Skip to content
2000
Volume 32, Issue 29
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Introduction

Fustin, a photogenic flavanol found in the plant , has been involved in multiple disease ailments and has a beneficial pharmacological effect and a history of use in traditional medicine. The present research aimed to study the impact of fustin on scopolamine (SCOP)-induced memory impairment and neurodegeneration by modulating neuroinflammation and neurotransmitters in rats.

Methods

A total of 30 healthy wistar rats were allocated into five groups (n=6). Group I- served as control and received saline solution (1mL/kg i.p.), group -II- fustin (100 mg/kg, orally), group -III -SCOP (1 mg/kg, i.p.), and group -IV and V were given fustin (50 and 100 mg/kg/p.o.) with SCOP (1 mg/kg, i.p.) for 14-days. After 14 days, 2 hours after SCOP injection, the Y-maze and Morris water maze (MWM) tests were performed. After behavioral tests rats were subsequently euthanized, and brain supernatants were used to estimate choline-acetyltransferase (ChAT), acetylcholinesterase (AChE), antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH)], and total protein, oxidative stress markers [nitrate and malondialdehyde (MDA)], pro-inflammatory markers [tumor necrosis factor (TNF-α), and Interleukins-1β (IL-1β) and IL-6]. Also, neurotransmitters such as serotonin (5-HT), dopamine (DA), ϒ-amino butyric acid (GABA), acetylcholine (Ach), and noradrenaline (NA) contents were performed.

Results

Fustin exhibited substantial behavioral improvement in the Y-maze measures spontaneous alterations percentage (SA%) and decreased latency time following the acquisition and prolonged time spent in the probe trial in the MWM test. Moreover, fustin inhibits enhanced neuroinflammatory cytokines and oxidative stress markers and improves the neurotransmitters.

Conclusion

The findings of this study suggest that fustin inhibits SCOP impact on cognitive abilities in rats. The present investigation demonstrates that fustin, a potent phytochemical, effectively mitigated the behavioral and physiological changes induced by SCOP in rats. This was primarily achieved by modulating the levels of inflammatory response and neurotransmitters.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673330002241015085330
2024-10-29
2025-09-11
Loading full text...

Full text loading...

References

  1. ChoeD.J. AhnH.Y. KimY.W. KimT.H. KimM. ChoY.S. Improvement effect of Stachys sieboldii MIQ. According to mixing ratio of calcium on memory impairment in scopolamine-induced dementia rats.J. Life Sci.201626781281810.5352/JLS.2016.26.7.812
    [Google Scholar]
  2. MuhammadT. AliT. IkramM. KhanA. AlamS.I. KimM.O. Melatonin rescue oxidative stress-mediated neuroinflammation/ neurodegeneration and memory impairment in scopolamine-induced amnesia mice model.J. Neuroimmune Pharmacol.201914227829410.1007/s11481‑018‑9824‑330478761
    [Google Scholar]
  3. ChoiJ.H. LeeE.B. JangH.H. ChaY.S. ParkY.S. LeeS.H. Allium hookeri Extracts improve scopolamine-induced cognitive impairment via activation of the cholinergic system and anti-neuroinflammation in mice.Nutrients2021138289010.3390/nu1308289034445062
    [Google Scholar]
  4. LazarovO. MattsonM.P. PetersonD.A. PimplikarS.W. van PraagH. When neurogenesis encounters aging and disease.Trends Neurosci.2010331256957910.1016/j.tins.2010.09.00320961627
    [Google Scholar]
  5. PrakashA. KalraJ. ManiV. RamasamyK. MajeedA.B.A. Pharmacological approaches for Alzheimer’s disease: Neurotransmitter as drug targets.Expert Rev. Neurother.2015151537110.1586/14737175.2015.98870925495260
    [Google Scholar]
  6. PerrinR.J. FaganA.M. HoltzmanD.M. Multimodal techniques for diagnosis and prognosis of Alzheimer’s disease.Nature2009461726691692210.1038/nature0853819829371
    [Google Scholar]
  7. GrahamW.V. Bonito-OlivaA. SakmarT.P. Update on Alzheimer’s disease therapy and prevention strategies.Annu. Rev. Med.201768141343010.1146/annurev‑med‑042915‑10375328099083
    [Google Scholar]
  8. KimY. KimJ. HeM. LeeA. ChoE. Apigenin ameliorates scopolamine-induced cognitive dysfunction and neuronal damage in mice.Molecules20212617519210.3390/molecules2617519234500626
    [Google Scholar]
  9. CitronM. Alzheimer’s disease: Strategies for disease modification.Nat. Rev. Drug Discov.20109538739810.1038/nrd289620431570
    [Google Scholar]
  10. LepetaK. LourencoM.V. SchweitzerB.C. Martino AdamiP.V. BanerjeeP. Catuara-SolarzS. de La Fuente RevengaM. GuillemA.M. HaidarM. IjomoneO.M. NadorpB. QiL. PereraN.D. RefsgaardL.K. ReidK.M. SabbarM. SahooA. SchaeferN. SheeanR.K. SuskaA. VermaR. VicidominiC. WrightD. ZhangX.D. SeidenbecherC. Synaptopathies: Synaptic dysfunction in neurological disorders - a review from students to students.J. Neurochem.2016138678580510.1111/jnc.1371327333343
    [Google Scholar]
  11. Gąssowska-DobrowolskaM. ChlubekM. KolasaA. TomasiakP. KorbeckiJ. SkowrońskaK. TarnowskiM. MasztalewiczM. Baranowska-BosiackaI. Microglia and astroglia - the potential role in neuroinflammation induced by pre- and neonatal exposure to lead (Pb).Int. J. Mol. Sci.20232412990310.3390/ijms2412990337373050
    [Google Scholar]
  12. SweeneyM.D. KislerK. MontagneA. TogaA.W. ZlokovicB.V. The role of brain vasculature in neurodegenerative disorders.Nat. Neurosci.201821101318133110.1038/s41593‑018‑0234‑x30250261
    [Google Scholar]
  13. AranK.R. SinghS. Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease - a step towards mitochondria based therapeutic strategies.Aging and Health Research20233410016910.1016/j.ahr.2023.100169
    [Google Scholar]
  14. BajoR. PusilS. LópezM.E. CanuetL. PeredaE. OsipovaD. MaestúF. PekkonenE. Scopolamine effects on functional brain connectivity: A pharmacological model of Alzheimer’s disease.Sci. Rep.201551974810.1038/srep0974826130273
    [Google Scholar]
  15. NahataA. PatilU.K. DixitV.K. Effect of Evolvulus alsinoides Linn. on learning behavior and memory enhancement activity in rodents.Phytother. Res.201024448649310.1002/ptr.293219610035
    [Google Scholar]
  16. SethiyaN.K. NahataA. DixitV.K. MishraS.H. Cognition boosting effect of Canscora decussata (a South Indian Shankhpushpi).Eur. J. Integr. Med.201241e113e12110.1016/j.eujim.2011.11.003
    [Google Scholar]
  17. EbertU. KirchW. Scopolamine model of dementia: Electroencephalogram findings and cognitive performance.Eur. J. Clin. Invest.1998281194494910.1046/j.1365‑2362.1998.00393.x9824440
    [Google Scholar]
  18. ChenB.H. ParkJ.H. LeeT.K. SongM. KimH. LeeJ.C. KimY.M. LeeC.H. HwangI.K. KangI.J. YanB.C. WonM.H. AhnJ.H. Melatonin attenuates scopolamine-induced cognitive impairment via protecting against demyelination through BDNF-TrkB signaling in the mouse dentate gyrus.Chem. Biol. Interact.201828581310.1016/j.cbi.2018.02.02329476728
    [Google Scholar]
  19. FanY. HuJ. LiJ. YangZ. XinX. WangJ. DingJ. GengM. Effect of acidic oligosaccharide sugar chain on scopolamine-induced memory impairment in rats and its related mechanisms.Neurosci. Lett.2005374322222610.1016/j.neulet.2004.10.06315663967
    [Google Scholar]
  20. ShabaniS. MirshekarM.A. Diosmin is neuroprotective in a rat model of scopolamine-induced cognitive impairment.Biomed. Pharmacother.20181081376138310.1016/j.biopha.2018.09.12730372840
    [Google Scholar]
  21. ParfenovaH. BasuroyS. BhattacharyaS. TcheranovaD. QuY. ReganR.F. LefflerC.W. Glutamate induces oxidative stress and apoptosis in cerebral vascular endothelial cells: Contributions of HO-1 and HO-2 to cytoprotection.Am. J. Physiol. Cell Physiol.20062905C1399C141010.1152/ajpcell.00386.200516371440
    [Google Scholar]
  22. FischerR. MaierO. Interrelation of oxidative stress and inflammation in neurodegenerative disease: Role of TNF.Oxid. Med. Cell. Longev.2015201511810.1155/2015/61081325834699
    [Google Scholar]
  23. ChoiW. JungH. KimK. LeeS. YoonS. ParkJ. KimS. CheonS. EoW. LeeS. Rhus verniciflua stokes against advanced cancer: A perspective from the Korean Integrative Cancer Center.J. Biomed. Biotechnol.201220121710.1155/2012/87427622174564
    [Google Scholar]
  24. KimJ.H. ShinY.C. KoS.G. Integrating traditional medicine into modern inflammatory diseases care: Multitargeting by Rhus verniciflua Stokes.Mediators Inflamm.2014201411710.1155/2014/15456125024508
    [Google Scholar]
  25. LiuC.S. NamT.G. HanM.W. AhnS. ChoiH.S. KimT.Y. ChunO.K. KooS.I. KimD.O. Protective effect of detoxified Rhus verniciflua stokes on human keratinocytes and dermal fibroblasts against oxidative stress and identification of the bioactive phenolics.Biosci. Biotechnol. Biochem.20137781682168810.1271/bbb.13023623924730
    [Google Scholar]
  26. AfzalM. Al-AbbasiF.A. KazmiI. ImamS.S. AlshehriS. GhoneimM.M. AlmalkiW.H. NadeemM.S. SayyedN. Fustin inhibits oxidative free radicals and inflammatory cytokines in cerebral cortex and hippocampus and protects cognitive impairment in streptozotocin-induced diabetic rats.ACS Chem. Neurosci.202112244587459710.1021/acschemneuro.1c0071234860003
    [Google Scholar]
  27. AlshehriS. AlGhamdiS.A. AlghamdiA.M. ImamS.S. MahdiW.A. AlmanieaM.A. HajjarB.M. Al-AbbasiF.A. SayyedN. KazmiI. Protective effect of fustin against adjuvant-induced arthritis through the restoration of proinflammatory response and oxidative stress.PeerJ202311e1553210.7717/peerj.1553237520245
    [Google Scholar]
  28. GilaniS.J. Bin-JumahM.N. Al-AbbasiF.A. NadeemM.S. AfzalM. SayyedN. KazmiI. Fustin ameliorates elevated levels of leptin, adiponectin, serum TNF-α, and intracellular oxidative free radicals in high-fat diet and streptozotocin-induced diabetic rats.ACS Omega2021640260982610710.1021/acsomega.1c0306834660970
    [Google Scholar]
  29. GilaniS.J. Bin-JumahM.N. Al-AbbasiF.A. NadeemM.S. ImamS.S. AlshehriS. AhmedM.M. GhoneimM.M. AfzalM. AlzareaS.I. SayyedN. KazmiI. Protective effect of fustin against ethanol-activated gastric ulcer via downregulation of biochemical parameters in rats.ACS Omega2022727232452325410.1021/acsomega.2c0134135847266
    [Google Scholar]
  30. JinC.H. ShinE.J. ParkJ.B. JangC.G. LiZ. KimM.S. KooK.H. YoonH.J. ParkS.J. ChoiW.C. YamadaK. NabeshimaT. KimH.C. Fustin flavonoid attenuates β-amyloid (1–42)-induced learning impairment.J. Neurosci. Res.200987163658367010.1002/jnr.2215919533734
    [Google Scholar]
  31. Bin-JumahM.N. GilaniS.J. AlabbasiA.F. Al-AbbasiF.A. AlGhamdiS.A. AlshehriO.Y. AlghamdiA.M. SayyedN. KazmiI. Protective effect of fustin against huntington’s disease in 3-nitropropionic treated rats via downregulation of oxidative stress and alteration in neurotransmitters and brain-derived neurotrophic factor activity.Biomedicines20221012302110.3390/biomedicines1012302136551777
    [Google Scholar]
  32. BawadoodA.S. Al-AbbasiF.A. AlghamdiA.M. AlqurashiM.M. SheikhR.A. AlzareaS.I. SayyedN. KazmiI. Fustin alleviates lipopolysaccharide-induced anxiety-depression-like performances by modulation of oxidative stress/neuroinflammatory markers/ NF-κB/caspase-3/BDNF expression in rodents.Eur. Rev. Med. Pharmacol. Sci.202428141943210.26355/eurrev_202401_3493138235894
    [Google Scholar]
  33. ParkB.C. LeeY.S. ParkH.J. KwakM.K. YooB.K. KimJ.Y. KimJ.A. Protective effects of fustin, a flavonoid from Rhus verniciflua Stokes, on 6-hydroxydopamine-induced neuronal cell death.Exp. Mol. Med.200739331632610.1038/emm.2007.3517603285
    [Google Scholar]
  34. AlGhamdiS.A. Al-AbbasiF.A. AlghamdiA.M. OmerA.B. AfzalO. AltamimiA.S.A. AlamriA. AlzareaS.I. AlmalkiW.H. KazmiI. Barbigerone prevents scopolamine-induced memory impairment in rats by inhibiting oxidative stress and acetylcholinesterase levels.R. Soc. Open Sci.202310423001310.1098/rsos.23001337063992
    [Google Scholar]
  35. KazmiI. Al-AbbasiF.A. AfzalM. Shahid NadeemM. AltaybH.N. Sterubin protects against chemically-induced Alzheimer’s disease by reducing biomarkers of inflammation- IL-6/ IL-β/ TNF-α and oxidative stress- SOD/MDA in rats.Saudi J. Biol. Sci.202330210356010.1016/j.sjbs.2023.10356036712184
    [Google Scholar]
  36. Jamal GilaniS. Nasser Bin-JumahM. Al-AbbasiF.A. Shahid NadeemM. AfzalM. SayyedN. KazmiI. Fustin ameliorates hyperglycemia in streptozotocin induced type-2 diabetes via modulating glutathione/Superoxide dismutase/Catalase expressions, suppress lipid peroxidation and regulates histopathological changes.Saudi J. Biol. Sci.202128126963697110.1016/j.sjbs.2021.07.07034866996
    [Google Scholar]
  37. MohapatraD. KanungoS. PradhanS.P. JenaS. PrustyS.K. SahuP.K. Captopril is more effective than Perindopril against aluminium chloride induced amyloidogenesis and AD like pathology.Heliyon202282e0893510.1016/j.heliyon.2022.e0893535243060
    [Google Scholar]
  38. AksozE. GocmezS.S. SahinT.D. AksitD. AksitH. UtkanT. The protective effect of metformin in scopolamine-induced learning and memory impairment in rats.Pharmacol. Rep.201971581882510.1016/j.pharep.2019.04.01531382167
    [Google Scholar]
  39. DjeuzongE. KandedaA.K. DjiogueS. StéphanieL. NguediaD. NgueguimF. DjientcheuJ.P. KouamouoJ. DimoT. Antiamnesic and neuroprotective effects of an aqueous extract of Ziziphus jujuba Mill. (Rhamnaceae) on scopolamine-induced cognitive impairments in rats.Evid. Based Complement. Alternat. Med.2021202111510.1155/2021/557716334422074
    [Google Scholar]
  40. EllmanG.L. CourtneyK.D. AndresV. FeatherstoneR.M. A new and rapid colorimetric determination of acetylcholinesterase activity.Biochem. Pharmacol.196172889510.1016/0006‑2952(61)90145‑913726518
    [Google Scholar]
  41. NagakannanP. ShivasharanB.D. ThippeswamyB.S. VeerapurV.P. Restoration of brain antioxidant status by hydroalcoholic extract of Mimusops elengi flowers in rats treated with monosodium glutamate.J. Environ. Pathol. Toxicol. Oncol.201231321322110.1615/JEnvironPatholToxicolOncol.v31.i3.3023339696
    [Google Scholar]
  42. MisraH.P. FridovichI. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase.J. Biol. Chem.1972247103170317510.1016/S0021‑9258(19)45228‑94623845
    [Google Scholar]
  43. AfzalM. AlzareaS. QuaA.M. KazmiI. ZafarA. ImamF. Al-HarbN.O. AlharK.S. AlruwailiN.K. Boswellic acid attenuates scopolamine-induced neurotoxicity and dementia in rats: Possible mechanism of action.Int. J. Pharmacol.20211749950510.3923/ijp.2021.499.505
    [Google Scholar]
  44. JaneczekM. GefenT. SamimiM. KimG. WeintraubS. BigioE. RogalskiE. MesulamM.M. GeulaC. Variations in acetylcholinesterase activity within human cortical pyramidal neurons across age and cognitive trajectories.Cereb. Cortex20182841329133710.1093/cercor/bhx04728334147
    [Google Scholar]
  45. TsikasD. Analysis of nitrite and nitrate in biological fluids by assays based on the Griess reaction: Appraisal of the Griess reaction in the l-arginine/nitric oxide area of research.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20078511-2517010.1016/j.jchromb.2006.07.05416950667
    [Google Scholar]
  46. KandedaA.K. TaiweG.S. MotoF.C.O. NgoupayeG.T. NkantchouaG.C.N. NjapdounkeJ.S.K. OmamJ.P.O. PaleS. KouemouN. Ngo BumE. Antiepileptogenic and neuroprotective effects of Pergularia daemia on pilocarpine model of epilepsy.Front. Pharmacol.2017844010.3389/fphar.2017.0044028713279
    [Google Scholar]
  47. SmithP.K. KrohnR.I. HermansonG.T. MalliaA.K. GartnerF.H. ProvenzanoM.D. FujimotoE.K. GoekeN.M. OlsonB.J. KlenkD.C. Measurement of protein using bicinchoninic acid.Anal. Biochem.19851501768510.1016/0003‑2697(85)90442‑73843705
    [Google Scholar]
  48. TangK.S. The cellular and molecular processes associated with scopolamine-induced memory deficit: A model of Alzheimer’s biomarkers.Life Sci.201923311669510.1016/j.lfs.2019.11669531351082
    [Google Scholar]
  49. AydinE. HritcuL. DoganG. HaytaS. BagciE. The effects of inhaled Pimpinella peregrina essential oil on scopolamine-induced memory impairment, anxiety, and depression in laboratory rats.Mol. Neurobiol.20165396557656710.1007/s12035‑016‑9693‑926768430
    [Google Scholar]
  50. ChavanR.S. SupalkarK.V. SadarS.S. VyawahareN.S. Animal models of Alzheimer’s disease: An origin of innovative treatments and insight to the disease’s etiology.Brain Res.2023181414844910.1016/j.brainres.2023.14844937302570
    [Google Scholar]
  51. GoverdhanP. SravanthiA. MamathaT. Neuroprotective effects of meloxicam and selegiline in scopolamine-induced cognitive impairment and oxidative stress.Int. J. Alzheimers Dis.201220121810.1155/2012/97401322536538
    [Google Scholar]
  52. ParkH.S. HwangE.S. ChoiG.Y. KimH.B. ParkK.S. SulJ.Y. HwangY. ChoiG.W. KimB.I. ParkH. MaengS. ParkJ.H. Sulforaphane enhances long-term potentiation and ameliorate scopolamine-induced memory impairment.Physiol. Behav.202123811346710.1016/j.physbeh.2021.11346734033847
    [Google Scholar]
  53. KraeuterA.K. GuestP.C. SarnyaiZ. The Y-maze for assessment of spatial working and reference memory in mice.Methods Mol. Biol.2019191610511110.1007/978‑1‑4939‑8994‑2_1030535688
    [Google Scholar]
  54. OmerA.B. AfzalO. AltamimiA.S.A. PatilS. AlGhamdiS.A. AlghamdiA.M. AlzareaS.I. AlmalkiW.H. KazmiI. Neuroprotective effect of barbaloin on streptozotocin-induced cognitive dysfunction in rats via inhibiting cholinergic and neuroinflammatory cytokines pathway-TNF-α/IL-1β/IL-6/NF-κB.ACS Omega2023888110811810.1021/acsomega.2c0827736872976
    [Google Scholar]
  55. HritcuL. CioancaO. HancianuM. Effects of lavender oil inhalation on improving scopolamine-induced spatial memory impairment in laboratory rats.Phytomedicine201219652953410.1016/j.phymed.2012.02.00222402245
    [Google Scholar]
  56. MaurerS.V. WilliamsC.L. The cholinergic system modulates memory and hippocampal plasticity via its interactions with non-neuronal cells.Front. Immunol.20178148910.3389/fimmu.2017.0148929167670
    [Google Scholar]
  57. TaoG. Min-HuaC. Feng-ChanX. YanC. TingS. Wei-QinL. Wen-KuiY. Changes of plasma acetylcholine and inflammatory markers in critically ill patients during early enteral nutrition: A prospective observational study.J. Crit. Care20195221922610.1016/j.jcrc.2019.05.00831108325
    [Google Scholar]
  58. BarnhamK.J. MastersC.L. BushA.I. Neurodegenerative diseases and oxidative stress.Nat. Rev. Drug Discov.20043320521410.1038/nrd133015031734
    [Google Scholar]
  59. SinghA. KukretiR. SasoL. KukretiS. Oxidative stress: A key modulator in neurodegenerative diseases.Molecules2019248158310.3390/molecules2408158331013638
    [Google Scholar]
  60. CobbC.A. ColeM.P. Oxidative and nitrative stress in neurodegeneration.Neurobiol. Dis.20158442110.1016/j.nbd.2015.04.02026024962
    [Google Scholar]
  61. SadraieS. KiasalariZ. RazavianM. AzimiS. SedighnejadL. Afshin-MajdS. BaluchnejadmojaradT. RoghaniM. Berberine ameliorates lipopolysaccharide-induced learning and memory deficit in the rat: Insights into underlying molecular mechanisms.Metab. Brain Dis.201934124525510.1007/s11011‑018‑0349‑530456649
    [Google Scholar]
  62. BrandesM.S. GrayN.E. NRF2 as a therapeutic target in neurodegenerative diseases.ASN Neuro202012175909141989978210.1177/175909141989978231964153
    [Google Scholar]
  63. BuendiaI. MichalskaP. NavarroE. GameiroI. EgeaJ. LeónR. Nrf2–ARE pathway: An emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases.Pharmacol. Ther.20161578410410.1016/j.pharmthera.2015.11.00326617217
    [Google Scholar]
  64. IsholaI. AwoyemiA. AfolayanG. Involvement of antioxidant system in the amelioration of scopolamine-induced memory impairment by grains of paradise (Aframomum melegueta K. Schum.) extract.Drug Res. (Stuttg.)201666945546310.1055/s‑0042‑10939127403576
    [Google Scholar]
  65. IsholaI.O. JacintaA.A. AdeyemiO.O. Cortico-hippocampal memory enhancing activity of hesperetin on scopolamine-induced amnesia in mice: Role of antioxidant defense system, cholinergic neurotransmission and expression of BDNF.Metab. Brain Dis.201934497998910.1007/s11011‑019‑00409‑030949953
    [Google Scholar]
  66. AjayiA.M. Ben-AzuB. GodsonJ.C. UmukoroS. Effect of spondias mombin fruit extract on scopolamine-induced memory impairment and oxidative stress in mice brain.J. Herbs Spices Med. Plants2021271243610.1080/10496475.2020.1777613
    [Google Scholar]
  67. KhuranaK. KumarM. BansalN. Lacidipine prevents scopolamine-induced memory impairment by reducing brain oxido-nitrosative stress in mice.Neurotox. Res.20213941087110210.1007/s12640‑021‑00346‑w33721210
    [Google Scholar]
  68. AsiimweN. YeoS.G. KimM.S. JungJ. JeongN.Y. Nitric oxide: Exploring the contextual link with Alzheimer’s disease.Oxid. Med. Cell. Longev.201620161720574710.1155/2016/720574728096943
    [Google Scholar]
  69. UmukoroS. OkohL. IgwezeS.C. AjayiA.M. Ben-AzuB. Protective effect of Cyperus esculentus (tiger nut) extract against scopolamine-induced memory loss and oxidative stress in mouse brain.Drug Metab. Pers. Ther.20203532020011232776896
    [Google Scholar]
  70. TuppoE.E. AriasH.R. The role of inflammation in Alzheimer’s disease.Int. J. Biochem. Cell Biol.200537228930510.1016/j.biocel.2004.07.00915474976
    [Google Scholar]
  71. ViauS. PasquisB. MaireM.A. FourgeuxC. GrégoireS. AcarN. BretillonL. Creuzot-GarcherC.P. JoffreC. No consequences of dietary n-3 polyunsaturated fatty acid deficiency on the severity of scopolamine-induced dry eye.Graefes Arch. Clin. Exp. Ophthalmol.2011249454755710.1007/s00417‑010‑1576‑621161262
    [Google Scholar]
  72. McGeerP.L. RogersJ. McGeerE.G. Inflammation, antiinflammatory agents, and alzheimer’s disease: The last 22 years.J. Alzheimers Dis.201654385385710.3233/JAD‑16048827716676
    [Google Scholar]
  73. XuH. WangZ. ZhuL. SuiZ. BiW. LiuR. BiK. LiQ. Targeted neurotransmitters profiling identifies metabolic signatures in rat brain by LC-MS/MS: Application in insomnia, depression and Alzheimer’s disease.Molecules2018239237510.3390/molecules2309237530227663
    [Google Scholar]
  74. WeiB. LiuM. ChenZ. WeiM. Schisandrin ameliorates cognitive impairment and attenuates Aβ deposition in APP/PS1 transgenic mice: Involvement of adjusting neurotransmitters and their metabolite changes in the brain.Acta Pharmacol. Sin.201839461662510.1038/aps.2017.13529323336
    [Google Scholar]
  75. MemoM. MissaleC. TrivelliL. SpanoP.F. Acute scopolamine treatment decreases dopamine metabolism in rat hippocampus and frontal cortex.Eur. J. Pharmacol.1988149336737010.1016/0014‑2999(88)90670‑X3409960
    [Google Scholar]
  76. AshfordJ.W. Treatment of Alzheimer’s disease: Trazodone, sleep, serotonin, norepinephrine, and future directions.J. Alzheimers Dis.201967392393010.3233/JAD‑18110630776014
    [Google Scholar]
  77. ChakrabortyS. LennonJ.C. MalkaramS.A. ZengY. FisherD.W. DongH. Serotonergic system, cognition, and BPSD in Alzheimer’s disease.Neurosci. Lett.2019704364410.1016/j.neulet.2019.03.05030946928
    [Google Scholar]
  78. WangZ.X. LianW.W. HeJ. HeX.L. WangY.M. PanC.H. LiM. ZhangW.K. LiuL.Q. XuJ.K. Cornuside ameliorates cognitive impairments in scopolamine induced AD mice: Involvement of neurotransmitter and oxidative stress.J. Ethnopharmacol.202229311525210.1016/j.jep.2022.11525235405255
    [Google Scholar]
  79. GrouselleD. Winsky-SommererR. DavidJ.P. DelacourteA. DournaudP. EpelbaumJ. Loss of somatostatin-like immunoreactivity in the frontal cortex of Alzheimer patients carrying the apolipoprotein epsilon 4 allele.Neurosci. Lett.19982551212410.1016/S0304‑3940(98)00698‑39839717
    [Google Scholar]
  80. GueliM.C. TaibiG. Alzheimer’s disease: Amino acid levels and brain metabolic status.Neurol. Sci.20133491575157910.1007/s10072‑013‑1289‑923354600
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673330002241015085330
Loading
/content/journals/cmc/10.2174/0109298673330002241015085330
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test