Skip to content
2000
Volume 32, Issue 35
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Skin is the human body's largest organ, protecting it from various environmental threats. At the same time, it is the most accessible organ of the body, which ensures the reception of stimuli and contact with the environment. Such common signs of skin aging, such as wrinkles, fine lines, and discoloration, result from both extrinsic and intrinsic factors that act for a long time. If the skin does not look well enough, it is worth investigating whether minerals or trace elements are deficient. The positive role of some minerals (calcium, potassium, sodium, sulfur, and magnesium) and trace elements (iron, zinc, selenium, copper, manganese, and silicon) was found in maintaining skin health. There are also a variety of skin conditions, such as inflammatory disorders (eczema, psoriasis), acne, lichen planus, vitiligo, alopecia areata, or even skin cancer, which require specific approaches for their prevention and treatment considering the saturation of the body and the skin with mineral elements. They could be supplied internally (through adequate nutrition or food additives) or externally (by application of cosmetics). Some aspects of the danger of the toxic trace elements used in cosmetics are also described in this review.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673348175250214054101
2025-03-05
2025-12-09
Loading full text...

Full text loading...

References

  1. KohlE. SteinbauerJ. LandthalerM. SzeimiesR.M. Skin ageing.J. Eur. Acad. Dermatol. Venereol.201125887388410.1111/j.1468‑3083.2010.03963.x21261751
    [Google Scholar]
  2. VollmerD.L. WestV.A. LephartE.D. Enhancing skin health: By oral administration of natural compounds and minerals with implications to the dermal microbiome.Int. J. Mol. Sci.20181910305910.3390/ijms1910305930301271
    [Google Scholar]
  3. IqbalB. AliJ. BabootaS. Recent advances and development in epidermal and dermal drug deposition enhancement technology.Int. J. Dermatol.201857664666010.1111/ijd.1390229430629
    [Google Scholar]
  4. MichalakM. PierzakM. KręciszB. SuligaE. Bioactive compounds for skin health: A review.Nutrients202113120310.3390/nu1301020333445474
    [Google Scholar]
  5. StephensT.J. SiglerM.L. HinoP.D. MoigneA.L. DispensaL. RandomizedA. A randomized, double-blind, placebo-controlled clinical trial evaluating an oral anti-aging skin care supplement for treating photodamaged skin.J. Clin. Aesthet. Dermatol.201694253227462385
    [Google Scholar]
  6. GuarneriF. BertinoL. PioggiaG. CasciaroM. GangemiS. Therapies with antioxidant potential in Psoriasis, Vitiligo, and Lichen planus.Antioxidants2021107108710.3390/antiox1007108734356320
    [Google Scholar]
  7. GasmiA. MujawdiyaP.K. BeleyN. ShanaidaM. LysiukR. LenchykL. NoorS. MuhammadA. StrusO. PiscopoS. KomisarenkoA. FedorovskaM. BjørklundG. Natural compounds used for treating hair loss.Curr. Pharm. Des.202329161231124410.2174/138161282966623050510014737151166
    [Google Scholar]
  8. JonesV.A. PatelP.M. WilsonC. WangH. AshackK.A. Complementary and alternative medicine treatments for common skin diseases: A systematic review and meta-analysis.JAAD Int.20212769310.1016/j.jdin.2020.11.00134409356
    [Google Scholar]
  9. KirmitA. KaderS. AksoyM. BalC. NuralC. AslanO. Trace elements and oxidative stress status in patients with psoriasis.Postepy Dermatol. Alergol.202037333333910.5114/ada.2020.9426532792872
    [Google Scholar]
  10. AlmohannaH.M. AhmedA.A. TsatalisJ.P. TostiA. The role of vitamins and minerals in hair loss: A review.Dermatol. Ther.201991517010.1007/s13555‑018‑0278‑630547302
    [Google Scholar]
  11. RobbinsD. ZhaoY. The role of manganese superoxide dismutase in skin cancer.Enzyme Res.201120111710.4061/2011/40929521603266
    [Google Scholar]
  12. BickersD.R. AtharM. Oxidative stress in the pathogenesis of skin disease.J. Invest. Dermatol.2006126122565257510.1038/sj.jid.570034017108903
    [Google Scholar]
  13. SurbekM. SuksereeS. EckhartL. Iron metabolism of the skin: Recycling versus release.Metabolites2023139100510.3390/metabo1309100537755285
    [Google Scholar]
  14. HaftekM. AbdayemR. DebersacG.P. Skin minerals: Key roles of inorganic elements in skin physiological functions.Int. J. Mol. Sci.20222311626710.3390/ijms2311626735682946
    [Google Scholar]
  15. UdompataikulM. SripirojP. PalungwachiraP. An oral nutraceutical containing antioxidants, minerals and glycosaminoglycans improves skin roughness and fine wrinkles.Int. J. Cosmet. Sci.200931642743510.1111/j.1468‑2494.2009.00513.x19570098
    [Google Scholar]
  16. WołonciejM. MilewskaE. JakimiecR.W. Trace elements as an activator of antioxidant enzymes.Postepy Hig. Med. Dosw.20167001483149810.5604/17322693.122907428100855
    [Google Scholar]
  17. AraújoL.A. AddorF. CamposP.M.B.G.M. Use of silicon for skin and hair care: An approach of chemical forms available and efficacy.An. Bras. Dermatol.201691333133510.1590/abd1806‑4841.2016398627438201
    [Google Scholar]
  18. GoryachaO.V. KovalevaА.М. RaalA. IlinaТ.V. КоshovyiО.M. ShovkovaZ.V. Elemental composition of Dasiphora fruticosa (L.) Rybd. Varieties.Open Agric. J.2022161e18743315220124010.2174/18743315‑v16‑e2201240
    [Google Scholar]
  19. KonieczynskiP. LysiukR. KopisteckaM. WesolowskiM. Study of essential and toxic elements content in medicinal herbs harvested in Ukraine.Res. J. Pharm. Technol.202114116055606010.52711/0974‑360X.2021.01052
    [Google Scholar]
  20. LysiukR. ZaritskaY. DarmohrayR. Investigation of microelements contents in aerial parts of Agrimonia eupatoria L., collected in Lviv region (Ukraine).Annal. Univ. Paedag. Cracov. Stud. Nat.2016195104
    [Google Scholar]
  21. GóreckaK.A. GóreckiM. StojkoR.A. BalwierzR. StojkoJ. Bee products in dermatology and skin care.Molecules202025355610.3390/molecules2503055632012913
    [Google Scholar]
  22. LakdawalaN. BabalolaO.III FedelesF. McCuskerM. RickettsJ. WorthW.D. KelsG.J.M. The role of nutrition in dermatologic diseases: Facts and controversies.Clin. Dermatol.201331667770010.1016/j.clindermatol.2013.05.00424160272
    [Google Scholar]
  23. QuattriniS. PampaloniB. BrandiM.L. Natural mineral waters: Chemical characteristics and health effects.Clin. Cases Miner. Bone Metab.201613317318010.11138/ccmbm/2016.13.3.17328228777
    [Google Scholar]
  24. PeinemannF. HarariM. PeternelS. ChanT. ChanD. LabeitA.M. GambichlerT. Indoor balneophototherapy for chronic plaque psoriasis: Abridged cochrane review.Dermatol. Ther.2021341e1458810.1111/dth.1458833236826
    [Google Scholar]
  25. KligmanA. The future of cosmeceuticals: An interview with Albert Kligman, MD, PhD. Interview by Zoe Diana Draelos.Dermatol. Surg.2005317 Pt 289089116029684
    [Google Scholar]
  26. CaoC. XiaoZ. WuY. GeC. Diet and skin aging—from the perspective of food nutrition.Nutrients202012387010.3390/nu1203087032213934
    [Google Scholar]
  27. BjorklundG. MartinsC.N. GohB.H. MykhailenkoO. LysiukR. ShanaidaM. LenchykL. UpyrT. RusuM.E. PryshlyakA. ShanaidaV. ChirumboloS. Medicinal plant-derived phytochemicals in detoxification.Curr. Pharm. Des.20243013988101537559241
    [Google Scholar]
  28. ZhangP. The role of diet and nutrition in allergic diseases.Nutrients20231517368310.3390/nu1517368337686715
    [Google Scholar]
  29. HuangA. SeitéS. AdarT. The use of balneotherapy in dermatology.Clin. Dermatol.201836336336810.1016/j.clindermatol.2018.03.01029908578
    [Google Scholar]
  30. Ma’orZ. HenisY. AlonY. OrlovE. SørensenK.B. OrenA. Antimicrobial properties of Dead Sea black mineral mud.Int. J. Dermatol.200645550451110.1111/j.1365‑4632.2005.02621.x16700781
    [Google Scholar]
  31. RiyazN. ArakkalF. Spa therapy in dermatology.Indian J. Dermatol. Venereol. Leprol.201177212813410.4103/0378‑6323.7745021393940
    [Google Scholar]
  32. ThieleJ.J. SchroeterC. HsiehS.N. PoddaM. PackerL. The antioxidant network of the stratum corneum.Curr. Probl. Dermatol.200029264210.1159/00006065111225199
    [Google Scholar]
  33. ThieleJ.J. Oxidative targets in the stratum corneum. A new basis for antioxidative strategies.Skin Pharmacol. Physiol.200114879110.1159/00005639511509912
    [Google Scholar]
  34. EliasP.M. The skin barrier as an innate immune element.Semin. Immunopathol.200729131410.1007/s00281‑007‑0060‑917621950
    [Google Scholar]
  35. NguyenA.V. SoulikaA.M. The dynamics of the skin’s immune system.Int. J. Mol. Sci.2019208181110.3390/ijms2008181131013709
    [Google Scholar]
  36. TryonH.T.A. GriceE.A. Microbiota and maintenance of skin barrier function.Science2022376659694094510.1126/science.abo069335617415
    [Google Scholar]
  37. RorteauJ. ChevalierF.P. FromyB. LamartineJ. Aging and skin integrity.Med. Sci.202036121155116210.1051/medsci/2020223
    [Google Scholar]
  38. RinnerthalerM. RichterK. The influence of calcium on the skin pH and epidermal barrier during aging.Curr. Probl. Dermatol.201854798610.1159/00048952130130776
    [Google Scholar]
  39. TaïebA. Skin barrier in the neonate.Pediatr. Dermatol.2018351s5s929596733
    [Google Scholar]
  40. DiniI. LaneriS. Nutricosmetics: A brief overview.Phytother. Res.201933123054306310.1002/ptr.649431478301
    [Google Scholar]
  41. ShiH.P. FishelR.S. EfronD.T. WilliamsJ.Z. FishelM.H. BarbulA. Effect of supplemental ornithine on wound healing.J. Surg. Res.2002106229930210.1006/jsre.2002.647112175982
    [Google Scholar]
  42. StechmillerJ.K. ChildressB. CowanL. Arginine supplementation and wound healing.Nutr. Clin. Pract.2005201526110.1177/01154265050200015216207646
    [Google Scholar]
  43. BadiuD.L. LuqueR. DumitrescuE. CraciunA. DincaD. Amino acids from Mytilus galloprovincialis (L.) and Rapana venosa molluscs accelerate skin wounds healing via enhancement of dermal and epidermal neoformation.Protein J.2010292819210.1007/s10930‑009‑9225‑920087635
    [Google Scholar]
  44. SolanoF. Metabolism and functions of amino acids in the skin.Adv. Exp. Med. Biol.2020126518719910.1007/978‑3‑030‑45328‑2_1132761577
    [Google Scholar]
  45. SpravchikovN. SizyakovG. GartsbeinM. AcciliD. TennenbaumT. WertheimerE. Glucose effects on skin keratinocytes: Implications for diabetes skin complications.Diabetes20015071627163510.2337/diabetes.50.7.162711423485
    [Google Scholar]
  46. HattemV.S. BootsmaA.H. ThioH.B. Skin manifestations of diabetes.Cleve. Clin. J. Med.20087511772787, 774, 776-777 passim10.3949/ccjm.75.11.77219068958
    [Google Scholar]
  47. YatsuhashiH. FuruyashikiT. VoP.H.T. KamasakaH. KurikiT. Effects of glycogen on ceramide production in cultured human keratinocytes via acid sphingomyelinase activation.J. Appl. Glycosci.2021682414610.5458/jag.jag.JAG‑2020_001234429698
    [Google Scholar]
  48. UmbayevB. AskarovaS. AlmabayevaA. SalievT. MasoudA.R. BulaninD. Galactose-induced skin aging: The role of oxidative stress.Oxid. Med. Cell. Longev.20202020811510.1155/2020/714565632655772
    [Google Scholar]
  49. UchidaY. HamanakaS. EliasP.M. FeingoldK.R. In skin barrier.New YorkTaylor Francis20064365
    [Google Scholar]
  50. UchidaY. Ceramide signaling in mammalian epidermis.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20141841345346210.1016/j.bbalip.2013.09.00324055887
    [Google Scholar]
  51. UchidaY. HoubenE. ParkK. DouangpanyaS. LeeY.M. WuB.X. HannunY.A. RadinN.S. EliasP.M. HolleranW.M. Hydrolytic pathway protects against ceramide-induced apoptosis in keratinocytes exposed to UVB.J. Invest. Dermatol.2010130102472248010.1038/jid.2010.15320520628
    [Google Scholar]
  52. SoutoE.B. FernandesA.R. GomesM.C. CoutinhoT.E. DurazzoA. LucariniM. SoutoS.B. SilvaA.M. SantiniA. Nanomaterials for skin delivery of cosmeceuticals and pharmaceuticals.Appl. Sci.2020105159410.3390/app10051594
    [Google Scholar]
  53. CibrianD. de la FuenteH. MadridS.F. Metabolic pathways that control skin homeostasis and inflammation.Trends Mol. Med.2020261197598610.1016/j.molmed.2020.04.00432371170
    [Google Scholar]
  54. RattanawiwatpongP. WanitphakdeedechaR. BumrungpertA. MaiprasertM. Anti-aging and brightening effects of a topical treatment containing vitamin C, vitamin E, and raspberry leaf cell culture extract: A split-face, randomized controlled trial.J. Cosmet. Dermatol.202019367167610.1111/jocd.1330531975502
    [Google Scholar]
  55. OgawaY. KinoshitaM. SatoT. ShimadaS. KawamuraT. Biotin is required for the Zinc homeostasis in the skin.Nutrients201911491910.3390/nu1104091931022908
    [Google Scholar]
  56. KassymL. ZhetmekovaZ. KussainovaA. SemenovaY. VetrovaA. NurzhanS. SarbassovaG. AkhmetovaA. OrazalinaA. UzbekovaS. BjørklundG. Pressure ulcers and nutrients: From established evidence to gaps in knowledge.Curr. Med. Chem.202410.2174/010929867332282524101817492839501959
    [Google Scholar]
  57. WeyhC. KrügerK. PeelingP. CastellL. The role of minerals in the optimal functioning of the immune system.Nutrients202214364410.3390/nu1403064435277003
    [Google Scholar]
  58. ParkK. Role of micronutrients in skin health and function.Biomol. Ther.201523320721710.4062/biomolther.2015.00325995818
    [Google Scholar]
  59. BroadleyS.L. PlaneJ.M.C. A kinetic study of reactions of calcium-containing molecules with O and H atoms: Implications for calcium chemistry in the upper atmosphere.Phys. Chem. Chem. Phys.201012319094910610.1039/c004451b20532345
    [Google Scholar]
  60. BhattaraiH.K. ShresthaS. RokkaK. ShakyaR. Vitamin D, calcium, parathyroid hormone, and sex steroids in bone health and effects of aging.J. Osteoporos.2020202011010.1155/2020/932450532612801
    [Google Scholar]
  61. Institute of Medicine (US) In committee to review dietary reference intakes for Vitamin D and Calcium. Dietary reference intakes for Calcium and Vitamin D. RossA.C. TaylorC.L. YaktineA.L. Washington (DC)National Academies Press (US)2011
    [Google Scholar]
  62. VannucciL. FossiC. QuattriniS. GuastiL. PampaloniB. GronchiG. GiustiF. RomagnoliC. CianferottiL. MarcucciG. BrandiM.L. Calcium intake in bone health: A focus on calcium-rich mineral waters.Nutrients20181012193010.3390/nu1012193030563174
    [Google Scholar]
  63. LeeS.E. LeeS.H. Skin barrier and calcium.Ann. Dermatol.201830326527510.5021/ad.2018.30.3.26529853739
    [Google Scholar]
  64. JeonJ. JangJ. ParkK. Effects of consuming calcium-rich foods on the incidence of type 2 diabetes mellitus.Nutrients20181113110.3390/nu1101003130583546
    [Google Scholar]
  65. RozenbergS. BodyJ.J. BruyèreO. BergmannP. BrandiM.L. CooperC. DevogelaerJ.P. GielenE. GoemaereS. KaufmanJ.M. RizzoliR. ReginsterJ.Y. Effects of dairy products consumption on health: Benefits and beliefs—A commentary from the belgian bone club and the european society for clinical and economic aspects of osteoporosis, osteoarthritis and musculoskeletal diseases.Calcif. Tissue Int.201698111710.1007/s00223‑015‑0062‑x26445771
    [Google Scholar]
  66. ShkembiB. HuppertzT. Calcium absorption from food products: Food matrix effects.Nutrients202114118010.3390/nu1401018035011055
    [Google Scholar]
  67. ThorningT.K. RabenA. TholstrupT. MuthuS.S.S. GivensI. AstrupA. Milk and dairy products: Good or bad for human health? An assessment of the totality of scientific evidence.Food Nutr. Res.20166013252710.3402/fnr.v60.3252727882862
    [Google Scholar]
  68. CormickG. BelizánJ.M. Calcium intake and health.Nutrients2019117160610.3390/nu1107160631311164
    [Google Scholar]
  69. BourassaM.W. AbramsS.A. BelizánJ.M. BoyE. CormickG. QuijanoC.D. GibsonS. GomesF. HofmeyrG.J. HumphreyJ. KraemerK. LividiniK. NeufeldL.M. PalaciosC. ShliskyJ. ThankachanP. VillalpandoS. WeaverC.M. Interventions to improve calcium intake through foods in populations with low intake.Ann. N. Y. Acad. Sci.202215111405810.1111/nyas.1474335103316
    [Google Scholar]
  70. SubramaniamT. FauziM.B. LokanathanY. LawJ.X. The role of calcium in wound healing.Int. J. Mol. Sci.20212212648610.3390/ijms2212648634204292
    [Google Scholar]
  71. BollagW.B. Down-regulated calcium-sensing receptor in keratinocytes and skin from aged mice and humans impairs function.J. Invest. Dermatol.2021141112558256110.1016/j.jid.2021.04.00534688406
    [Google Scholar]
  72. BarbagalloM. VeroneseN. DominguezL.J. Magnesium—An ion with multiple invaluable actions, often insufficiently supplied: From in vitro to clinical research.Nutrients20231514313510.3390/nu1514313537513553
    [Google Scholar]
  73. MathewA.A. PanonnummalR. ‘Magnesium’-The master cation-As a drug—possibilities and evidences.Biometals202134595598610.1007/s10534‑021‑00328‑734213669
    [Google Scholar]
  74. Baaijd.J.H.F. HoenderopJ.G.J. BindelsR.J.M. Magnesium in man: Implications for health and disease.Physiol. Rev.201595114610.1152/physrev.00012.201425540137
    [Google Scholar]
  75. KirklandA.E. SarloG.L. HoltonK.F. The role of magnesium in neurological disorders.Nutrients201810673010.3390/nu1006073029882776
    [Google Scholar]
  76. LongS. RomaniA.M. Role of cellular magnesium in human diseases.Austin J. Nutr. Food Sci.2014210105125839058
    [Google Scholar]
  77. SchwalfenbergG.K. GenuisS.J. The importance of magnesium in clinical healthcare.Scientifica2017201711410.1155/2017/417932629093983
    [Google Scholar]
  78. MaierJ.A. CastiglioniS. LocatelliL. ZocchiM. MazurA. Magnesium and inflammation: Advances and perspectives.Semin. Cell Dev. Biol.2021115374410.1016/j.semcdb.2020.11.00233221129
    [Google Scholar]
  79. ChandrasekaranN.C. WeirC. AlfrajiS. GriceJ. RobertsM.S. BarnardR.T. Effects of magnesium deficiency – More than skin deep.Exp. Biol. Med.2014239101280129110.1177/153537021453774524928863
    [Google Scholar]
  80. KillileaD.W. MaierJ.A. A connection between magnesium deficiency and aging: New insights from cellular studies.Magnes. Res.2008212778218705534
    [Google Scholar]
  81. TorresA. RegoL. MartinsM.S. FerreiraM.S. CruzM.T. SousaE. AlmeidaI.F. How to promote skin repair? In-depth look at pharmaceutical and cosmetic strategies.Pharmaceuticals202316457310.3390/ph1604057337111330
    [Google Scholar]
  82. RivlinR.S. Magnesium deficiency and alcohol intake: Mechanisms, clinical significance and possible relation to cancer development (a review).J. Am. Coll. Nutr.199413541642310.1080/07315724.1994.107184307836619
    [Google Scholar]
  83. FaragM.A. AbibB. QinZ. ZeX. AliS.E. Dietary macrominerals: Updated review of their role and orchestration in human nutrition throughout the life cycle with sex differences.Curr. Res. Food Sci.2023610045010.1016/j.crfs.2023.10045036816001
    [Google Scholar]
  84. ŻukowskaM.R. JakubikP.A. GrabiaM. PerkowskiJ. NowakowskiP. BieleckaJ. SoroczyńskaJ. KańgowskiG. BołtrykJ.M. SochaK. Nuts as a dietary enrichment with selected minerals—content assessment supported by chemometric analysis.Foods20221120315210.3390/foods1120315237430901
    [Google Scholar]
  85. PinottiL. ManoniM. FerrariL. TretolaM. CazzolaR. GivensI. The contribution of dietary magnesium in farm animals and human nutrition.Nutrients202113250910.3390/nu1302050933557151
    [Google Scholar]
  86. ShrimankerI. BhattaraiS. In statpearls.Treasure Island, FLStatPearls PublishingAvailable from: https://www.ncbi.nlm.nih.gov/books/NBK541123/ 2023
    [Google Scholar]
  87. TchounwouP.B. UdensiU.K. Potassium homeostasis, oxidative stress, and human disease.Int. J. Clin. Exp. Physiol.20174311112210.4103/ijcep.ijcep_43_1729218312
    [Google Scholar]
  88. National Research Council (US) In recommended dietary allowances: Subcommittee on the tenth edition of the recommended dietary allowances10th Ed.Washington (DC)National Academies Press (US)1989
    [Google Scholar]
  89. PosatskaN.M. StrukО.А. GrytsykA.R. StasivT.H. KlymenkoA.O. Research of element composition of Verbena species.Pharmacia202168122723310.3897/pharmacia.68.e46513
    [Google Scholar]
  90. HamidizadehN. SimaeetabarS. HandjaniF. RanjbarS. MoghadamM. ParviziM. Composition of minerals and trace elements at Mamasani thermal source: A possible preventive treatment for some skin diseases.J. Educ. Health Promot.20176111010.4103/jehp.jehp_100_1729296611
    [Google Scholar]
  91. KrynickaK. TrzeciakM. The role of sodium hypochlorite in atopic dermatitis therapy: A narrative review.Int. J. Dermatol.20226191080108610.1111/ijd.1609935167708
    [Google Scholar]
  92. DreherM.L. DavenportA.J. Hass avocado composition and potential health effects.Crit. Rev. Food Sci. Nutr.201353773875010.1080/10408398.2011.55675923638933
    [Google Scholar]
  93. NewL.S.A. LambertH. FrassettoL. Potassium.Adv. Nutr.20123682082110.3945/an.112.00301223153736
    [Google Scholar]
  94. GuptaA.K. NicolK. The use of sulfur in dermatology.J. Drugs Dermatol.20043442743115303787
    [Google Scholar]
  95. RaiM. IngleA.P. ParalikarP. Sulfur and sulfur nanoparticles as potential antimicrobials: From traditional medicine to nanomedicine.Expert Rev. Anti Infect. Ther.2016141096997810.1080/14787210.2016.122134027494175
    [Google Scholar]
  96. UrakaevF.K. AbuyevaB.B. VorobyevaN.A. MunG.A. UralbekovB.M. BurkitbayevM.M. Sulfur nanoparticles stabilized in the presence of water-soluble polymers.Mendeleev Commun.201828216116310.1016/j.mencom.2018.03.017
    [Google Scholar]
  97. KimY.H. KimD.H. LimH. BaekD.Y. ShinH.K. KimJ.K. The anti-inflammatory effects of methylsulfonylmethane on lipopolysaccharide-induced inflammatory responses in murine macrophages.Biol. Pharm. Bull.200932465165610.1248/bpb.32.65119336900
    [Google Scholar]
  98. RoohiN.B. BarmakiS. KhoshkhaheshF. BohlooliS. Effect of chronic supplementation with methylsulfonylmethane on oxidative stress following acute exercise in untrained healthy men.J. Pharm. Pharmacol.201163101290129410.1111/j.2042‑7158.2011.01314.x21899544
    [Google Scholar]
  99. SchneiderT. BaldaufA. BaL.A. JamierV. KhairanK. SarakbiM.B. ReumN. SchneiderM. RöselerA. BeckerK. BurkholzT. WinyardP.G. KelkelM. DiederichM. JacobC. Selective antimicrobial activity associated with sulfur nanoparticles.J. Biomed. Nanotechnol.20117339540510.1166/jbn.2011.129321830480
    [Google Scholar]
  100. HashemN.M. HosnyA.E.D.M.S. AbdelrahmanA.A. ZakeerS. Antimicrobial activities encountered by sulfur nanoparticles combating Staphylococcal species harboring sccmecA recovered from acne vulgaris.AIMS Microbiol.20217448149810.3934/microbiol.202102935071944
    [Google Scholar]
  101. GasmiA. BenahmedG.A. ShanaidaM. ChirumboloS. MenzelA. AnzarW. ArshadM. MartinsC.N. LysiukR. BeleyN. OliinykP. ShanaidaV. DenysA. PeanaM. BjørklundG. Anticancer activity of broccoli, its organosulfur and polyphenolic compounds.Crit. Rev. Food Sci. Nutr.202464228054807237129118
    [Google Scholar]
  102. NosewiczJ. SpaccarelliN. RobertsK.M. HartP.A. KaffenbergerJ.A. TrinidadJ.C. KaffenbergerB.H. The epidemiology, impact, and diagnosis of micronutrient nutritional dermatoses part 1: Zinc, selenium, copper, vitamin A, and vitamin C.J. Am. Acad. Dermatol.202286226727810.1016/j.jaad.2021.07.07934748862
    [Google Scholar]
  103. RajanJ.P. SinghK.B. KumarS. MishraR.K. Trace elements content in the selected medicinal plants traditionally used for curing skin diseases by the natives of Mizoram, India.Asian Pac. J. Trop. Med.20147S410S41410.1016/S1995‑7645(14)60267‑425312159
    [Google Scholar]
  104. SelvarajuR. RajendranG.R. NarayanaswamyR. ValliappanR. BaskarnR. Trace element analysis in hepatitis B affected human blood serum by inductively coupled plasma atomic emission spectroscopy.Rom. J. Biophys.2009193542
    [Google Scholar]
  105. EmsleyJ. Nature’s building blocks: An A-Z guide to the elements.Oxford, UKOxford University Press2011
    [Google Scholar]
  106. GombartA.F. PierreA. MagginiS. A review of micronutrients and the immune system–working in harmony to reduce the risk of infection.Nutrients202012123610.3390/nu1201023631963293
    [Google Scholar]
  107. LukácN. MassányiP. Effects of trace elements on the immune system.Epidemiol. Mikrobiol. Imunol.20075613917427747
    [Google Scholar]
  108. BjørklundG. ShanaidaM. LysiukR. ButnariuM. PeanaM. SaracI. StrusO. SmetaninaK. ChirumboloS. Natural compounds and products from an anti-aging perspective.Molecules20222720708410.3390/molecules2720708436296673
    [Google Scholar]
  109. WacewiczM. SochaK. SoroczyńskaJ. NiczyporukM. AleksiejczukP. OstrowskaJ. BorawskaM.H. Concentration of selenium, zinc, copper, Cu/Zn ratio, total antioxidant status and c-reactive protein in the serum of patients with psoriasis treated by narrow-band ultraviolet B phototherapy: A case-control study.J. Trace Elem. Med. Biol.20174410911410.1016/j.jtemb.2017.06.00828965564
    [Google Scholar]
  110. WacewiczM. SochaK. SoroczyńskaJ. NiczyporukM. AleksiejczukP. OstrowskaJ. BorawskaM.H. Selenium, zinc, copper, Cu/Zn ratio and total antioxidant status in the serum of vitiligo patients treated by narrow-band ultraviolet-B phototherapy.J. Dermatolog. Treat.201829219019510.1080/09546634.2017.135779728718676
    [Google Scholar]
  111. GlutschV. HammH. GoebelerM. Zinc and skin: An update.J. Dtsch. Dermatol. Ges.201917658959630873720
    [Google Scholar]
  112. OgawaY. KinoshitaM. ShimadaS. KawamuraT. Zinc and skin disorders.Nutrients201810219910.3390/nu1002019929439479
    [Google Scholar]
  113. LansdownA.B.G. MirastschijskiU. StubbsN. ScanlonE. ÅgrenM.S. Zinc in wound healing: Theoretical, experimental, and clinical aspects.Wound Repair Regen.200715121610.1111/j.1524‑475X.2006.00179.x17244314
    [Google Scholar]
  114. OoiK. Onset mechanism and pharmaceutical management of dry skin.Biol. Pharm. Bull.20214481037104310.1248/bpb.b21‑0015034334489
    [Google Scholar]
  115. KhafajiA.Z. BritoS. BinB.H. Zinc and zinc transporters in dermatology.Int. J. Mol. Sci.202223241616510.3390/ijms23241616536555806
    [Google Scholar]
  116. ChasapisC.T. LoutsidouA.C. SpiliopoulouC.A. StefanidouM.E. Zinc and human health: An update.Arch. Toxicol.201286452153410.1007/s00204‑011‑0775‑122071549
    [Google Scholar]
  117. DeviC.B. NandakishoreT. SangeetaN. BasarG. DeviN.O. JamirS. SinghM.A. Zinc in human health.IOSR J. Dent. Med. Sci.2014137182310.9790/0853‑13721823
    [Google Scholar]
  118. DunawayS. OdinR. ZhouL. JiL. ZhangY. KadekaroA.L. Natural antioxidants: Multiple mechanisms to protect skin from solar radiation.Front. Pharmacol.2018939210.3389/fphar.2018.0039229740318
    [Google Scholar]
  119. KimK.B. KimY.W. LimS.K. RohT.H. BangD.Y. ChoiS.M. LimD.S. KimY.J. BaekS.H. KimM.K. SeoH.S. KimM.H. KimH.S. LeeJ.Y. KacewS. LeeB.M. Risk assessment of zinc oxide, a cosmetic ingredient used as a UV filter of sunscreens.J. Toxicol. Environ. Health B Crit. Rev.201720315518210.1080/10937404.2017.129051628509652
    [Google Scholar]
  120. YaghoobiR. OmidianM. BagheraniN. Original article title: “Comparison of therapeutic efficacy of topical corticosteroid and oral zinc sulfate-topical corticosteroid combination in the treatment of vitiligo patients: A clinical trial”.BMC Dermatol.2011111710.1186/1471‑5945‑11‑721453467
    [Google Scholar]
  121. ToyranM. KaymakM. VezirE. HarmanciK. KayaA. GinişT. KöseG. KocabaşC.N. Trace element levels in children with atopic dermatitis.J. Investig. Allergol. Clin. Immunol.201222534134423101308
    [Google Scholar]
  122. KarabacakE. AydinE. KutluA. OzcanO. MuftuogluT. GunesA. DoganB. OzturkS. Erythrocyte zinc level in patients with atopic dermatitis and its relation to SCORAD index.Postepy Dermatol. Alergol.20165534935210.5114/ada.2016.6284127881941
    [Google Scholar]
  123. EhlayelM.S. BenerA. Risk factors of zinc deficiency in children with atopic dermatitis.Eur. Ann. Allergy Clin. Immunol.2020521182210.23822/EurAnnACI.1764‑1489.11431594297
    [Google Scholar]
  124. Zinc: Fact sheet for health professionals.Available from: https://ods.od.nih.gov/factsheets/Zinc-HealthProfessional/
  125. StrandT.A. MathisenM. Zinc – A scoping review for nordic nutrition recommendations 2023.Food Nutr. Res.2023676710.29219/fnr.v67.1036838084158
    [Google Scholar]
  126. GuptaR.K. GangoliyaS.S. SinghN.K. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains.J. Food Sci. Technol.201552267668410.1007/s13197‑013‑0978‑y25694676
    [Google Scholar]
  127. KumariS. GrayA.R. WebsterK. BaileyK. ReidM. KelvinK.A.H. TeyS.L. ChisholmA. BrownR.C. Does ‘activating’ nuts affect nutrient bioavailability?Food Chem.202031912652910.1016/j.foodchem.2020.12652932199146
    [Google Scholar]
  128. lvJ. AiP. LeiS. ZhouF. ChenS. ZhangY. Selenium levels and skin diseases: Systematic review and meta-analysis.J. Trace Elem. Med. Biol.20206212654810.1016/j.jtemb.2020.12654832497930
    [Google Scholar]
  129. SenguptaA. LichtiU.F. CarlsonB.A. RyscavageA.O. GladyshevV.N. YuspaS.H. HatfieldD.L. Selenoproteins are essential for proper keratinocyte function and skin development.PLoS One201058e1224910.1371/journal.pone.001224920805887
    [Google Scholar]
  130. NazıroğluM. YıldızK. TamtürkB. Erturanİ. ArceF.M. Selenium and psoriasis.Biol. Trace Elem. Res.20121501-33910.1007/s12011‑012‑9479‑522821504
    [Google Scholar]
  131. KieliszekM. Selenium–fascinating microelement, properties and sources in food.Molecules2019247129810.3390/molecules2407129830987088
    [Google Scholar]
  132. BjørklundG. ShanaidaM. LysiukR. AntonyakH. KlishchI. ShanaidaV. PeanaM. Selenium: An antioxidant with a critical role in anti-aging.Molecules20222719661310.3390/molecules2719661336235150
    [Google Scholar]
  133. KharaevaZ. GostovaE. LucaD.C. RaskovicD. KorkinaL. Clinical and biochemical effects of coenzyme Q10, vitamin E, and selenium supplementation to psoriasis patients.Nutrition200925329530210.1016/j.nut.2008.08.01519041224
    [Google Scholar]
  134. JobeiliL. RousselleP. BéalD. BlouinE. RousselA.M. DamourO. RachidiW. Selenium preserves keratinocyte stemness and delays senescence by maintaining epidermal adhesion.Aging20179112302231510.18632/aging.10132229176034
    [Google Scholar]
  135. GillH. WalkerG. Selenium, immune function and resistance to viral infections.Nutr. Diet.200865s3S41S4710.1111/j.1747‑0080.2008.00260.x
    [Google Scholar]
  136. CohenP.R. AndersonC.A. Topical selenium sulfide for the treatment of hyperkeratosis.Dermatol. Ther.20188463964610.1007/s13555‑018‑0259‑930203232
    [Google Scholar]
  137. DingR. FuC. ZhengY. BuJ. ShenE.X. The association between psoriasis and trace element serum levels and dietary intake: Results from USA national health and nutrition examination survey 2011–2014.Clin. Cosmet. Investig. Dermatol.2024171449145810.2147/CCID.S45040738911341
    [Google Scholar]
  138. DębniakT. BaszukP. DuchnikE. RowińskaK. JaniszewskaR.E. BoerM. KiedrowiczM. MarchlewiczM. WatolaD. FeherpatakyM. DerkaczR. DębniakA. MarciniakW. GołębiewskaK. LubińskiJ. ScottR.J. GronwaldJ. Selenium and arsenic levels, prevalence of common variants of genes involved in their metabolism, and Psoriasis disease.Biomedicines2024125108210.3390/biomedicines1205108238791044
    [Google Scholar]
  139. FavrotC. BealD. BlouinE. LecciaM.T. RousselA.M. RachidiW. Age-dependent protective effect of selenium against UVA irradiation in primary human keratinocytes and the associated DNA repair signature.Oxid. Med. Cell. Longev.201820181589543910.1155/2018/589543929682159
    [Google Scholar]
  140. CombsG.F.Jr. Selenium in global food systems.Br. J. Nutr.200185551754710.1079/BJN200028011348568
    [Google Scholar]
  141. TaitF.S.J. BaoY. BroadleyM.R. CollingsR. FordD. HeskethJ.E. HurstR. Selenium in human health and disease.Antioxid. Redox Signal.20111471337138310.1089/ars.2010.327520812787
    [Google Scholar]
  142. RosenfeldI. BeathO.A. Selenium: Geobotany, biochemistry, toxicity, and nutrition.Academic Press2013
    [Google Scholar]
  143. CudermanP. KreftI. GermM. KovačevičM. StibiljV. Selenium species in selenium-enriched and drought-exposed potatoes.J. Agric. Food Chem.200856199114912010.1021/jf801496918795781
    [Google Scholar]
  144. AntonyakH. IskraR. PanasN. LysiukR. In trace elements and minerals in health and longevity.ChamSpringer International Publishing2018
    [Google Scholar]
  145. Selenium: Fact sheet for health professionals.Available from: https://ods.od.nih.gov/factsheets/Selenium-HealthProfessional/
  146. BorkowG. Using copper to improve the well-being of the skin.Curr. Chem. Biol.2015828910210.2174/221279680966615022722385726361585
    [Google Scholar]
  147. VaresiA. CampagnoliL. PierellaE. PicciniB.G. CarraraA. RicevutiG. ScassellatiC. BonviciniC. PascaleA. The role of antioxidants in the interplay between oxidative stress and senescence.Antioxidants20221171224
    [Google Scholar]
  148. QiaoL. LiuB. GiraultH.H. Antioxidant promotion of tyrosine nitration in the presence of copper(ii).Metallomics20135668669210.1039/c3mt00048f23689680
    [Google Scholar]
  149. AltobelliG.G. NoordenV.S. BalatoA. CiminiV. Copper/Zinc superoxide dismutase in human skin: Current knowledge.Front. Med.2020718310.3389/fmed.2020.0018332478084
    [Google Scholar]
  150. ShternO.N. ChuminK. CohenG. BorkowG. Increased pro-collagen 1, elastin, and TGF-β1 expression by copper ions in an ex-vivo human skin model.J. Cosmet. Dermatol.20201961522152710.1111/jocd.1318631603269
    [Google Scholar]
  151. ShternO.N. ChuminK. SilbersteinE. BorkowG. Copper ions ameliorated thermal burn-induced damage in ex vivo human skin organ culture.Skin Pharmacol. Physiol.202134631732710.1159/00051719434237749
    [Google Scholar]
  152. WangT.L. ZhouZ.F. LiuJ.F. HouX.D. ZhouZ. DaiY.L. HouZ.Y. ChenF. ZhengL.P. Donut-like MOFs of copper/nicotinic acid and composite hydrogels with superior bioactivity for rh-bFGF delivering and skin wound healing.J. Nanobiotechnology202119127510.1186/s12951‑021‑01014‑z34503490
    [Google Scholar]
  153. PickartL. SolteroV.J.M. MargolinaA. The human tripeptide GHK-Cu in prevention of oxidative stress and degenerative conditions of aging: Implications for cognitive health.Oxid. Med. Cell. Longev.201220121810.1155/2012/32483222666519
    [Google Scholar]
  154. KussainovaA. KassymL. BekenovaN. AkhmetovaA. GlushkovaN. KussainovA. UrazalinaZ. YurkovskayaO. SmailY. PakL. SemenovaY. Gene polymorphisms and serum levels of BDNF and CRH in vitiligo patients.PLoS One2022177e027171910.1371/journal.pone.027171935905107
    [Google Scholar]
  155. AggarwalJ. SinghA. GuptaS. PrasadR. Copper and zinc status in psoriasis: Correlation with severity.Indian J. Clin. Biochem.202136112012310.1007/s12291‑019‑00870‑933505136
    [Google Scholar]
  156. NamaziN. DadrasS.M. YounespourS. Comparative analysis of serum copper, iron, ceruloplasmin, and transferrin levels in mild and severe psoriasis vulgaris in iranian patients.Indian Dermatol. Online J.20178425025310.4103/idoj.IDOJ_230_1628761840
    [Google Scholar]
  157. ChenX. PengC. LeiL. SuJ. ChenJ. ChenW. Abnormal serum copper and zinc levels in patients with psoriasis: A meta-analysis.Indian J. Dermatol.201964322423010.4103/ijd.IJD_475_1831148862
    [Google Scholar]
  158. DodevskaM. MarkovicK.J. SofrenicI. TesevicV. JankovicM. DjordjevicB. IvanovicN.D. Similarities and differences in the nutritional composition of nuts and seeds in Serbia.Front. Nutr.20229100312510.3389/fnut.2022.100312536185649
    [Google Scholar]
  159. GonçalvesB. PintoT. AiresA. MoraisM.C. BacelarE. AnjosR. CardosoF.J. OliveiraI. VilelaA. CosmeF. Composition of nuts and their potential health benefits—An overview.Foods202312594210.3390/foods1205094236900459
    [Google Scholar]
  160. JugdaohsinghR. WatsonA.I.E. PedroL.D. PowellJ.J. The decrease in silicon concentration of the connective tissues with age in rats is a marker of connective tissue turnover.Bone201575404810.1016/j.bone.2015.02.00425687224
    [Google Scholar]
  161. NielsenF.H. Update on the possible nutritional importance of silicon.J. Trace Elem. Med. Biol.201428437938210.1016/j.jtemb.2014.06.02425081495
    [Google Scholar]
  162. MartinK.R. Silicon: The health benefits of a metalloid.Met. Ions Life Sci.20131345147310.1007/978‑94‑007‑7500‑8_1424470100
    [Google Scholar]
  163. XiaoL. MochizukiM. NakaharaT. MiwaN. Hydrogen-generating silica material prevents UVA-ray-induced cellular oxidative stress, cell death, collagen loss and melanogenesis in human cells and 3D skin equivalents.Antioxidants20211017610.3390/antiox1001007633430157
    [Google Scholar]
  164. GonzálezM.P.U. RamosL.M.C. VerdínG.L.D. ColmeneroL.G.H. RochaT.F. ContrerasG.R. GarcíaG.G. de la TorreR.A. DelgadoJ. CastellanoL.E. NoveloM.B. Gel dressing based on type I collagen modified with oligourethane and silica for skin wound healing.Biomed. Mater.202217404500510.1088/1748‑605X/ac6b7035483345
    [Google Scholar]
  165. ArriagadaF. NonellS. MoralesJ. Silica-based nanosystems for therapeutic applications in the skin.Nanomedicine201914162243226710.2217/nnm‑2019‑005231411537
    [Google Scholar]
  166. ArriagadaF. MoralesJ. Limitations and opportunities in topical drug delivery: Interaction between silica nanoparticles and skin barrier.Curr. Pharm. Des.201925445546610.2174/138161282566619040412150730947656
    [Google Scholar]
  167. HooshmandS. MollazadehS. AkramiN. GhanadM. FiqiE.A. BainoF. NazarnezhadS. KargozarS. Mesoporous silica nanoparticles and mesoporous bioactive glasses for wound management: From skin regeneration to cancer therapy.Materials20211412333710.3390/ma1412333734204198
    [Google Scholar]
  168. LioD.C.S. LiuC. OoM.M.S. WirajaC. TeoM.H.Y. ZhengM. ChewS.W.T. WangX. XuC. Transdermal delivery of small interfering RNAs with topically applied mesoporous silica nanoparticles for facile skin cancer treatment.Nanoscale20191136170411705110.1039/C9NR06303J31506653
    [Google Scholar]
  169. CândidoM.T. AriedeB.M. LimaV.F. GuedesS.L. VelascoR.M.V. BabyR.A. RosadoC. Dietary supplements and the skin: Focus on photoprotection and antioxidant activity—A review.Nutrients2022146124810.3390/nu1406124835334905
    [Google Scholar]
  170. SripanyakornS. JugdaohsinghR. DissayabutrW. AndersonS.H.C. ThompsonR.P.H. PowellJ.J. The comparative absorption of silicon from different foods and food supplements.Br. J. Nutr.2009102682583410.1017/S000711450931175719356271
    [Google Scholar]
  171. PowellJ.J. McNaughtonS.A. JugdaohsinghR. AndersonS.H.C. DearJ. KhotF. MowattL. GleasonK.L. SykesM. ThompsonR.P.H. SmithB.C. HodsonM.J. A provisional database for the silicon content of foods in the United Kingdom.Br. J. Nutr.200594580481210.1079/BJN2005154216277785
    [Google Scholar]
  172. ValentinoL.A. Heavy metal FIX for Christmas wounds.Blood20061089288810.1182/blood‑2006‑08‑041053
    [Google Scholar]
  173. BjørklundG. PeanaM. DadarM. LozynskaI. ChirumboloS. LysiukR. LenchykL. UpyrT. SeverinB. The role of B vitamins in stroke prevention.Crit. Rev. Food Sci. Nutr.202262205462547510.1080/10408398.2021.188534133724098
    [Google Scholar]
  174. AeberliH.I. ThankachanP. BoseB. KurpadA.V. Increased risk of iron deficiency and reduced iron absorption but no difference in zinc, vitamin A or B-vitamin status in obese women in India.Eur. J. Nutr.20165582411242110.1007/s00394‑015‑1048‑126454657
    [Google Scholar]
  175. WrightJ.A. RichardsT. SraiS.K.S. The role of iron in the skin and cutaneous wound healing.Front. Pharmacol.2014515610.3389/fphar.2014.0015625071575
    [Google Scholar]
  176. LinC.S. ChanL.Y. WangJ.H. ChangC.H. Diagnosis and treatment of female alopecia: Focusing on the iron deficiency-related alopecia.Tzu-Chi Med. J.202335432232810.4103/tcmj.tcmj_95_2338035053
    [Google Scholar]
  177. AshiqueS. SandhuN.K. HaqueS.N. KoleyK. A systemic review on topical marketed formulations, natural products, and oral supplements to prevent androgenic alopecia: A review.Nat. Prod. Bioprospect.202010634536510.1007/s13659‑020‑00267‑933011954
    [Google Scholar]
  178. BhootH.R. ZamwarU.M. ChakoleS. AnjankarA. Dietary sources, bioavailability, and functions of ascorbic acid (Vitamin C) and its role in the common cold, tissue healing, and iron metabolism.Cureus20231511e4930810.7759/cureus.4930838146585
    [Google Scholar]
  179. BothwellT.H. BaynesR.D. MacFarlaneB.J. MacPhailA.P. Nutritional iron requirements and food iron absorption.J. Intern. Med.1989226535736510.1111/j.1365‑2796.1989.tb01409.x2681512
    [Google Scholar]
  180. BrolsmaB.E. RuttenD.R. WijngaardenV.J. ZwaluwN. VeldeN. GrootD.L. Dietary sources of vitamin B-12 and their association with vitamin B-12 status markers in healthy older adults in the B-PROOF study.Nutrients2015797781779710.3390/nu709536426389945
    [Google Scholar]
  181. AvilaD.S. PuntelR.L. AschnerM. Interrelations between essential metal ions and human diseases. SigelA. SigelH. SigelR.K.O. DordrechtSpringer Netherlands201319922710.1007/978‑94‑007‑7500‑8_7
    [Google Scholar]
  182. BajJ. FliegerW. BarbachowskaA. KowalskaB. FliegerM. FormaA. TeresińskiG. PortincasaP. BuszewiczG. BüchnerR.E. FliegerJ. Consequences of disturbing manganese homeostasis.Int. J. Mol. Sci.202324191495910.3390/ijms24191495937834407
    [Google Scholar]
  183. ChenP. BornhorstJ. AschnerM. Manganese metabolism in humans.Front. Biosci.20182391655167910.2741/466529293455
    [Google Scholar]
  184. LiL. YangX. The essential element manganese, oxidative stress, and metabolic diseases: Links and interactions.Oxid. Med. Cell. Longev.201820181758070710.1155/2018/758070729849912
    [Google Scholar]
  185. AyodeleJ. BayeroA.S. Manganese concentrations in hair and fingernail of some Kano inhabitants.J. Appl. Sci. Env. Manag.201014
    [Google Scholar]
  186. StoverK. FukuyamaT. YoungA.T. DanieleM.A. OberleyR. CrapoJ.D. BäumerW. Topically applied manganese-porphyrins BMX-001 and BMX-010 display a significant anti-inflammatory response in a mouse model of allergic dermatitis.Arch. Dermatol. Res.20163081071172110.1007/s00403‑016‑1693‑027709295
    [Google Scholar]
  187. ChenA. HustedS. SaltD.E. SchjoerringJ.K. PerssonD.P. The intensity of manganese deficiency strongly affects root endodermal suberization and ion homeostasis.Plant Physiol.2019181272974210.1104/pp.19.0050731399491
    [Google Scholar]
  188. FinleyJ.W. DavisC.D. Manganese deficiency and toxicity: Are high or low dietary amounts of manganese cause for concern?Biofactors1999101152410.1002/biof.552010010210475586
    [Google Scholar]
  189. DanailovaY. VelikovaT. NikolaevG. MitovaZ. ShinkovA. GagovH. KonakchievaR. Nutritional management of thyroiditis of hashimoto.Int. J. Mol. Sci.2022239514410.3390/ijms2309514435563541
    [Google Scholar]
  190. NCT05431959Evaluation of the effect of sulphur mineral, thermal water on skin microbiome in plaque psoriasis, a pilot study.Available from: https://clinicaltrials.gov/study/NCT05431959?cond=Dermatologic%20Diseaseterm=magnesiumrank=8 2022
  191. DarlenskiR. BogdanovI. KachevaM. ZhelevaD. DemerdjievaZ. HristakievaE. FluhrJ.W. TsankovN. Disease severity, patient-reported outcomes and skin hydration improve during balneotherapy with hydrocarbonate- and sulphur-rich water of psoriasis.J. Eur. Acad. Dermatol. Venereol.2021353e196e19810.1111/jdv.1690832869298
    [Google Scholar]
  192. KalmanD. HewlingsS. A randomized double-blind evaluation of a novel biotin and silicon ingredient complex on the hair and skin of healthy women.J. Clin. Exp. Dermatol. Res.202112115
    [Google Scholar]
  193. NCT06010745Effectiveness of a novel dietary ingredient on hair growth and skin's appearance.Available from: https://clinicaltrials.gov/study/NCT06010745?cond=Dermatologic%20Diseaseterm=siliconrank=3 2023
  194. BorowskaS. BrzóskaM.M. Metals in cosmetics: Implications for human health.J. Appl. Toxicol.201535655157210.1002/jat.312925809475
    [Google Scholar]
  195. MatthewsN. FitchK. LiW. MorrisJ. ChristianiD. QureshiA. ChoE. Exposure to trace elements and risk of skin cancer: A systematic review of epidemiologic studies.Canc. Epidemiol. Biomark. Prev.201928321
    [Google Scholar]
  196. GillisB.S. ArbievaZ. GavinI.M. Analysis of lead toxicity in human cells.BMC Genomics201213134410.1186/1471‑2164‑13‑34422839698
    [Google Scholar]
  197. JigangC. RuiF. YanniW. Association of blood cadmium level with nonmelanoma skin cancer: A cross-sectional study.ResearchGate2022
    [Google Scholar]
  198. RomashinD. ArzumanianV. PoverennayaE. VarshaverA. LuzginaN. RusanovA. Evaluation of Cd-induced cytotoxicity in primary human keratinocytes.Hum. Exp. Toxicol.2024430960327123122445810.1177/0960327123122445838174414
    [Google Scholar]
  199. AfridiH.I. AliA. BhattiM. UnarA. ChanihoonG.Q. TalpurF.N. KaziT.G. ArainF.A. Effect of lead on the skin and health of female dermatitis patients through cosmetics.J. Ayub Med. Coll. Abbottabad2023351889410.55519/JAMC‑01‑1144236849384
    [Google Scholar]
  200. BastianszA. EwaldJ. SaldañaR.V. RiosS.A. BasuN. A systematic review of mercury exposures from skin-lightening products.Environ. Health Perspect.20221301111600210.1289/EHP1080836367779
    [Google Scholar]
  201. ThomasP. RueffF. PrzybillaB. Airborne allergic contact dermatitis from mercury in a chemistry student.Contact Dermat.199737629729810.1111/j.1600‑0536.1997.tb02470.x9455636
    [Google Scholar]
  202. DinehartS.M. DillardR. RaimerS.S. DivenS. CobosR. PupoR. Cutaneous manifestations of acrodynia (pink disease).Arch. Dermatol.1988124110710910.1001/archderm.1988.016700100710233337532
    [Google Scholar]
  203. DavisR.G. Hazards of tattooing: Report of two cases of dermatitis caused by sensitization to mercury (cinnabar).U. S. Armed Forces Med. J.19601126128013814514
    [Google Scholar]
  204. DescampsV. LejoyeuxF. MarckY. BouscaratF. CrickxB. BelaichS. Erysipelas-like mercury exanthem.Contact Dermat.199736527727810.1111/j.1600‑0536.1997.tb00228.x9197976
    [Google Scholar]
  205. BradberryS.M. FeldmanM.A. BraithwaiteR.A. WebbS.W. ValeJ.A. Elemental mercury-induced skin granuloma: A case report and review of the literature.J. Toxicol. Clin. Toxicol.199634220921610.3109/155636596090137728618256
    [Google Scholar]
  206. ArgosM. KalraT. PierceB.L. ChenY. ParvezF. IslamT. AhmedA. HasanR. HasanK. SarwarG. LevyD. SlavkovichV. GrazianoJ.H. RathouzP.J. AhsanH. A prospective study of arsenic exposure from drinking water and incidence of skin lesions in Bangladesh.Am. J. Epidemiol.2011174218519410.1093/aje/kwr06221576319
    [Google Scholar]
  207. HsuL.I. ChenG.S. LeeC.H. YangT.Y. ChenY.H. Use of arsenic-induced palmoplantar hyperkeratosis and skin cancers to predict risk of subsequent internal malignancy.American J. Epidemiol.20131773202212
    [Google Scholar]
  208. SamantaG. SharmaR. RoychowdhuryT. ChakrabortiD. Arsenic and other elements in hair, nails, and skin-scales of arsenic victims in West Bengal, India.Sci. Total Environ.20043261-3334710.1016/j.scitotenv.2003.12.00615142763
    [Google Scholar]
  209. MalajianD. BelsitoD.V. Cutaneous delayed-type hypersensitivity in patients with atopic dermatitis.J. Am. Acad. Dermatol.201369223223710.1016/j.jaad.2013.03.01223583066
    [Google Scholar]
  210. JensenP. ThyssenJ.P. JohansenJ.D. SkareL. MennéT. LidénC. Occupational hand eczema caused by nickel and evaluated by quantitative exposure assessment.Contact Dermat.2011641323610.1111/j.1600‑0536.2010.01819.x
    [Google Scholar]
  211. ThyssenJ.P. MennéT. JohansenJ.D. Identification of metallic items that caused nickel dermatitis in Danish patients.Contact Dermat.201063315115610.1111/j.1600‑0536.2010.01767.x20690938
    [Google Scholar]
  212. NiuQ. Overview of the relationship between aluminum exposure and health of human being.Adv. Exp. Med. Biol.2018109113110.1007/978‑981‑13‑1370‑7_130315446
    [Google Scholar]
  213. GundackerC. ForsthuberM. SzigetiT. KakucsR. MustielesV. FernandezM.F. BengtsenE. VogelU. HougaardK.S. SaberA.T. Lead (Pb) and neurodevelopment: A review on exposure and biomarkers of effect (BDNF, HDL) and susceptibility.Int. J. Hyg. Environ. Health202123811385510.1016/j.ijheh.2021.11385534655857
    [Google Scholar]
  214. CamposM.M. TonuciH. SilvaS.M. de S AltoéB. Carvalhod.D. KronkaE.A. PereiraA.M. BertoniB.W. de C FrançaS. MirandaC.E. Determination of lead content in medicinal plants by pre-concentration flow injection analysis-flame atomic absorption spectrometry.Phytochem. Anal.200920644544910.1002/pca.114519609903
    [Google Scholar]
  215. NordbergF.G. FowlerA.B. NordbergM. FribergL. Handbook on the toxicology of metal.3rd Ed.Academic Press20079098
    [Google Scholar]
  216. SalehA.I. EnaziA.S. ShinwariN. Assessment of lead in cosmetic products.Regul. Toxicol. Pharmacol.200954210511310.1016/j.yrtph.2009.02.00519250956
    [Google Scholar]
  217. PiccininiP. PiechaM. TorrentS.F. European survey on the content of lead in lip products.J. Pharm. Biomed. Anal.20137622523310.1016/j.jpba.2012.11.04723348610
    [Google Scholar]
  218. KhalidA. BukhariI.H. RiazM. RehmanG. AinQ.U. BokhariT.H. RasoolN. ZubairM. MunirS. Determination of lead, cadmium, chromium and nickel in different brands of lipsticks.Int. J. Bio. Pharm. Allied Sci.2013210031009
    [Google Scholar]
  219. AshbanA.R.M. AslamM. ShahA.H. Kohl (surma): A toxic traditional eye cosmetic study in Saudi Arabia.Public Health2004118429229810.1016/j.puhe.2003.05.00115121438
    [Google Scholar]
  220. LekouchN. SedkiA. NejmeddineA. GamonS. Lead and traditional Moroccan pharmacopoeia.Sci. Total Environ.20012801-3394310.1016/S0048‑9697(01)00801‑411763271
    [Google Scholar]
  221. WaalkesM.P. MisraR.R. Cadmium carcinogenicity and genotoxicity. Toxicology of Metals. ChangL. Boca Raton, FL, USACRC Press1996231244
    [Google Scholar]
  222. OmolaoyeJ.A. UzairuA. GimbaC.E. Heavy metal assessment of some eye shadow products imported into Nigeria from China.Arch. Appl. Sci. Res.201027684
    [Google Scholar]
  223. BorawskaM.H. SochaK. SoroczyńskaJ. WiniarskaI.M. PełszyńskaA. Assessment of cadmium and lead content in natural bee honey from the Podlasie region.Bromatol. Chem. Toksykol.201245775779
    [Google Scholar]
  224. PalmerR.B. GodwinD.A. McKinneyP.E. Transdermal kinetics of a mercurous chloride beauty cream: An in vitro human skin analysis.J. Toxicol. Clin. Toxicol.200038770170710.1081/CLT‑10010238311192457
    [Google Scholar]
  225. DickensonC.A. WoodruffT.J. StotlandN.E. DobracaD. DasR. Elevated mercury levels in pregnant woman linked to skin cream from Mexico.Am. J. Obstet. Gynecol.20132092e4e510.1016/j.ajog.2013.05.03023685000
    [Google Scholar]
  226. LiawF.Y. ChenW.L. KaoT.W. ChangY.W. HuangC.F. Exploring the link between cadmium and psoriasis in a nationally representative sample.Sci. Rep.201771172310.1038/s41598‑017‑01827‑928496169
    [Google Scholar]
  227. MuczyńskaW.M. SochaK. SoroczyńskaJ. NiczyporukM. BorawskaM.H. Cadmium, lead and mercury in the blood of psoriatic and vitiligo patients and their possible associations with dietary habits.Sci. Total Environ.202175714396710.1016/j.scitotenv.2020.14396733302005
    [Google Scholar]
  228. KarlssonK. ViklanderM. ScholesL. RevittM. Heavy metal concentrations and toxicity in water and sediment from stormwater ponds and sedimentation tanks.J. Hazard. Mater.20101781-361261810.1016/j.jhazmat.2010.01.12920153579
    [Google Scholar]
  229. WeldonM.M. SmolinskiM.S. MaroufiA. HastyB.W. GillissD.L. BoulangerL.L. BalluzL.S. DuttonR.J. Mercury poisoning associated with a Mexican beauty cream.West. J. Med.20001731151810.1136/ewjm.173.1.1510903281
    [Google Scholar]
  230. AbdullaN.N. HamidiS. YounisM.Z. ParkashJ. Consumer awarness of health risks of arsenic, cadmium, chromium and lead present in cosmetic and personal care products in Dubai.J. Community Med. Health Educ.20133216
    [Google Scholar]
  231. MathesonD.S. ClarksonT.W. GelfandE.W. Mercury toxicity (acrodynia) induced by long-term injection of gammaglobulin.J. Pediatr.198097115315510.1016/S0022‑3476(80)80159‑46155462
    [Google Scholar]
  232. SalehA.I. Potential health consequences of applying mercury-containing skin-lightening creams during pregnancy and lactation periods.Int. J. Hyg. Environ. Health20162194-546847410.1016/j.ijheh.2016.03.00227009692
    [Google Scholar]
  233. PigattoP.D. FerrucciS.M. BrambillaL. GuzziG. Alopecia areata and toxic metals.Skin Appendage Disord.20206317717910.1159/00050729632656240
    [Google Scholar]
  234. LamC.D. FitzsimonsE.J. DouglasW.S. Alopecia after immunoglobulin infusion.Lancet.198718547143610.1016/S0140‑6736(87)90627‑1
    [Google Scholar]
  235. LaraP.I. CastilloM.M. PérezQ.J.C. MendozaA.M.G. CachT.F. LimónV.O.L. MontalvoG.E.A. ZavalaH.A. Arsenic exposure: A public health problem leading to several cancers.Regul. Toxicol. Pharmacol.202011010453910.1016/j.yrtph.2019.10453931765675
    [Google Scholar]
  236. FattahA.A. PingitoreN.E.Jr. Low levels of toxic elements in Dead Sea black mud and mud-derived cosmetic products.Environ. Geochem. Health200931448749210.1007/s10653‑008‑9201‑x18688731
    [Google Scholar]
  237. MartinezV.D. SantosB.D.D. VucicE.A. LamS. LamW.L. Induction of human squamous cell-type carcinomas by arsenic.J. Skin Cancer201120111910.1155/2011/45415722175027
    [Google Scholar]
  238. DrenovskaK. ShahidM. VassilevaS. Nickel and skin: From allergy to autoimmunity.Endocr. Metab. Immune Disord. Drug Targ.20202071032104010.2174/187153032066619123111543731889504
    [Google Scholar]
  239. AhlströmM.G. ThyssenJ.P. WennervaldtM. MennéT. JohansenJ.D. Nickel allergy and allergic contact dermatitis: A clinical review of immunology, epidemiology, exposure, and treatment.Contact Dermat.201981422724110.1111/cod.1332731140194
    [Google Scholar]
  240. CorazzaM. BaldoF. PagnoniA. MisciosciaR. VirgiliA. Measurement of nickel, cobalt and chromium in toy make-up by atomic absorption spectroscopy.Acta Derm. Venereol.200989213013319325995
    [Google Scholar]
  241. KlotzK. WeistenhöferW. NeffF. HartwigA. Thrielv.C. DrexlerH. The health effects of aluminum exposure.Dtsch. Arztebl. Int.20171143965365929034866
    [Google Scholar]
  242. BendJ.R. HattanD.G. KawamuraY. KnaapA.G. KuznesofP.M. LarsenJ.C. WHO technical report series: Evaluation of certain food additives.World Health Organ. Tech. Rep. Ser.20119281156
    [Google Scholar]
  243. AyazA. ErogluI.E. Is aluminum exposure a risk factor for neurological disorders?J. Res. Med. Sci.20182315110.4103/jrms.JRMS_921_1730057635
    [Google Scholar]
  244. TaiwoO.A. Diffuse parenchymal diseases associated with aluminum use and primary aluminum production.J. Occup. Environ. Med.2014565S71S7210.1097/JOM.000000000000005424806728
    [Google Scholar]
  245. GuillardO. FauconneauB. OlichonD. DedieuG. DeloncleR. Hyperaluminemia in a woman using an aluminum-containing antiperspirant for 4 years.Am. J. Med.20041171295695910.1016/j.amjmed.2004.07.04715629736
    [Google Scholar]
  246. DarbreP.D. BakirA. IskakovaE. Effect of aluminium on migratory and invasive properties of MCF-7 human breast cancer cells in culture.J. Inorg. Biochem.201312824524910.1016/j.jinorgbio.2013.07.00423896199
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673348175250214054101
Loading
/content/journals/cmc/10.2174/0109298673348175250214054101
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test