosensor for detection of factor IX using PEG-based blocking agents to suppress non-specific binding and improve sensitivity.Analyst (Lond.)2013138102863287010.1039/c3an00298e23577343
    [Google Scholar]
  35. GengH. GopinathS.C.B. NiuW. Highly sensitive hepatitis b virus identification by antibody-aptamer sandwich enzyme-linked immunosorbent assay.INNOSC Theranostics Pharm. Sci.20235171410.36922/itps.298
    [Google Scholar]
  36. KrishnanH. GopinathS.C.B. A potent anticoagulant hybrid of snake venom derived FIX-binding protein and anti- factor IX RNA aptamer: Assessed by in-silico and electrochemical analyses.Int. J. Biol. Macromol.202324712574010.1016/j.ijbiomac.2023.12574037423441
    [Google Scholar]
  37. SivasubramanianK.S.S. Synthesis and characterisation of silica nano particles from coconut shell.Int. J. Pharma Bio Sci.20156530536
    [Google Scholar]
  38. ChenY. ZhaoY. WangY. Fly ash-based zeolite-complexed polyethylene-glycol on an interdigitated electrode surface for high-performance determination of diabetes mellitus.Int. J. Nanomedicine2020156619662910.2147/IJN.S26464532982222
    [Google Scholar]
  39. LiS. WangZ. YangX. HuB. HuangY. FanS. Association between circulating angiotensin-converting enzyme 2 and cardiac remodeling in hypertensive patients.Peptides201790636810.1016/j.peptides.2017.02.00728223093
    [Google Scholar]
  40. AnguianoL. RieraM. PascualJ. ValdivielsoJ.M. BarriosC. BetriuA. ClotetS. MojalS. FernándezE. SolerM.J. Circulating angiotensin converting enzyme 2 activity as a biomarker of silent atherosclerosis in patients with chronic kidney disease.Atherosclerosis201625313514310.1016/j.atherosclerosis.2016.08.03227615597
    [Google Scholar]
  41. TouyzR.M. LiH. DellesC. ACE2 the Janus-faced protein – from cardiovascular protection to severe acute respiratory syndrome-coronavirus and COVID-19.Clin. Sci. (Lond.)2020134774775010.1042/CS2020036332255491
    [Google Scholar]
  42. LiS. TangZ. LiZ. LiuX. Searching therapeutic strategy of new coronavirus pneumonia from angiotensin-converting enzyme 2: the target of COVID-19 and SARS-CoV.Eur. J. Clin. Microbiol. Infect. Dis.20203961021102610.1007/s10096‑020‑03883‑y
    [Google Scholar]
  43. TangN. LiD. WangX. SunZ. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia.J. Thromb. Haemost.202018484484710.1111/jth.1476832073213
    [Google Scholar]
  44. WangG. WuC. ZhangQ. WuF. YuB. LvJ. LiY. LiT. ZhangS. WuC. WuG. ZhongY. C-reactive protein level may predict the risk of COVID-19 aggravation.Open Forum Infect. Dis.202075ofaa15310.1093/ofid/ofaa15332455147
    [Google Scholar]
  45. HuY. LiangW. LiuL. LiL. China medical treatment expert group for COVID-19. clinical characteristics of coronavirus disease 2019 in China.N. Engl. J. Med.20201817081720
    [Google Scholar]
  46. CatanzaroM. FagianiF. RacchiM. CorsiniE. GovoniS. LanniC. Immune response in COVID-19: Addressing a pharmacological challenge by targeting pathways triggered by SARS-CoV-2.Signal Transduct. Target. Ther.2020518410.1038/s41392‑020‑0191‑132467561
    [Google Scholar]
  47. D’ArdesD. BoccatondaA. RossiI. GuagnanoM.T. SantilliF. CipolloneF. BucciM. COVID-19 and RAS: Unravelling an unclear relationship.Int. J. Mol. Sci.2020218300310.3390/ijms2108300332344526
    [Google Scholar]
  48. TerposE. Ntanasis-StathopoulosI. ElalamyI. KastritisE. SergentanisT.N. PolitouM. PsaltopoulouT. GerotziafasG. DimopoulosM.A. Hematological findings and complications of COVID-19.Am. J. Hematol.202095783484710.1002/ajh.2582932282949
    [Google Scholar]
  49. Bellmann-WeilerR. LanserL. BarketR. RanggerL. SchapflA. SchaberM. FritscheG. WöllE. WeissG. Prevalence and predictive value of anemia and dysregulated iron homeostasis in patients with COVID-19 infection.J. Clin. Med.202098242910.3390/jcm908242932751400
    [Google Scholar]
  50. LiuR. WangY. LiJ. HanH. XiaZ. LiuF. WuK. YangL. LiuX. ZhuC. Decreased T cell populations contribute to the increased severity of COVID-19.Clin. Chim. Acta202050811011410.1016/j.cca.2020.05.01932405080
    [Google Scholar]
  51. QinJ.J. ChengX. ZhouF. LeiF. AkolkarG. CaiJ. ZhangX.J. BletA. XieJ. ZhangP. LiuY.M. HuangZ. ZhaoL.P. LinL. XiaM. ChenM.M. SongX. BaiL. ChenZ. ZhangX. XiangD. ChenJ. XuQ. MaX. TouyzR.M. GaoC. WangH. LiuL. MaoW. LuoP. YanY. YeP. ChenM. ChenG. ZhuL. SheZ.G. HuangX. YuanY. ZhangB.H. WangY. LiuP.P. LiH. Redefining cardiac biomarkers in predicting mortality of inpatients with COVID-19.Hypertension20207641104111210.1161/HYPERTENSIONAHA.120.1552832673499
    [Google Scholar]
  52. LiJ.W. HanT.W. WoodwardM. AndersonC.S. ZhouH. ChenY.D. NealB. The impact of 2019 novel coronavirus on heart injury: A Systematic review and meta-analysis.Prog. Cardiovasc. Dis.202063451852410.1016/j.pcad.2020.04.00832305557
    [Google Scholar]
  53. HoangA. ChorathK. MoreiraA. EvansM. Burmeister-MortonF. BurmeisterF. NaqviR. PetershackM. MoreiraA. COVID-19 in 7780 pediatric patients: A systematic review.EClinicalMedicine20202410043310.1016/j.eclinm.2020.10043332766542
    [Google Scholar]
  54. ZinelluA. MangoniA.A. Serum complement C3 and C4 and COVID-19 severity and mortality: A systematic review and meta-analysis with meta-regression.Front. Immunol.20211269608510.3389/fimmu.2021.69608534163491
    [Google Scholar]
  55. UdehR. AdvaniS. de Guadiana RomualdoL.G. Dolja-GoreX. Calprotectin, an emerging biomarker of interest in covid-19: A systematic review and meta-analysis.J. Clin. Med.202110477510.3390/jcm1004077533672040
    [Google Scholar]
  56. SamsonR. NavaleG.R. DharneM.S. Biosensors: Frontiers in rapid detection of COVID-19.3 Biotech202010938510.1007/s13205‑020‑02369‑0
    [Google Scholar]
  57. LiuZ. XiaoX. WeiX. LiJ. YangJ. TanH. ZhuJ. ZhangQ. WuJ. LiuL. Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS-CoV-2.J. Med. Virol.202092659560110.1002/jmv.2572632100877
    [Google Scholar]
  58. SeoG. LeeG. KimM.J. BaekS.H. ChoiM. KuK.B. LeeC.S. JunS. ParkD. KimH.G. KimS.J. LeeJ.O. KimB.T. ParkE.C. KimS.I. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor.ACS Nano20201445135514210.1021/acsnano.0c0282332293168
    [Google Scholar]
  59. MahariS. RobertsA. ShahdeoD. GandhiS. eCovSens-ultrasensitive novel in-house built printed circuit board based electrochemical device for rapid detection of n COVID-19 antigen, a spike protein domain 1 of SARS-CoV-2.BioRxiv202010.1101/2020.04.24.059204
    [Google Scholar]
  60. RamanathanS. GopinathS.C.B. Hilmi IsmailZ. SubramaniamS. Nanodiamond conjugated SARS-CoV-2 spike protein: Electrochemical impedance immunosensing on a gold microelectrode.Mikrochim. Acta2022189622610.1007/s00604‑022‑05320‑735590000
    [Google Scholar]
  61. LivL. ÇobanG. NakiboğluN. KocagözT. A rapid, ultrasensitive voltammetric biosensor for determining SARS-CoV-2 spike protein in real samples.Biosens. Bioelectron.202119211349710.1016/j.bios.2021.11349734274624
    [Google Scholar]
  62. ZhaoB. XiongC.R. LiuY. YuQ.C. ChenX. Rapid detection of SARS-CoV-2 spike protein using a magnetic-assisted electrochemical biosensor based on functionalized CoFe2O4 magnetic nanomaterials.Talanta202427412598610.1016/j.talanta.2024.12598638537348
    [Google Scholar]
  63. CardosoA.R. AlvesJ.F. FrascoM.F. PilotoA.M. SerranoV. MateusD. SebastiãoA.I. MatosA.M. CarmoA. CruzT. FortunatoE. SalesM.G.F. An ultra-sensitive electrochemical biosensor using the Spike protein for capturing antibodies against SARS-CoV-2 in point-of-care.Mater. Today Bio20221610035410.1016/j.mtbio.2022.10035435847374
    [Google Scholar]
  64. SavastanoA. Ibáñez de OpakuaA. RankovicM. ZweckstetterM. Nucleocapsid protein of SARS-CoV-2 phase separates into RNA-rich polymerase-containing condensates.Nat. Commun.2020111604110.1038/s41467‑020‑19843‑133247108
    [Google Scholar]
  65. RamanathanS. GopinathS.C.B. IsmailZ.H. Md ArshadM.K. PoopalanP. Aptasensing nucleocapsid protein on nanodiamond assembled gold interdigitated electrodes for impedimetric SARS-CoV-2 infectious disease assessment.Biosens. Bioelectron.202219711373510.1016/j.bios.2021.11373534736114
    [Google Scholar]
  66. GeC. FengJ. ZhangJ. HuK. WangD. ZhaL. HuX. LiR. Aptamer/antibody sandwich method for digital detection of SARS-CoV2 nucleocapsid protein.Talanta202223612284710.1016/j.talanta.2021.12284734635237
    [Google Scholar]
  67. LeeJ.H. JungY. LeeS.K. KimJ. LeeC.S. KimS. LeeJ.S. KimN.H. KimH.G. Rapid biosensor of SARS-CoV-2 using specific monoclonal antibodies recognizing conserved nucleocapsid protein epitopes.Viruses202214225510.3390/v1402025535215848
    [Google Scholar]
  68. ChoH. ShimS. ChoW.W. ChoS. BaekH. LeeS.M. ShinD.S. Electrochemical impedance-based biosensors for the label-free detection of the nucleocapsid protein from SARS-CoV-2.ACS Sens.2022761676168410.1021/acssensors.2c0031735653260
    [Google Scholar]
  69. AydınE.B. AydınM. SezgintürkM.K. Label-free and reagent-less electrochemical detection of nucleocapsid protein of SARS-CoV-2: An ultrasensitive and disposable biosensor.New J. Chem.202246199172918310.1039/D2NJ00046F
    [Google Scholar]
  70. ZhouC. LinC. HuY. ZanH. XuX. SunC. ZouH. LiY. Sensitive fluorescence biosensor for SARS-CoV-2 nucleocapsid protein detection in cold-chain food products based on DNA circuit and g-CNQDs@Zn-MOF.Lebensm. Wiss. Technol.202216911403210.1016/j.lwt.2022.11403236186577
    [Google Scholar]
  71. JarczewskaM. RębiśJ. GórskiŁ. MalinowskaE. Development of DNA aptamer-based sensor for electrochemical detection of C-reactive protein.Talanta2018189455410.1016/j.talanta.2018.06.03530086945
    [Google Scholar]
  72. LiuZ. LuoD. RenF. RanF. ChenW. ZhangB. WangC. ChenH. WeiJ. ChenQ. Ultrasensitive fluorescent aptasensor for CRP detection based on the RNase H assisted DNA recycling signal amplification strategy.RSC Advances2019921119601196710.1039/C9RA01352K35517011
    [Google Scholar]
  73. LiJ. LiH. XuJ. ZhaoX. SongS. ZhangH. Myocardial infarction biomarker C-reactive protein detection on nanocomposite aptasensor.Biotechnol. Appl. Biochem.202269116617110.1002/bab.209333370481
    [Google Scholar]
  74. SharmaR. DeaconS.E. NowakD. GeorgeS.E. SzymonikM.P. TangA.A.S. TomlinsonD.C. DaviesA.G. McPhersonM.J. WältiC. Label-free electrochemical impedance biosensor to detect human interleukin-8 in serum with sub-pg/ml sensitivity.Biosens. Bioelectron.20168060761310.1016/j.bios.2016.02.02826897263
    [Google Scholar]
  75. WilliamsN.X. CarrollB. NoyceS.G. HobbieH.A. JohD.Y. RogersJ.G. FranklinA.D. Fully printed prothrombin time sensor for point-of-care testing.Biosens. Bioelectron.202117211277010.1016/j.bios.2020.11277033157410
    [Google Scholar]
  76. YangC.L. HuangS.J. ChouC.W. ChiouY.C. LinK.P. TsaiM.S. YoungK.C. Design and evaluation of a portable optical-based biosensor for testing whole blood prothrombin time.Talanta201311670471110.1016/j.talanta.2013.07.06424148464
    [Google Scholar]
  77. ZhuH. SuterJ.D. WhiteI.M. FanX. Aptamer based microsphere biosensor for thrombin detection.Sensors (Basel)20066878579510.3390/s6080785
    [Google Scholar]
  78. HuQ. BaoY. GanS. ZhangY. HanD. NiuL. Amplified electrochemical biosensing of thrombin activity by RAFT polymerization.Anal. Chem.20209243470347610.1021/acs.analchem.9b05647
    [Google Scholar]
  79. WeiW. TangY. HeH. GopinathS.C.B. WangL. Determination of cardiac disease biomarker by plasmonic sandwich ELISA.Biotechnol. Appl. Biochem.202269116016510.1002/bab.209233369762
    [Google Scholar]
  80. LuoJ. GopinathS.C.B. SubramaniamS. WuZ. Arthritis biosensing: Aptamer-antibody-mediated identification of biomarkers by ELISA.Process Biochem.202212139640210.1016/j.procbio.2022.07.022
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673331044241031100627
Loading
/content/journals/cmc/10.2174/0109298673331044241031100627
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test