Skip to content
2000
image of Minerals and Trace Elements: Key Protectors of Skin Health and Defenders Against Skin Disorders

Abstract

Skin is the human body's largest organ, protecting it from various environmental threats. At the same time, it is the most accessible organ of the body, which ensures the reception of stimuli and contact with the environment. Such common signs of skin aging, such as wrinkles, fine lines, and discoloration, result from both extrinsic and intrinsic factors that act for a long time. If the skin does not look well enough, it is worth investigating whether minerals or trace elements are deficient. The positive role of some minerals (calcium, potassium, sodium, sulfur, and magnesium) and trace elements (iron, zinc, selenium, copper, manganese, and silicon) was found in maintaining skin health. There are also a variety of skin conditions, such as inflammatory disorders (eczema, psoriasis), acne, lichen planus, vitiligo, alopecia areata, or even skin cancer, which require specific approaches for their prevention and treatment considering the saturation of the body and the skin with mineral elements. They could be supplied internally (through adequate nutrition or food additives) or externally (by application of cosmetics). Some aspects of the danger of the toxic trace elements used in cosmetics are also described in this review.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673348175250214054101
2025-03-05
2025-10-12
Loading full text...

Full text loading...

References

  1. Kohl E. Steinbauer J. Landthaler M. Szeimies R.M. Skin ageing. J. Eur. Acad. Dermatol. Venereol. 2011 25 8 873 884 10.1111/j.1468‑3083.2010.03963.x 21261751
    [Google Scholar]
  2. Vollmer D.L. West V.A. Lephart E.D. Enhancing skin health: By oral administration of natural compounds and minerals with implications to the dermal microbiome. Int. J. Mol. Sci. 2018 19 10 3059 10.3390/ijms19103059 30301271
    [Google Scholar]
  3. Iqbal B. Ali J. Baboota S. Recent advances and development in epidermal and dermal drug deposition enhancement technology. Int. J. Dermatol. 2018 57 6 646 660 10.1111/ijd.13902 29430629
    [Google Scholar]
  4. Michalak M. Pierzak M. Kręcisz B. Suliga E. Bioactive compounds for skin health: A review. Nutrients 2021 13 1 203 10.3390/nu13010203 33445474
    [Google Scholar]
  5. Stephens T.J. Sigler M.L. Hino P.D. Moigne A.L. Dispensa L. Randomized A. A randomized, double-blind, placebo-controlled clinical trial evaluating an oral anti-aging skin care supplement for treating photodamaged skin. J. Clin. Aesthet. Dermatol. 2016 9 4 25 32 27462385
    [Google Scholar]
  6. Guarneri F. Bertino L. Pioggia G. Casciaro M. Gangemi S. Therapies with antioxidant potential in Psoriasis, Vitiligo, and Lichen planus. Antioxidants 2021 10 7 1087 10.3390/antiox10071087 34356320
    [Google Scholar]
  7. Gasmi A. Mujawdiya P.K. Beley N. Shanaida M. Lysiuk R. Lenchyk L. Noor S. Muhammad A. Strus O. Piscopo S. Komisarenko A. Fedorovska M. Bjørklund G. Natural compounds used for treating hair loss. Curr. Pharm. Des. 2023 29 16 1231 1244 10.2174/1381612829666230505100147 37151166
    [Google Scholar]
  8. Jones V.A. Patel P.M. Wilson C. Wang H. Ashack K.A. Complementary and alternative medicine treatments for common skin diseases: A systematic review and meta-analysis. JAAD Int. 2021 2 76 93 10.1016/j.jdin.2020.11.001 34409356
    [Google Scholar]
  9. Kirmit A. Kader S. Aksoy M. Bal C. Nural C. Aslan O. Trace elements and oxidative stress status in patients with psoriasis. Postepy Dermatol. Alergol. 2020 37 3 333 339 10.5114/ada.2020.94265 32792872
    [Google Scholar]
  10. Almohanna H.M. Ahmed A.A. Tsatalis J.P. Tosti A. The role of vitamins and minerals in hair loss: A review. Dermatol. Ther. 2019 9 1 51 70 10.1007/s13555‑018‑0278‑6 30547302
    [Google Scholar]
  11. Robbins D. Zhao Y. The role of manganese superoxide dismutase in skin cancer. Enzyme Res. 2011 2011 1 7 10.4061/2011/409295 21603266
    [Google Scholar]
  12. Bickers D.R. Athar M. Oxidative stress in the pathogenesis of skin disease. J. Invest. Dermatol. 2006 126 12 2565 2575 10.1038/sj.jid.5700340 17108903
    [Google Scholar]
  13. Surbek M. Sukseree S. Eckhart L. Iron metabolism of the skin: Recycling versus release. Metabolites 2023 13 9 1005 10.3390/metabo13091005 37755285
    [Google Scholar]
  14. Haftek M. Abdayem R. Debersac G.P. Skin minerals: Key roles of inorganic elements in skin physiological functions. Int. J. Mol. Sci. 2022 23 11 6267 10.3390/ijms23116267 35682946
    [Google Scholar]
  15. Udompataikul M. Sripiroj P. Palungwachira P. An oral nutraceutical containing antioxidants, minerals and glycosaminoglycans improves skin roughness and fine wrinkles. Int. J. Cosmet. Sci. 2009 31 6 427 435 10.1111/j.1468‑2494.2009.00513.x 19570098
    [Google Scholar]
  16. Wołonciej M. Milewska E. Jakimiec R.W. Trace elements as an activator of antioxidant enzymes. Postepy Hig. Med. Dosw. 2016 70 0 1483 1498 10.5604/17322693.1229074 28100855
    [Google Scholar]
  17. Araújo L.A. Addor F. Campos P.M.B.G.M. Use of silicon for skin and hair care: An approach of chemical forms available and efficacy. An. Bras. Dermatol. 2016 91 3 331 335 10.1590/abd1806‑4841.20163986 27438201
    [Google Scholar]
  18. Goryacha O.V. Kovaleva А.М. Raal A. Ilina Т.V. Коshovyi О.M. Shovkova Z.V. Elemental composition of Dasiphora fruticosa (L.) Rybd. Varieties. Open Agric. J. 2022 16 1 e187433152201240 10.2174/18743315‑v16‑e2201240
    [Google Scholar]
  19. Konieczynski P. Lysiuk R. Kopistecka M. Wesolowski M. Study of essential and toxic elements content in medicinal herbs harvested in Ukraine. Res. J. Pharm. Technol. 2021 14 11 6055 6060 10.52711/0974‑360X.2021.01052
    [Google Scholar]
  20. Lysiuk R. Zaritska Y. Darmohray R. Investigation of microelements contents in aerial parts of Agrimonia eupatoria L., collected in Lviv region (Ukraine). Annal. Univ. Paedag. Cracov. Stud. Nat. 2016 1 95 104
    [Google Scholar]
  21. Górecka K.A. Górecki M. Stojko R.A. Balwierz R. Stojko J. Bee products in dermatology and skin care. Molecules 2020 25 3 556 10.3390/molecules25030556 32012913
    [Google Scholar]
  22. Lakdawala N. Babalola O. III Fedeles F. McCusker M. Ricketts J. Worth W.D. Kels G.J.M. The role of nutrition in dermatologic diseases: Facts and controversies. Clin. Dermatol. 2013 31 6 677 700 10.1016/j.clindermatol.2013.05.004 24160272
    [Google Scholar]
  23. Quattrini S. Pampaloni B. Brandi M.L. Natural mineral waters: Chemical characteristics and health effects. Clin. Cases Miner. Bone Metab. 2016 13 3 173 180 10.11138/ccmbm/2016.13.3.173 28228777
    [Google Scholar]
  24. Peinemann F. Harari M. Peternel S. Chan T. Chan D. Labeit A.M. Gambichler T. Indoor balneophototherapy for chronic plaque psoriasis: Abridged cochrane review. Dermatol. Ther. 2021 34 1 e14588 10.1111/dth.14588 33236826
    [Google Scholar]
  25. Kligman A. The future of cosmeceuticals: An interview with Albert Kligman, MD, PhD. Interview by Zoe Diana Draelos. Dermatol. Surg. 2005 31 7 Pt 2 890 891 16029684
    [Google Scholar]
  26. Cao C. Xiao Z. Wu Y. Ge C. Diet and skin aging—from the perspective of food nutrition. Nutrients 2020 12 3 870 10.3390/nu12030870 32213934
    [Google Scholar]
  27. Bjorklund G. Martins C.N. Goh B.H. Mykhailenko O. Lysiuk R. Shanaida M. Lenchyk L. Upyr T. Rusu M.E. Pryshlyak A. Shanaida V. Chirumbolo S. Medicinal plant-derived phytochemicals in detoxification. Curr. Pharm. Des. 2024 30 13 988 1015 37559241
    [Google Scholar]
  28. Zhang P. The role of diet and nutrition in allergic diseases. Nutrients 2023 15 17 3683 10.3390/nu15173683 37686715
    [Google Scholar]
  29. Huang A. Seité S. Adar T. The use of balneotherapy in dermatology. Clin. Dermatol. 2018 36 3 363 368 10.1016/j.clindermatol.2018.03.010 29908578
    [Google Scholar]
  30. Ma’or Z. Henis Y. Alon Y. Orlov E. Sørensen K.B. Oren A. Antimicrobial properties of Dead Sea black mineral mud. Int. J. Dermatol. 2006 45 5 504 511 10.1111/j.1365‑4632.2005.02621.x 16700781
    [Google Scholar]
  31. Riyaz N. Arakkal F. Spa therapy in dermatology. Indian J. Dermatol. Venereol. Leprol. 2011 77 2 128 134 10.4103/0378‑6323.77450 21393940
    [Google Scholar]
  32. Thiele J.J. Schroeter C. Hsieh S.N. Podda M. Packer L. The antioxidant network of the stratum corneum. Curr. Probl. Dermatol. 2000 29 26 42 10.1159/000060651 11225199
    [Google Scholar]
  33. Thiele J.J. Oxidative targets in the stratum corneum. A new basis for antioxidative strategies. Skin Pharmacol. Physiol. 2001 14 87 91 10.1159/000056395 11509912
    [Google Scholar]
  34. Elias P.M. The skin barrier as an innate immune element. Semin. Immunopathol. 2007 29 1 3 14 10.1007/s00281‑007‑0060‑9 17621950
    [Google Scholar]
  35. Nguyen A.V. Soulika A.M. The dynamics of the skin’s immune system. Int. J. Mol. Sci. 2019 20 8 1811 10.3390/ijms20081811 31013709
    [Google Scholar]
  36. Tryon H.T.A. Grice E.A. Microbiota and maintenance of skin barrier function. Science 2022 376 6596 940 945 10.1126/science.abo0693 35617415
    [Google Scholar]
  37. Rorteau J. Chevalier F.P. Fromy B. Lamartine J. Aging and skin integrity. Med. Sci. 2020 36 12 1155 1162 10.1051/medsci/2020223
    [Google Scholar]
  38. Rinnerthaler M. Richter K. The influence of calcium on the skin pH and epidermal barrier during aging. Curr. Probl. Dermatol. 2018 54 79 86 10.1159/000489521 30130776
    [Google Scholar]
  39. Taïeb A. Skin barrier in the neonate. Pediatr. Dermatol. 2018 35 1 s5 s9 29596733
    [Google Scholar]
  40. Dini I. Laneri S. Nutricosmetics: A brief overview. Phytother. Res. 2019 33 12 3054 3063 10.1002/ptr.6494 31478301
    [Google Scholar]
  41. Shi H.P. Fishel R.S. Efron D.T. Williams J.Z. Fishel M.H. Barbul A. Effect of supplemental ornithine on wound healing. J. Surg. Res. 2002 106 2 299 302 10.1006/jsre.2002.6471 12175982
    [Google Scholar]
  42. Stechmiller J.K. Childress B. Cowan L. Arginine supplementation and wound healing. Nutr. Clin. Pract. 2005 20 1 52 61 10.1177/011542650502000152 16207646
    [Google Scholar]
  43. Badiu D.L. Luque R. Dumitrescu E. Craciun A. Dinca D. Amino acids from Mytilus galloprovincialis (L.) and Rapana venosa molluscs accelerate skin wounds healing via enhancement of dermal and epidermal neoformation. Protein J. 2010 29 2 81 92 10.1007/s10930‑009‑9225‑9 20087635
    [Google Scholar]
  44. Solano F. Metabolism and functions of amino acids in the skin. Adv. Exp. Med. Biol. 2020 1265 187 199 10.1007/978‑3‑030‑45328‑2_11 32761577
    [Google Scholar]
  45. Spravchikov N. Sizyakov G. Gartsbein M. Accili D. Tennenbaum T. Wertheimer E. Glucose effects on skin keratinocytes: Implications for diabetes skin complications. Diabetes 2001 50 7 1627 1635 10.2337/diabetes.50.7.1627 11423485
    [Google Scholar]
  46. Hattem V.S. Bootsma A.H. Thio H.B. Skin manifestations of diabetes. Cleve. Clin. J. Med. 2008 75 11 772 787, 774, 776-777 passim 10.3949/ccjm.75.11.772 19068958
    [Google Scholar]
  47. Yatsuhashi H. Furuyashiki T. Vo P.H.T. Kamasaka H. Kuriki T. Effects of glycogen on ceramide production in cultured human keratinocytes via acid sphingomyelinase activation. J. Appl. Glycosci. 2021 68 2 41 46 10.5458/jag.jag.JAG‑2020_0012 34429698
    [Google Scholar]
  48. Umbayev B. Askarova S. Almabayeva A. Saliev T. Masoud A.R. Bulanin D. Galactose-induced skin aging: The role of oxidative stress. Oxid. Med. Cell. Longev. 2020 2020 8 1 15 10.1155/2020/7145656 32655772
    [Google Scholar]
  49. Uchida Y. Hamanaka S. Elias P.M. Feingold K.R. In skin barrier. New York Taylor & Francis 2006 43 65
    [Google Scholar]
  50. Uchida Y. Ceramide signaling in mammalian epidermis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2014 1841 3 453 462 10.1016/j.bbalip.2013.09.003 24055887
    [Google Scholar]
  51. Uchida Y. Houben E. Park K. Douangpanya S. Lee Y.M. Wu B.X. Hannun Y.A. Radin N.S. Elias P.M. Holleran W.M. Hydrolytic pathway protects against ceramide-induced apoptosis in keratinocytes exposed to UVB. J. Invest. Dermatol. 2010 130 10 2472 2480 10.1038/jid.2010.153 20520628
    [Google Scholar]
  52. Souto E.B. Fernandes A.R. Gomes M.C. Coutinho T.E. Durazzo A. Lucarini M. Souto S.B. Silva A.M. Santini A. Nanomaterials for skin delivery of cosmeceuticals and pharmaceuticals. Appl. Sci. 2020 10 5 1594 10.3390/app10051594
    [Google Scholar]
  53. Cibrian D. de la Fuente H. Madrid S.F. Metabolic pathways that control skin homeostasis and inflammation. Trends Mol. Med. 2020 26 11 975 986 10.1016/j.molmed.2020.04.004 32371170
    [Google Scholar]
  54. Rattanawiwatpong P. Wanitphakdeedecha R. Bumrungpert A. Maiprasert M. Anti‐aging and brightening effects of a topical treatment containing vitamin C, vitamin E, and raspberry leaf cell culture extract: A split‐face, randomized controlled trial. J. Cosmet. Dermatol. 2020 19 3 671 676 10.1111/jocd.13305 31975502
    [Google Scholar]
  55. Ogawa Y. Kinoshita M. Sato T. Shimada S. Kawamura T. Biotin is required for the Zinc homeostasis in the skin. Nutrients 2019 11 4 919 10.3390/nu11040919 31022908
    [Google Scholar]
  56. Kassym L. Zhetmekova Z. Kussainova A. Semenova Y. Vetrova A. Nurzhan S. Sarbassova G. Akhmetova A. Orazalina A. Uzbekova S. Bjørklund G. Pressure ulcers and nutrients: From established evidence to gaps in knowledge. Curr. Med. Chem. 2024 32 10.2174/0109298673322825241018174928 39501959
    [Google Scholar]
  57. Weyh C. Krüger K. Peeling P. Castell L. The role of minerals in the optimal functioning of the immune system. Nutrients 2022 14 3 644 10.3390/nu14030644 35277003
    [Google Scholar]
  58. Park K. Role of micronutrients in skin health and function. Biomol. Ther. 2015 23 3 207 217 10.4062/biomolther.2015.003 25995818
    [Google Scholar]
  59. Broadley S.L. Plane J.M.C. A kinetic study of reactions of calcium-containing molecules with O and H atoms: Implications for calcium chemistry in the upper atmosphere. Phys. Chem. Chem. Phys. 2010 12 31 9094 9106 10.1039/c004451b 20532345
    [Google Scholar]
  60. Bhattarai H.K. Shrestha S. Rokka K. Shakya R. Vitamin D, calcium, parathyroid hormone, and sex steroids in bone health and effects of aging. J. Osteoporos. 2020 2020 1 10 10.1155/2020/9324505 32612801
    [Google Scholar]
  61. Institute of Medicine (US) In committee to review dietary reference intakes for Vitamin D and Calcium. Dietary reference intakes for Calcium and Vitamin D. Ross A.C. Taylor C.L. Yaktine A.L. Washington (DC) National Academies Press (US) 2011
    [Google Scholar]
  62. Vannucci L. Fossi C. Quattrini S. Guasti L. Pampaloni B. Gronchi G. Giusti F. Romagnoli C. Cianferotti L. Marcucci G. Brandi M.L. Calcium intake in bone health: A focus on calcium-rich mineral waters. Nutrients 2018 10 12 1930 10.3390/nu10121930 30563174
    [Google Scholar]
  63. Lee S.E. Lee S.H. Skin barrier and calcium. Ann. Dermatol. 2018 30 3 265 275 10.5021/ad.2018.30.3.265 29853739
    [Google Scholar]
  64. Jeon J. Jang J. Park K. Effects of consuming calcium-rich foods on the incidence of type 2 diabetes mellitus. Nutrients 2018 11 1 31 10.3390/nu11010031 30583546
    [Google Scholar]
  65. Rozenberg S. Body J.J. Bruyère O. Bergmann P. Brandi M.L. Cooper C. Devogelaer J.P. Gielen E. Goemaere S. Kaufman J.M. Rizzoli R. Reginster J.Y. Effects of dairy products consumption on health: Benefits and beliefs—A commentary from the belgian bone club and the european society for clinical and economic aspects of osteoporosis, osteoarthritis and musculoskeletal diseases. Calcif. Tissue Int. 2016 98 1 1 17 10.1007/s00223‑015‑0062‑x 26445771
    [Google Scholar]
  66. Shkembi B. Huppertz T. Calcium absorption from food products: Food matrix effects. Nutrients 2021 14 1 180 10.3390/nu14010180 35011055
    [Google Scholar]
  67. Thorning T.K. Raben A. Tholstrup T. Muthu S.S.S. Givens I. Astrup A. Milk and dairy products: Good or bad for human health? An assessment of the totality of scientific evidence. Food Nutr. Res. 2016 60 1 32527 10.3402/fnr.v60.32527 27882862
    [Google Scholar]
  68. Cormick G. Belizán J.M. Calcium intake and health. Nutrients 2019 11 7 1606 10.3390/nu11071606 31311164
    [Google Scholar]
  69. Bourassa M.W. Abrams S.A. Belizán J.M. Boy E. Cormick G. Quijano C.D. Gibson S. Gomes F. Hofmeyr G.J. Humphrey J. Kraemer K. Lividini K. Neufeld L.M. Palacios C. Shlisky J. Thankachan P. Villalpando S. Weaver C.M. Interventions to improve calcium intake through foods in populations with low intake. Ann. N. Y. Acad. Sci. 2022 1511 1 40 58 10.1111/nyas.14743 35103316
    [Google Scholar]
  70. Subramaniam T. Fauzi M.B. Lokanathan Y. Law J.X. The role of calcium in wound healing. Int. J. Mol. Sci. 2021 22 12 6486 10.3390/ijms22126486 34204292
    [Google Scholar]
  71. Bollag W.B. Down-regulated calcium-sensing receptor in keratinocytes and skin from aged mice and humans impairs function. J. Invest. Dermatol. 2021 141 11 2558 2561 10.1016/j.jid.2021.04.005 34688406
    [Google Scholar]
  72. Barbagallo M. Veronese N. Dominguez L.J. Magnesium—An ion with multiple invaluable actions, often insufficiently supplied: From in vitro to clinical research. Nutrients 2023 15 14 3135 10.3390/nu15143135 37513553
    [Google Scholar]
  73. Mathew A.A. Panonnummal R. ‘Magnesium’-The master cation-As a drug—possibilities and evidences. Biometals 2021 34 5 955 986 10.1007/s10534‑021‑00328‑7 34213669
    [Google Scholar]
  74. Baaij d.J.H.F. Hoenderop J.G.J. Bindels R.J.M. Magnesium in man: Implications for health and disease. Physiol. Rev. 2015 95 1 1 46 10.1152/physrev.00012.2014 25540137
    [Google Scholar]
  75. Kirkland A.E. Sarlo G.L. Holton K.F. The role of magnesium in neurological disorders. Nutrients 2018 10 6 730 10.3390/nu10060730 29882776
    [Google Scholar]
  76. Long S. Romani A.M. Role of cellular magnesium in human diseases. Austin J. Nutr. Food Sci. 2014 2 10 1051 25839058
    [Google Scholar]
  77. Schwalfenberg G.K. Genuis S.J. The importance of magnesium in clinical healthcare. Scientifica 2017 2017 1 14 10.1155/2017/4179326 29093983
    [Google Scholar]
  78. Maier J.A. Castiglioni S. Locatelli L. Zocchi M. Mazur A. Magnesium and inflammation: Advances and perspectives. Semin. Cell Dev. Biol. 2021 115 37 44 10.1016/j.semcdb.2020.11.002 33221129
    [Google Scholar]
  79. Chandrasekaran N.C. Weir C. Alfraji S. Grice J. Roberts M.S. Barnard R.T. Effects of magnesium deficiency – More than skin deep. Exp. Biol. Med. 2014 239 10 1280 1291 10.1177/1535370214537745 24928863
    [Google Scholar]
  80. Killilea D.W. Maier J.A. A connection between magnesium deficiency and aging: New insights from cellular studies. Magnes. Res. 2008 21 2 77 82 18705534
    [Google Scholar]
  81. Torres A. Rego L. Martins M.S. Ferreira M.S. Cruz M.T. Sousa E. Almeida I.F. How to promote skin repair? In-depth look at pharmaceutical and cosmetic strategies. Pharmaceuticals 2023 16 4 573 10.3390/ph16040573 37111330
    [Google Scholar]
  82. Rivlin R.S. Magnesium deficiency and alcohol intake: Mechanisms, clinical significance and possible relation to cancer development (a review). J. Am. Coll. Nutr. 1994 13 5 416 423 10.1080/07315724.1994.10718430 7836619
    [Google Scholar]
  83. Farag M.A. Abib B. Qin Z. Ze X. Ali S.E. Dietary macrominerals: Updated review of their role and orchestration in human nutrition throughout the life cycle with sex differences. Curr. Res. Food Sci. 2023 6 100450 10.1016/j.crfs.2023.100450 36816001
    [Google Scholar]
  84. Żukowska M.R. Jakubik P.A. Grabia M. Perkowski J. Nowakowski P. Bielecka J. Soroczyńska J. Kańgowski G. Bołtryk J.M. Socha K. Nuts as a dietary enrichment with selected minerals—content assessment supported by chemometric analysis. Foods 2022 11 20 3152 10.3390/foods11203152 37430901
    [Google Scholar]
  85. Pinotti L. Manoni M. Ferrari L. Tretola M. Cazzola R. Givens I. The contribution of dietary magnesium in farm animals and human nutrition. Nutrients 2021 13 2 509 10.3390/nu13020509 33557151
    [Google Scholar]
  86. Shrimanker I. Bhattarai S. In statpearls. Treasure Island, FL StatPearls Publishing Available from: https://www.ncbi.nlm.nih.gov/books/NBK541123/ 2023
    [Google Scholar]
  87. Tchounwou P.B. Udensi U.K. Potassium homeostasis, oxidative stress, and human disease. Int. J. Clin. Exp. Physiol. 2017 4 3 111 122 10.4103/ijcep.ijcep_43_17 29218312
    [Google Scholar]
  88. National Research Council (US) In recommended dietary allowances: Subcommittee on the tenth edition of the recommended dietary allowances 10th Ed. Washington (DC) National Academies Press (US) 1989
    [Google Scholar]
  89. Posatska N.M. Struk О.А. Grytsyk A.R. Stasiv T.H. Klymenko A.O. Research of element composition of Verbena species. Pharmacia 2021 68 1 227 233 10.3897/pharmacia.68.e46513
    [Google Scholar]
  90. Hamidizadeh N. Simaeetabar S. Handjani F. Ranjbar S. Moghadam M. Parvizi M. Composition of minerals and trace elements at Mamasani thermal source: A possible preventive treatment for some skin diseases. J. Educ. Health Promot. 2017 6 1 110 10.4103/jehp.jehp_100_17 29296611
    [Google Scholar]
  91. Krynicka K. Trzeciak M. The role of sodium hypochlorite in atopic dermatitis therapy: A narrative review. Int. J. Dermatol. 2022 61 9 1080 1086 10.1111/ijd.16099 35167708
    [Google Scholar]
  92. Dreher M.L. Davenport A.J. Hass avocado composition and potential health effects. Crit. Rev. Food Sci. Nutr. 2013 53 7 738 750 10.1080/10408398.2011.556759 23638933
    [Google Scholar]
  93. New L.S.A. Lambert H. Frassetto L. Potassium. Adv. Nutr. 2012 3 6 820 821 10.3945/an.112.003012 23153736
    [Google Scholar]
  94. Gupta A.K. Nicol K. The use of sulfur in dermatology. J. Drugs Dermatol. 2004 3 4 427 431 15303787
    [Google Scholar]
  95. Rai M. Ingle A.P. Paralikar P. Sulfur and sulfur nanoparticles as potential antimicrobials: From traditional medicine to nanomedicine. Expert Rev. Anti Infect. Ther. 2016 14 10 969 978 10.1080/14787210.2016.1221340 27494175
    [Google Scholar]
  96. Urakaev F.K. Abuyeva B.B. Vorobyeva N.A. Mun G.A. Uralbekov B.M. Burkitbayev M.M. Sulfur nanoparticles stabilized in the presence of water-soluble polymers. Mendeleev Commun. 2018 28 2 161 163 10.1016/j.mencom.2018.03.017
    [Google Scholar]
  97. Kim Y.H. Kim D.H. Lim H. Baek D.Y. Shin H.K. Kim J.K. The anti-inflammatory effects of methylsulfonylmethane on lipopolysaccharide-induced inflammatory responses in murine macrophages. Biol. Pharm. Bull. 2009 32 4 651 656 10.1248/bpb.32.651 19336900
    [Google Scholar]
  98. Roohi N.B. Barmaki S. Khoshkhahesh F. Bohlooli S. Effect of chronic supplementation with methylsulfonylmethane on oxidative stress following acute exercise in untrained healthy men. J. Pharm. Pharmacol. 2011 63 10 1290 1294 10.1111/j.2042‑7158.2011.01314.x 21899544
    [Google Scholar]
  99. Schneider T. Baldauf A. Ba L.A. Jamier V. Khairan K. Sarakbi M.B. Reum N. Schneider M. Röseler A. Becker K. Burkholz T. Winyard P.G. Kelkel M. Diederich M. Jacob C. Selective antimicrobial activity associated with sulfur nanoparticles. J. Biomed. Nanotechnol. 2011 7 3 395 405 10.1166/jbn.2011.1293 21830480
    [Google Scholar]
  100. Hashem N.M. Hosny A.E.D.M.S. Abdelrahman A.A. Zakeer S. Antimicrobial activities encountered by sulfur nanoparticles combating Staphylococcal species harboring sccmecA recovered from acne vulgaris. AIMS Microbiol. 2021 7 4 481 498 10.3934/microbiol.2021029 35071944
    [Google Scholar]
  101. Gasmi A. Benahmed G.A. Shanaida M. Chirumbolo S. Menzel A. Anzar W. Arshad M. Martins C.N. Lysiuk R. Beley N. Oliinyk P. Shanaida V. Denys A. Peana M. Bjørklund G. Anticancer activity of broccoli, its organosulfur and polyphenolic compounds. Crit. Rev. Food Sci. Nutr. 2024 64 22 8054 8072 37129118
    [Google Scholar]
  102. Nosewicz J. Spaccarelli N. Roberts K.M. Hart P.A. Kaffenberger J.A. Trinidad J.C. Kaffenberger B.H. The epidemiology, impact, and diagnosis of micronutrient nutritional dermatoses part 1: Zinc, selenium, copper, vitamin A, and vitamin C. J. Am. Acad. Dermatol. 2022 86 2 267 278 10.1016/j.jaad.2021.07.079 34748862
    [Google Scholar]
  103. Rajan J.P. Singh K.B. Kumar S. Mishra R.K. Trace elements content in the selected medicinal plants traditionally used for curing skin diseases by the natives of Mizoram, India. Asian Pac. J. Trop. Med. 2014 7 S410 S414 10.1016/S1995‑7645(14)60267‑4 25312159
    [Google Scholar]
  104. Selvaraju R. Rajendran G.R. Narayanaswamy R. Valliappan R. Baskarn R. Trace element analysis in hepatitis B affected human blood serum by inductively coupled plasma atomic emission spectroscopy. Rom. J. Biophys. 2009 19 35 42
    [Google Scholar]
  105. Emsley J. Nature’s building blocks: An A-Z guide to the elements. Oxford, UK Oxford University Press 2011
    [Google Scholar]
  106. Gombart A.F. Pierre A. Maggini S. A review of micronutrients and the immune system–working in harmony to reduce the risk of infection. Nutrients 2020 12 1 236 10.3390/nu12010236 31963293
    [Google Scholar]
  107. Lukác N. Massányi P. Effects of trace elements on the immune system. Epidemiol. Mikrobiol. Imunol. 2007 56 1 3 9 17427747
    [Google Scholar]
  108. Bjørklund G. Shanaida M. Lysiuk R. Butnariu M. Peana M. Sarac I. Strus O. Smetanina K. Chirumbolo S. Natural compounds and products from an anti-aging perspective. Molecules 2022 27 20 7084 10.3390/molecules27207084 36296673
    [Google Scholar]
  109. Wacewicz M. Socha K. Soroczyńska J. Niczyporuk M. Aleksiejczuk P. Ostrowska J. Borawska M.H. Concentration of selenium, zinc, copper, Cu/Zn ratio, total antioxidant status and c-reactive protein in the serum of patients with psoriasis treated by narrow-band ultraviolet B phototherapy: A case-control study. J. Trace Elem. Med. Biol. 2017 44 109 114 10.1016/j.jtemb.2017.06.008 28965564
    [Google Scholar]
  110. Wacewicz M. Socha K. Soroczyńska J. Niczyporuk M. Aleksiejczuk P. Ostrowska J. Borawska M.H. Selenium, zinc, copper, Cu/Zn ratio and total antioxidant status in the serum of vitiligo patients treated by narrow-band ultraviolet-B phototherapy. J. Dermatolog. Treat. 2018 29 2 190 195 10.1080/09546634.2017.1357797 28718676
    [Google Scholar]
  111. Glutsch V. Hamm H. Goebeler M. Zinc and skin: An update. J. Dtsch. Dermatol. Ges. 2019 17 6 589 596 30873720
    [Google Scholar]
  112. Ogawa Y. Kinoshita M. Shimada S. Kawamura T. Zinc and skin disorders. Nutrients 2018 10 2 199 10.3390/nu10020199 29439479
    [Google Scholar]
  113. Lansdown A.B.G. Mirastschijski U. Stubbs N. Scanlon E. Ågren M.S. Zinc in wound healing: Theoretical, experimental, and clinical aspects. Wound Repair Regen. 2007 15 1 2 16 10.1111/j.1524‑475X.2006.00179.x 17244314
    [Google Scholar]
  114. Ooi K. Onset mechanism and pharmaceutical management of dry skin. Biol. Pharm. Bull. 2021 44 8 1037 1043 10.1248/bpb.b21‑00150 34334489
    [Google Scholar]
  115. Khafaji A.Z. Brito S. Bin B.H. Zinc and zinc transporters in dermatology. Int. J. Mol. Sci. 2022 23 24 16165 10.3390/ijms232416165 36555806
    [Google Scholar]
  116. Chasapis C.T. Loutsidou A.C. Spiliopoulou C.A. Stefanidou M.E. Zinc and human health: An update. Arch. Toxicol. 2012 86 4 521 534 10.1007/s00204‑011‑0775‑1 22071549
    [Google Scholar]
  117. Devi C.B. Nandakishore T. Sangeeta N. Basar G. Devi N.O. Jamir S. Singh M.A. Zinc in human health. IOSR J. Dent. Med. Sci. 2014 13 7 18 23 10.9790/0853‑13721823
    [Google Scholar]
  118. Dunaway S. Odin R. Zhou L. Ji L. Zhang Y. Kadekaro A.L. Natural antioxidants: Multiple mechanisms to protect skin from solar radiation. Front. Pharmacol. 2018 9 392 10.3389/fphar.2018.00392 29740318
    [Google Scholar]
  119. Kim K.B. Kim Y.W. Lim S.K. Roh T.H. Bang D.Y. Choi S.M. Lim D.S. Kim Y.J. Baek S.H. Kim M.K. Seo H.S. Kim M.H. Kim H.S. Lee J.Y. Kacew S. Lee B.M. Risk assessment of zinc oxide, a cosmetic ingredient used as a UV filter of sunscreens. J. Toxicol. Environ. Health B Crit. Rev. 2017 20 3 155 182 10.1080/10937404.2017.1290516 28509652
    [Google Scholar]
  120. Yaghoobi R. Omidian M. Bagherani N. Original article title: “Comparison of therapeutic efficacy of topical corticosteroid and oral zinc sulfate-topical corticosteroid combination in the treatment of vitiligo patients: A clinical trial”. BMC Dermatol. 2011 11 1 7 10.1186/1471‑5945‑11‑7 21453467
    [Google Scholar]
  121. Toyran M. Kaymak M. Vezir E. Harmanci K. Kaya A. Giniş T. Köse G. Kocabaş C.N. Trace element levels in children with atopic dermatitis. J. Investig. Allergol. Clin. Immunol. 2012 22 5 341 344 23101308
    [Google Scholar]
  122. Karabacak E. Aydin E. Kutlu A. Ozcan O. Muftuoglu T. Gunes A. Dogan B. Ozturk S. Erythrocyte zinc level in patients with atopic dermatitis and its relation to SCORAD index. Postepy Dermatol. Alergol. 2016 5 5 349 352 10.5114/ada.2016.62841 27881941
    [Google Scholar]
  123. Ehlayel M.S. Bener A. Risk factors of zinc deficiency in children with atopic dermatitis. Eur. Ann. Allergy Clin. Immunol. 2020 52 1 18 22 10.23822/EurAnnACI.1764‑1489.114 31594297
    [Google Scholar]
  124. Zinc: Fact sheet for health professionals. Available from: https://ods.od.nih.gov/factsheets/Zinc-HealthProfessional/
  125. Strand T.A. Mathisen M. Zinc – A scoping review for nordic nutrition recommendations 2023. Food Nutr. Res. 2023 67 67 10.29219/fnr.v67.10368 38084158
    [Google Scholar]
  126. Gupta R.K. Gangoliya S.S. Singh N.K. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J. Food Sci. Technol. 2015 52 2 676 684 10.1007/s13197‑013‑0978‑y 25694676
    [Google Scholar]
  127. Kumari S. Gray A.R. Webster K. Bailey K. Reid M. Kelvin K.A.H. Tey S.L. Chisholm A. Brown R.C. Does ‘activating’ nuts affect nutrient bioavailability? Food Chem. 2020 319 126529 10.1016/j.foodchem.2020.126529 32199146
    [Google Scholar]
  128. lv J. Ai P. Lei S. Zhou F. Chen S. Zhang Y. Selenium levels and skin diseases: Systematic review and meta-analysis. J. Trace Elem. Med. Biol. 2020 62 126548 10.1016/j.jtemb.2020.126548 32497930
    [Google Scholar]
  129. Sengupta A. Lichti U.F. Carlson B.A. Ryscavage A.O. Gladyshev V.N. Yuspa S.H. Hatfield D.L. Selenoproteins are essential for proper keratinocyte function and skin development. PLoS One 2010 5 8 e12249 10.1371/journal.pone.0012249 20805887
    [Google Scholar]
  130. Nazıroğlu M. Yıldız K. Tamtürk B. Erturan İ. Arce F.M. Selenium and psoriasis. Biol. Trace Elem. Res. 2012 150 1-3 3 9 10.1007/s12011‑012‑9479‑5 22821504
    [Google Scholar]
  131. Kieliszek M. Selenium–fascinating microelement, properties and sources in food. Molecules 2019 24 7 1298 10.3390/molecules24071298 30987088
    [Google Scholar]
  132. Bjørklund G. Shanaida M. Lysiuk R. Antonyak H. Klishch I. Shanaida V. Peana M. Selenium: An antioxidant with a critical role in anti-aging. Molecules 2022 27 19 6613 10.3390/molecules27196613 36235150
    [Google Scholar]
  133. Kharaeva Z. Gostova E. Luca D.C. Raskovic D. Korkina L. Clinical and biochemical effects of coenzyme Q10, vitamin E, and selenium supplementation to psoriasis patients. Nutrition 2009 25 3 295 302 10.1016/j.nut.2008.08.015 19041224
    [Google Scholar]
  134. Jobeili L. Rousselle P. Béal D. Blouin E. Roussel A.M. Damour O. Rachidi W. Selenium preserves keratinocyte stemness and delays senescence by maintaining epidermal adhesion. Aging 2017 9 11 2302 2315 10.18632/aging.101322 29176034
    [Google Scholar]
  135. Gill H. Walker G. Selenium, immune function and resistance to viral infections. Nutr. Diet. 2008 65 s3 S41 S47 10.1111/j.1747‑0080.2008.00260.x
    [Google Scholar]
  136. Cohen P.R. Anderson C.A. Topical selenium sulfide for the treatment of hyperkeratosis. Dermatol. Ther. 2018 8 4 639 646 10.1007/s13555‑018‑0259‑9 30203232
    [Google Scholar]
  137. Ding R. Fu C. Zheng Y. Bu J. Shen E.X. The association between psoriasis and trace element serum levels and dietary intake: Results from USA national health and nutrition examination survey 2011–2014. Clin. Cosmet. Investig. Dermatol. 2024 17 1449 1458 10.2147/CCID.S450407 38911341
    [Google Scholar]
  138. Dębniak T. Baszuk P. Duchnik E. Rowińska K. Janiszewska R.E. Boer M. Kiedrowicz M. Marchlewicz M. Watola D. Feherpataky M. Derkacz R. Dębniak A. Marciniak W. Gołębiewska K. Lubiński J. Scott R.J. Gronwald J. Selenium and arsenic levels, prevalence of common variants of genes involved in their Metabolism, and Psoriasis disease. Biomedicines 2024 12 5 1082 10.3390/biomedicines12051082 38791044
    [Google Scholar]
  139. Favrot C. Beal D. Blouin E. Leccia M.T. Roussel A.M. Rachidi W. Age‐dependent protective effect of selenium against UVA irradiation in primary human keratinocytes and the associated DNA repair signature. Oxid. Med. Cell. Longev. 2018 2018 1 5895439 10.1155/2018/5895439 29682159
    [Google Scholar]
  140. Combs G.F. Jr Selenium in global food systems. Br. J. Nutr. 2001 85 5 517 547 10.1079/BJN2000280 11348568
    [Google Scholar]
  141. Tait F.S.J. Bao Y. Broadley M.R. Collings R. Ford D. Hesketh J.E. Hurst R. Selenium in human health and disease. Antioxid. Redox Signal. 2011 14 7 1337 1383 10.1089/ars.2010.3275 20812787
    [Google Scholar]
  142. Rosenfeld I. Beath O.A. Selenium: Geobotany, biochemistry, toxicity, and nutrition. Academic Press 2013
    [Google Scholar]
  143. Cuderman P. Kreft I. Germ M. Kovačevič M. Stibilj V. Selenium species in selenium-enriched and drought-exposed potatoes. J. Agric. Food Chem. 2008 56 19 9114 9120 10.1021/jf8014969 18795781
    [Google Scholar]
  144. Antonyak H. Iskra R. Panas N. Lysiuk R. In trace elements and minerals in health and longevity. Cham Springer International Publishing 2018
    [Google Scholar]
  145. Selenium: Fact sheet for health professionals. Available from: https://ods.od.nih.gov/factsheets/Selenium-HealthProfessional/
  146. Borkow G. Using copper to improve the well-being of the skin. Curr. Chem. Biol. 2015 8 2 89 102 10.2174/2212796809666150227223857 26361585
    [Google Scholar]
  147. Varesi A. Campagnoli L. Pierella E. Piccini B.G. Carrara A. Ricevuti G. Scassellati C. Bonvicini C. Pascale A. The role of antioxidants in the interplay between oxidative stress and senescence. Antioxidants 2022 11 7 1224
    [Google Scholar]
  148. Qiao L. Liu B. Girault H.H. Antioxidant promotion of tyrosine nitration in the presence of copper(ii). Metallomics 2013 5 6 686 692 10.1039/c3mt00048f 23689680
    [Google Scholar]
  149. Altobelli G.G. Noorden V.S. Balato A. Cimini V. Copper/Zinc superoxide dismutase in human skin: Current knowledge. Front. Med. 2020 7 183 10.3389/fmed.2020.00183 32478084
    [Google Scholar]
  150. Shtern O.N. Chumin K. Cohen G. Borkow G. Increased pro‐collagen 1, elastin, and TGF‐β1 expression by copper ions in an ex‐vivo human skin model. J. Cosmet. Dermatol. 2020 19 6 1522 1527 10.1111/jocd.13186 31603269
    [Google Scholar]
  151. Shtern O.N. Chumin K. Silberstein E. Borkow G. Copper ions ameliorated thermal burn-induced damage in ex vivo human skin organ culture. Skin Pharmacol. Physiol. 2021 34 6 317 327 10.1159/000517194 34237749
    [Google Scholar]
  152. Wang T.L. Zhou Z.F. Liu J.F. Hou X.D. Zhou Z. Dai Y.L. Hou Z.Y. Chen F. Zheng L.P. Donut-like MOFs of copper/nicotinic acid and composite hydrogels with superior bioactivity for rh-bFGF delivering and skin wound healing. J. Nanobiotechnology 2021 19 1 275 10.1186/s12951‑021‑01014‑z 34503490
    [Google Scholar]
  153. Pickart L. Soltero V.J.M. Margolina A. The human tripeptide GHK-Cu in prevention of oxidative stress and degenerative conditions of aging: Implications for cognitive health. Oxid. Med. Cell. Longev. 2012 2012 1 8 10.1155/2012/324832 22666519
    [Google Scholar]
  154. Kussainova A. Kassym L. Bekenova N. Akhmetova A. Glushkova N. Kussainov A. Urazalina Z. Yurkovskaya O. Smail Y. Pak L. Semenova Y. Gene polymorphisms and serum levels of BDNF and CRH in vitiligo patients. PLoS One 2022 17 7 e0271719 10.1371/journal.pone.0271719 35905107
    [Google Scholar]
  155. Aggarwal J. Singh A. Gupta S. Prasad R. Copper and zinc status in psoriasis: Correlation with severity. Indian J. Clin. Biochem. 2021 36 1 120 123 10.1007/s12291‑019‑00870‑9 33505136
    [Google Scholar]
  156. Namazi N. Dadras S.M. Younespour S. Comparative analysis of serum copper, iron, ceruloplasmin, and transferrin levels in mild and severe psoriasis vulgaris in iranian patients. Indian Dermatol. Online J. 2017 8 4 250 253 10.4103/idoj.IDOJ_230_16 28761840
    [Google Scholar]
  157. Chen X. Peng C. Lei L. Su J. Chen J. Chen W. Abnormal serum copper and zinc levels in patients with psoriasis: A meta-analysis. Indian J. Dermatol. 2019 64 3 224 230 10.4103/ijd.IJD_475_18 31148862
    [Google Scholar]
  158. Dodevska M. Markovic K.J. Sofrenic I. Tesevic V. Jankovic M. Djordjevic B. Ivanovic N.D. Similarities and differences in the nutritional composition of nuts and seeds in Serbia. Front. Nutr. 2022 9 1003125 10.3389/fnut.2022.1003125 36185649
    [Google Scholar]
  159. Gonçalves B. Pinto T. Aires A. Morais M.C. Bacelar E. Anjos R. Cardoso F.J. Oliveira I. Vilela A. Cosme F. Composition of nuts and their potential health benefits—An overview. Foods 2023 12 5 942 10.3390/foods12050942 36900459
    [Google Scholar]
  160. Jugdaohsingh R. Watson A.I.E. Pedro L.D. Powell J.J. The decrease in silicon concentration of the connective tissues with age in rats is a marker of connective tissue turnover. Bone 2015 75 40 48 10.1016/j.bone.2015.02.004 25687224
    [Google Scholar]
  161. Nielsen F.H. Update on the possible nutritional importance of silicon. J. Trace Elem. Med. Biol. 2014 28 4 379 382 10.1016/j.jtemb.2014.06.024 25081495
    [Google Scholar]
  162. Martin K.R. Silicon: The health benefits of a metalloid. Met. Ions Life Sci. 2013 13 451 473 10.1007/978‑94‑007‑7500‑8_14 24470100
    [Google Scholar]
  163. Xiao L. Mochizuki M. Nakahara T. Miwa N. Hydrogen-generating silica material prevents UVA-ray-induced cellular oxidative stress, cell death, collagen loss and melanogenesis in human cells and 3D skin equivalents. Antioxidants 2021 10 1 76 10.3390/antiox10010076 33430157
    [Google Scholar]
  164. González M.P.U. Ramos L.M.C. Verdín G.L.D. Colmenero L.G.H. Rocha T.F. Contreras G.R. García G.G. de la Torre R.A. Delgado J. Castellano L.E. Novelo M.B. Gel dressing based on type I collagen modified with oligourethane and silica for skin wound healing. Biomed. Mater. 2022 17 4 045005 10.1088/1748‑605X/ac6b70 35483345
    [Google Scholar]
  165. Arriagada F. Nonell S. Morales J. Silica-based nanosystems for therapeutic applications in the skin. Nanomedicine 2019 14 16 2243 2267 10.2217/nnm‑2019‑0052 31411537
    [Google Scholar]
  166. Arriagada F. Morales J. Limitations and opportunities in topical drug delivery: Interaction between silica nanoparticles and skin barrier. Curr. Pharm. Des. 2019 25 4 455 466 10.2174/1381612825666190404121507 30947656
    [Google Scholar]
  167. Hooshmand S. Mollazadeh S. Akrami N. Ghanad M. Fiqi E.A. Baino F. Nazarnezhad S. Kargozar S. Mesoporous silica nanoparticles and mesoporous bioactive glasses for wound management: From skin regeneration to cancer therapy. Materials 2021 14 12 3337 10.3390/ma14123337 34204198
    [Google Scholar]
  168. Lio D.C.S. Liu C. Oo M.M.S. Wiraja C. Teo M.H.Y. Zheng M. Chew S.W.T. Wang X. Xu C. Transdermal delivery of small interfering RNAs with topically applied mesoporous silica nanoparticles for facile skin cancer treatment. Nanoscale 2019 11 36 17041 17051 10.1039/C9NR06303J 31506653
    [Google Scholar]
  169. Cândido M.T. Ariede B.M. Lima V.F. Guedes S.L. Velasco R.M.V. Baby R.A. Rosado C. Dietary supplements and the skin: Focus on photoprotection and antioxidant activity—A review. Nutrients 2022 14 6 1248 10.3390/nu14061248 35334905
    [Google Scholar]
  170. Sripanyakorn S. Jugdaohsingh R. Dissayabutr W. Anderson S.H.C. Thompson R.P.H. Powell J.J. The comparative absorption of silicon from different foods and food supplements. Br. J. Nutr. 2009 102 6 825 834 10.1017/S0007114509311757 19356271
    [Google Scholar]
  171. Powell J.J. McNaughton S.A. Jugdaohsingh R. Anderson S.H.C. Dear J. Khot F. Mowatt L. Gleason K.L. Sykes M. Thompson R.P.H. Smith B.C. Hodson M.J. A provisional database for the silicon content of foods in the United Kingdom. Br. J. Nutr. 2005 94 5 804 812 10.1079/BJN20051542 16277785
    [Google Scholar]
  172. Valentino L.A. Heavy metal FIX for Christmas wounds. Blood 2006 108 9 2888 10.1182/blood‑2006‑08‑041053
    [Google Scholar]
  173. Bjørklund G. Peana M. Dadar M. Lozynska I. Chirumbolo S. Lysiuk R. Lenchyk L. Upyr T. Severin B. The role of B vitamins in stroke prevention. Crit. Rev. Food Sci. Nutr. 2022 62 20 5462 5475 10.1080/10408398.2021.1885341 33724098
    [Google Scholar]
  174. Aeberli H.I. Thankachan P. Bose B. Kurpad A.V. Increased risk of iron deficiency and reduced iron absorption but no difference in zinc, vitamin A or B-vitamin status in obese women in India. Eur. J. Nutr. 2016 55 8 2411 2421 10.1007/s00394‑015‑1048‑1 26454657
    [Google Scholar]
  175. Wright J.A. Richards T. Srai S.K.S. The role of iron in the skin and cutaneous wound healing. Front. Pharmacol. 2014 5 156 10.3389/fphar.2014.00156 25071575
    [Google Scholar]
  176. Lin C.S. Chan L.Y. Wang J.H. Chang C.H. Diagnosis and treatment of female alopecia: Focusing on the iron deficiency-related alopecia. Tzu-Chi Med. J. 2023 35 4 322 328 10.4103/tcmj.tcmj_95_23 38035053
    [Google Scholar]
  177. Ashique S. Sandhu N.K. Haque S.N. Koley K. A systemic review on topical marketed formulations, natural products, and oral supplements to prevent androgenic alopecia: A review. Nat. Prod. Bioprospect. 2020 10 6 345 365 10.1007/s13659‑020‑00267‑9 33011954
    [Google Scholar]
  178. Bhoot H.R. Zamwar U.M. Chakole S. Anjankar A. Dietary sources, bioavailability, and functions of ascorbic acid (Vitamin C) and its role in the common cold, tissue healing, and iron metabolism. Cureus 2023 15 11 e49308 10.7759/cureus.49308 38146585
    [Google Scholar]
  179. Bothwell T.H. Baynes R.D. MacFarlane B.J. MacPhail A.P. Nutritional iron requirements and food iron absorption. J. Intern. Med. 1989 226 5 357 365 10.1111/j.1365‑2796.1989.tb01409.x 2681512
    [Google Scholar]
  180. Brolsma B.E. Rutten D.R. Wijngaarden V.J. Zwaluw N. Velde N. Groot D.L. Dietary sources of vitamin B-12 and their association with vitamin B-12 status markers in healthy older adults in the B-PROOF study. Nutrients 2015 7 9 7781 7797 10.3390/nu7095364 26389945
    [Google Scholar]
  181. Avila D.S. Puntel R.L. Aschner M. Interrelations between essential metal ions and human diseases. Sigel A. Sigel H. Sigel R.K.O. Dordrecht Springer Netherlands 2013 199 227 10.1007/978‑94‑007‑7500‑8_7
    [Google Scholar]
  182. Baj J. Flieger W. Barbachowska A. Kowalska B. Flieger M. Forma A. Teresiński G. Portincasa P. Buszewicz G. Büchner R.E. Flieger J. Consequences of disturbing manganese homeostasis. Int. J. Mol. Sci. 2023 24 19 14959 10.3390/ijms241914959 37834407
    [Google Scholar]
  183. Chen P. Bornhorst J. Aschner M. Manganese metabolism in humans. Front. Biosci. 2018 23 9 1655 1679 10.2741/4665 29293455
    [Google Scholar]
  184. Li L. Yang X. The essential element manganese, oxidative stress, and metabolic diseases: Links and interactions. Oxid. Med. Cell. Longev. 2018 2018 1 7580707 10.1155/2018/7580707 29849912
    [Google Scholar]
  185. Ayodele J. Bayero A.S. Manganese concentrations in hair and fingernail of some Kano inhabitants. J. Appl. Sci. Env. Manag. 2010 14
    [Google Scholar]
  186. Stover K. Fukuyama T. Young A.T. Daniele M.A. Oberley R. Crapo J.D. Bäumer W. Topically applied manganese-porphyrins BMX-001 and BMX-010 display a significant anti-inflammatory response in a mouse model of allergic dermatitis. Arch. Dermatol. Res. 2016 308 10 711 721 10.1007/s00403‑016‑1693‑0 27709295
    [Google Scholar]
  187. Chen A. Husted S. Salt D.E. Schjoerring J.K. Persson D.P. The intensity of manganese deficiency strongly affects root endodermal suberization and ion homeostasis. Plant Physiol. 2019 181 2 729 742 10.1104/pp.19.00507 31399491
    [Google Scholar]
  188. Finley J.W. Davis C.D. Manganese deficiency and toxicity: Are high or low dietary amounts of manganese cause for concern? Biofactors 1999 10 1 15 24 10.1002/biof.5520100102 10475586
    [Google Scholar]
  189. Danailova Y. Velikova T. Nikolaev G. Mitova Z. Shinkov A. Gagov H. Konakchieva R. Nutritional management of thyroiditis of hashimoto. Int. J. Mol. Sci. 2022 23 9 5144 10.3390/ijms23095144 35563541
    [Google Scholar]
  190. NCT05431959 Evaluation of the effect of sulphur mineral, thermal water on skin microbiome in plaque psoriasis, a pilot study. Available from: https://clinicaltrials.gov/study/NCT05431959?cond=Dermatologic%20Disease&term=magnesium&rank=8 2022
  191. Darlenski R. Bogdanov I. Kacheva M. Zheleva D. Demerdjieva Z. Hristakieva E. Fluhr J.W. Tsankov N. Disease severity, patient‐reported outcomes and skin hydration improve during balneotherapy with hydrocarbonate‐ and sulphur‐rich water of psoriasis. J. Eur. Acad. Dermatol. Venereol. 2021 35 3 e196 e198 10.1111/jdv.16908 32869298
    [Google Scholar]
  192. Kalman D. Hewlings S. A randomized double-blind evaluation of a novel biotin and silicon ingredient complex on the hair and skin of healthy women. J. Clin. Exp. Dermatol. Res. 2021 12 1 1 5
    [Google Scholar]
  193. NCT06010745 Effectiveness of a novel dietary ingredient on hair growth and skin's appearance. Available from: https://clinicaltrials.gov/study/NCT06010745?cond=Dermatologic%20Disease&term=silicon&rank=3 2023
  194. Borowska S. Brzóska M.M. Metals in cosmetics: Implications for human health. J. Appl. Toxicol. 2015 35 6 551 572 10.1002/jat.3129 25809475
    [Google Scholar]
  195. Matthews N. Fitch K. Li W. Morris J. Christiani D. Qureshi A. Cho E. Exposure to trace elements and risk of skin cancer: A systematic review of epidemiologic studies. Canc. Epidemiol. Biomark. Prev. 2019 28 3 21
    [Google Scholar]
  196. Gillis B.S. Arbieva Z. Gavin I.M. Analysis of lead toxicity in human cells. BMC Genomics 2012 13 1 344 10.1186/1471‑2164‑13‑344 22839698
    [Google Scholar]
  197. Jigang C. Rui F. Yanni W. Association of blood cadmium level with nonmelanoma skin cancer: A cross-sectional study. ResearchGate 2022
    [Google Scholar]
  198. Romashin D. Arzumanian V. Poverennaya E. Varshaver A. Luzgina N. Rusanov A. Evaluation of Cd-induced cytotoxicity in primary human keratinocytes. Hum. Exp. Toxicol. 2024 43 09603271231224458 10.1177/09603271231224458 38174414
    [Google Scholar]
  199. Afridi H.I. Ali A. Bhatti M. Unar A. Chanihoon G.Q. Talpur F.N. Kazi T.G. Arain F.A. Effect of lead on the skin and health of female dermatitis patients through cosmetics. J. Ayub Med. Coll. Abbottabad 2023 35 1 88 94 10.55519/JAMC‑01‑11442 36849384
    [Google Scholar]
  200. Bastiansz A. Ewald J. Saldaña R.V. Rios S.A. Basu N. A systematic review of mercury exposures from skin-lightening products. Environ. Health Perspect. 2022 130 11 116002 10.1289/EHP10808 36367779
    [Google Scholar]
  201. Thomas P. Rueff F. Przybilla B. Airborne allergic contact dermatitis from mercury in a chemistry student. Contact Dermat. 1997 37 6 297 298 10.1111/j.1600‑0536.1997.tb02470.x 9455636
    [Google Scholar]
  202. Dinehart S.M. Dillard R. Raimer S.S. Diven S. Cobos R. Pupo R. Cutaneous manifestations of acrodynia (pink disease). Arch. Dermatol. 1988 124 1 107 109 10.1001/archderm.1988.01670010071023 3337532
    [Google Scholar]
  203. Davis R.G. Hazards of tattooing: Report of two cases of dermatitis caused by sensitization to mercury (cinnabar). U. S. Armed Forces Med. J. 1960 11 261 280 13814514
    [Google Scholar]
  204. Descamps V. Lejoyeux F. Marck Y. Bouscarat F. Crickx B. Belaich S. Erysipelas‐like mercury exanthem. Contact Dermat. 1997 36 5 277 278 10.1111/j.1600‑0536.1997.tb00228.x 9197976
    [Google Scholar]
  205. Bradberry S.M. Feldman M.A. Braithwaite R.A. Webb S.W. Vale J.A. Elemental mercury-induced skin granuloma: A case report and review of the literature. J. Toxicol. Clin. Toxicol. 1996 34 2 209 216 10.3109/15563659609013772 8618256
    [Google Scholar]
  206. Argos M. Kalra T. Pierce B.L. Chen Y. Parvez F. Islam T. Ahmed A. Hasan R. Hasan K. Sarwar G. Levy D. Slavkovich V. Graziano J.H. Rathouz P.J. Ahsan H. A prospective study of arsenic exposure from drinking water and incidence of skin lesions in Bangladesh. Am. J. Epidemiol. 2011 174 2 185 194 10.1093/aje/kwr062 21576319
    [Google Scholar]
  207. Hsu L.I. Chen G.S. Lee C.H. Yang T.Y. Chen Y.H. Use of arsenic-induced palmoplantar hyperkeratosis and skin cancers to predict risk of subsequent internal malignancy. American J. Epidemiol. 2013 177 3 202 212
    [Google Scholar]
  208. Samanta G. Sharma R. Roychowdhury T. Chakraborti D. Arsenic and other elements in hair, nails, and skin-scales of arsenic victims in West Bengal, India. Sci. Total Environ. 2004 326 1-3 33 47 10.1016/j.scitotenv.2003.12.006 15142763
    [Google Scholar]
  209. Malajian D. Belsito D.V. Cutaneous delayed-type hypersensitivity in patients with atopic dermatitis. J. Am. Acad. Dermatol. 2013 69 2 232 237 10.1016/j.jaad.2013.03.012 23583066
    [Google Scholar]
  210. Jensen P. Thyssen J.P. Johansen J.D. Skare L. Menné T. Lidén C. Occupational hand eczema caused by nickel and evaluated by quantitative exposure assessment. Contact Dermat. 2011 64 1 32 36 10.1111/j.1600‑0536.2010.01819.x
    [Google Scholar]
  211. Thyssen J.P. Menné T. Johansen J.D. Identification of metallic items that caused nickel dermatitis in Danish patients. Contact Dermat. 2010 63 3 151 156 10.1111/j.1600‑0536.2010.01767.x 20690938
    [Google Scholar]
  212. Niu Q. Overview of the relationship between aluminum exposure and health of human being. Adv. Exp. Med. Biol. 2018 1091 1 31 10.1007/978‑981‑13‑1370‑7_1 30315446
    [Google Scholar]
  213. Gundacker C. Forsthuber M. Szigeti T. Kakucs R. Mustieles V. Fernandez M.F. Bengtsen E. Vogel U. Hougaard K.S. Saber A.T. Lead (Pb) and neurodevelopment: A review on exposure and biomarkers of effect (BDNF, HDL) and susceptibility. Int. J. Hyg. Environ. Health 2021 238 113855 10.1016/j.ijheh.2021.113855 34655857
    [Google Scholar]
  214. Campos M.M. Tonuci H. Silva S.M. de S Altoé B. Carvalho d.D. Kronka E.A. Pereira A.M. Bertoni B.W. de C França S. Miranda C.E. Determination of lead content in medicinal plants by pre-concentration flow injection analysis-flame atomic absorption spectrometry. Phytochem. Anal. 2009 20 6 445 449 10.1002/pca.1145 19609903
    [Google Scholar]
  215. Nordberg F.G. Fowler A.B. Nordberg M. Friberg L. Handbook on the toxicology of metal. 3rd Ed. Academic Press 2007 90 98
    [Google Scholar]
  216. Saleh A.I. Enazi A.S. Shinwari N. Assessment of lead in cosmetic products. Regul. Toxicol. Pharmacol. 2009 54 2 105 113 10.1016/j.yrtph.2009.02.005 19250956
    [Google Scholar]
  217. Piccinini P. Piecha M. Torrent S.F. European survey on the content of lead in lip products. J. Pharm. Biomed. Anal. 2013 76 225 233 10.1016/j.jpba.2012.11.047 23348610
    [Google Scholar]
  218. Khalid A. Bukhari I.H. Riaz M. Rehman G. Ain Q.U. Bokhari T.H. Rasool N. Zubair M. Munir S. Determination of lead, cadmium, chromium and nickel in different brands of lipsticks. IJBPAS 2013 2 1003 1009
    [Google Scholar]
  219. Ashban A.R.M. Aslam M. Shah A.H. Kohl (surma): A toxic traditional eye cosmetic study in Saudi Arabia. Public Health 2004 118 4 292 298 10.1016/j.puhe.2003.05.001 15121438
    [Google Scholar]
  220. Lekouch N. Sedki A. Nejmeddine A. Gamon S. Lead and traditional Moroccan pharmacopoeia. Sci. Total Environ. 2001 280 1-3 39 43 10.1016/S0048‑9697(01)00801‑4 11763271
    [Google Scholar]
  221. Waalkes M.P. Misra R.R. Cadmium carcinogenicity and genotoxicity. Toxicology of Metals. Chang L. Boca Raton, FL, USA CRC Press 1996 231 244
    [Google Scholar]
  222. Omolaoye J.A. Uzairu A. Gimba C.E. Heavy metal assessment of some eye shadow products imported into Nigeria from China. Arch. Appl. Sci. Res. 2010 2 76 84
    [Google Scholar]
  223. Borawska M.H. Socha K. Soroczyńska J. Winiarska I.M. Pełszyńska A. Assessment of cadmium and lead content in natural bee honey from the Podlasie region. Bromatol. Chem. Toksykol. 2012 45 775 779
    [Google Scholar]
  224. Palmer R.B. Godwin D.A. McKinney P.E. Transdermal kinetics of a mercurous chloride beauty cream: An in vitro human skin analysis. J. Toxicol. Clin. Toxicol. 2000 38 7 701 707 10.1081/CLT‑100102383 11192457
    [Google Scholar]
  225. Dickenson C.A. Woodruff T.J. Stotland N.E. Dobraca D. Das R. Elevated mercury levels in pregnant woman linked to skin cream from Mexico. Am. J. Obstet. Gynecol. 2013 209 2 e4 e5 10.1016/j.ajog.2013.05.030 23685000
    [Google Scholar]
  226. Liaw F.Y. Chen W.L. Kao T.W. Chang Y.W. Huang C.F. Exploring the link between cadmium and psoriasis in a nationally representative sample. Sci. Rep. 2017 7 1 1723 10.1038/s41598‑017‑01827‑9 28496169
    [Google Scholar]
  227. Muczyńska W.M. Socha K. Soroczyńska J. Niczyporuk M. Borawska M.H. Cadmium, lead and mercury in the blood of psoriatic and vitiligo patients and their possible associations with dietary habits. Sci. Total Environ. 2021 757 143967 10.1016/j.scitotenv.2020.143967 33302005
    [Google Scholar]
  228. Karlsson K. Viklander M. Scholes L. Revitt M. Heavy metal concentrations and toxicity in water and sediment from stormwater ponds and sedimentation tanks. J. Hazard. Mater. 2010 178 1-3 612 618 10.1016/j.jhazmat.2010.01.129 20153579
    [Google Scholar]
  229. Weldon M.M. Smolinski M.S. Maroufi A. Hasty B.W. Gilliss D.L. Boulanger L.L. Balluz L.S. Dutton R.J. Mercury poisoning associated with a Mexican beauty cream. West. J. Med. 2000 173 1 15 18 10.1136/ewjm.173.1.15 10903281
    [Google Scholar]
  230. Abdulla N.N. Hamidi S. Younis M.Z. Parkash J. Consumer awarness of health risks of arsenic, cadmium, chromium and lead present in cosmetic and personal care products in Dubai. J. Community Med. Health Educ. 2013 3 216
    [Google Scholar]
  231. Matheson D.S. Clarkson T.W. Gelfand E.W. Mercury toxicity (acrodynia) induced by long-term injection of gammaglobulin. J. Pediatr. 1980 97 1 153 155 10.1016/S0022‑3476(80)80159‑4 6155462
    [Google Scholar]
  232. Saleh A.I. Potential health consequences of applying mercury-containing skin-lightening creams during pregnancy and lactation periods. Int. J. Hyg. Environ. Health 2016 219 4-5 468 474 10.1016/j.ijheh.2016.03.002 27009692
    [Google Scholar]
  233. Pigatto P.D. Ferrucci S.M. Brambilla L. Guzzi G. Alopecia areata and toxic metals. Skin Appendage Disord. 2020 6 3 177 179 10.1159/000507296 32656240
    [Google Scholar]
  234. Lam C.D. Fitzsimons E.J. Douglas W.S. Alopecia after immunoglobulin infusion. Lancet. 1987 1 8547 1436 10.1016/S0140‑6736(87)90627‑1
    [Google Scholar]
  235. Lara P.I. Castillo M.M. Pérez Q.J.C. Mendoza A.M.G. Cach T.F. Limón V.O.L. Montalvo G.E.A. Zavala H.A. Arsenic exposure: A public health problem leading to several cancers. Regul. Toxicol. Pharmacol. 2020 110 104539 10.1016/j.yrtph.2019.104539 31765675
    [Google Scholar]
  236. Fattah A.A. Pingitore N.E. Jr Low levels of toxic elements in Dead Sea black mud and mud-derived cosmetic products. Environ. Geochem. Health 2009 31 4 487 492 10.1007/s10653‑008‑9201‑x 18688731
    [Google Scholar]
  237. Martinez V.D. Santos B.D.D. Vucic E.A. Lam S. Lam W.L. Induction of human squamous cell-type carcinomas by arsenic. J. Skin Cancer 2011 2011 1 9 10.1155/2011/454157 22175027
    [Google Scholar]
  238. Drenovska K. Shahid M. Vassileva S. Nickel and skin: From allergy to autoimmunity. Endocr. Metab. Immune Disord. Drug Targ. 2020 20 7 1032 1040 10.2174/1871530320666191231115437 31889504
    [Google Scholar]
  239. Ahlström M.G. Thyssen J.P. Wennervaldt M. Menné T. Johansen J.D. Nickel allergy and allergic contact dermatitis: A clinical review of immunology, epidemiology, exposure, and treatment. Contact Dermat. 2019 81 4 227 241 10.1111/cod.13327 31140194
    [Google Scholar]
  240. Corazza M. Baldo F. Pagnoni A. Miscioscia R. Virgili A. Measurement of nickel, cobalt and chromium in toy make-up by atomic absorption spectroscopy. Acta Derm. Venereol. 2009 89 2 130 133 19325995
    [Google Scholar]
  241. Klotz K. Weistenhöfer W. Neff F. Hartwig A. Thriel v.C. Drexler H. The health effects of aluminum exposure. Dtsch. Arztebl. Int. 2017 114 39 653 659 29034866
    [Google Scholar]
  242. Bend J.R. Hattan D.G. Kawamura Y. Knaap A.G. Kuznesof P.M. Larsen J.C. WHO technical report series: Evaluation of certain food additives. World Health Organ. Tech. Rep. Ser. 2011 928 1 156
    [Google Scholar]
  243. Ayaz A. Eroglu I.E. Is aluminum exposure a risk factor for neurological disorders? J. Res. Med. Sci. 2018 23 1 51 , 23, 51 10.4103/jrms.JRMS_921_17 30057635
    [Google Scholar]
  244. Taiwo O.A. Diffuse parenchymal diseases associated with aluminum use and primary aluminum production. J. Occup. Environ. Med. 2014 56 5 S71 S72 10.1097/JOM.0000000000000054 24806728
    [Google Scholar]
  245. Guillard O. Fauconneau B. Olichon D. Dedieu G. Deloncle R. Hyperaluminemia in a woman using an aluminum-containing antiperspirant for 4 years. Am. J. Med. 2004 117 12 956 959 10.1016/j.amjmed.2004.07.047 15629736
    [Google Scholar]
  246. Darbre P.D. Bakir A. Iskakova E. Effect of aluminium on migratory and invasive properties of MCF-7 human breast cancer cells in culture. J. Inorg. Biochem. 2013 128 245 249 10.1016/j.jinorgbio.2013.07.004 23896199
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673348175250214054101
Loading
/content/journals/cmc/10.2174/0109298673348175250214054101
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test