Skip to content
2000
Volume 32, Issue 29
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Introduction

Alzheimer's disease (AD) is the most common neurodegenerative disease in older people, characterized by the accumulation of beta-amyloid (Aβ) plaques and neurofibrillary tangles composed of aggregated of hyperphosphorylated tau protein, which normally helps stabilize microtubules in neurons.

Methods

Nowadays, artemisinin (ART) as well as its semisynthetic derivatives (ARTs) are seen as potential neuroprotectors. The goal of the present study is the assessment of neuroprotective, antibacterial activity of ART, as well as studies of ART affinity to Aβ-peptides and the search of potential targets for ART. The study is referring to explores the impact of ART on an animal model of AD that is induced by the aggregated amyloidogenic peptide Aβ by electrophysiology and morphology analysis. Specifically, the focus is on the activation of the entorhinal cortex (ENT) as synaptic potentiation.

Results

Electrophysiological and histochemical have demonstrated that therapeutic injection of ART or its derivatives acts as a neuroprotective This treatment appears to prevent or slow down damage to brain tissue, and it promotes the restoration of neurons and their surrounding environment. The protective effects of ART may involve various mechanisms, including antioxidant activity, anti-inflammatory effects, and the inhibition of apoptosis.

Conclusion

studies revealed a direct, strong interaction of ART with the amyloidogenic peptides 5Aβ, 12Aβ, and 18Aβ. screening revealed several protein targets for ART, including cytochrome P-450 2B6 (CYP2B6). The highest binding affinity was found on the active site of CYP2B6. ART has great potential for discovering new drugs using combined therapies.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673312842241003111836
2024-10-18
2025-09-09
Loading full text...

Full text loading...

References

  1. ParoniG. BiscegliaP. SeripaD. Understanding the amyloid hypothesis in alzheimer’s disease.J. Alzheimers Dis.201968249351010.3233/JAD‑18080230883346
    [Google Scholar]
  2. RicciarelliR. FedeleE. The amyloid cascade hypothesis in Alzheimer’s disease: It’s time to change our mind.Curr. Neuropharmacol.201715692693528093977
    [Google Scholar]
  3. KametaniF. HasegawaM. Reconsideration of amyloid hypothesis and tau hypothesis in Alzheimer’s disease.Front. Neurosci.2018122510.3389/fnins.2018.0002529440986
    [Google Scholar]
  4. АмбарцумянE. МанукянA. ТирацуянC. Attenuation of tau protein hyperphosphorylation by plant-derived compounds.Fifteenth annual scientific conference.2021107113
    [Google Scholar]
  5. DingY. LeiL. LaiC. TangZ. Tau protein and zebrafish models for tau-induced neurodegeneration.J. Alzheimers Dis.201969233935310.3233/JAD‑18091731006683
    [Google Scholar]
  6. BuscheM.A. HymanB.T. Synergy between amyloid-β and tau in Alzheimer’s disease.Nat. Neurosci.202023101183119310.1038/s41593‑020‑0687‑632778792
    [Google Scholar]
  7. YuanD.S. ChenY.P. TanL.L. HuangS.Q. LiC.Q. WangQ. ZengQ.P. Artemisinin: A panacea eligible for unrestrictive use?Front. Pharmacol.20178873710.3389/fphar.2017.0073729089893
    [Google Scholar]
  8. ÖzgenU. MaviA. TerziZ. YιldιrιmA. CoşkunM. HoughtonP.J. Antioxidant properties of some medicinal lamiaceae (labiatae) species.Pharm. Biol.200644210711210.1080/13880200600592061
    [Google Scholar]
  9. LiangZ. LiQ.X. Discovery of selective, substrate-competitive, and passive membrane permeable glycogen synthase kinase-3β inhibitors: Synthesis, biological evaluation, and molecular modeling of new C-glycosylflavones.ACS Chem. Neurosci.2018951166118310.1021/acschemneuro.8b0001029381861
    [Google Scholar]
  10. KumarA. SidhuJ. GoyalA. Alzheimer disease.StatPearls.Treasure Island, FLStatPearls Publishing2024
    [Google Scholar]
  11. LockhartS.N. SchaichC.L. CraftS. SachsB.C. RappS.R. JungY. WhitlowC.T. Solingapuram SaiK.K. ClevelandM. WilliamsB.J. BurkeG.L. BertoniA. HaydenK.M. HughesT.M. Associations among vascular risk factors, neuroimaging biomarkers, and cognition: Preliminary analyses from the multi-ethnic study of atherosclerosis (MESA).Alzheimers Dement.202218455156010.1002/alz.1242934482601
    [Google Scholar]
  12. ItzhakiR.F. GoldeT.E. HenekaM.T. ReadheadB. Do infections have a role in the pathogenesis of Alzheimer disease?Nat. Rev. Neurol.202016419319710.1038/s41582‑020‑0323‑932152461
    [Google Scholar]
  13. SeaksC.E. WilcockD.M. Infectious hypothesis of Alzheimer disease.PLoS Pathog20201611e100859610.1371/journal.ppat.1008596.
    [Google Scholar]
  14. SochockaM. ZwolińskaK. LeszekJ. The infectious etiology of Alzheimer’s disease.Curr. Neuropharmacol.2017157996100910.2174/1570159X1566617031312293728294067
    [Google Scholar]
  15. GrabskiH. GinosyanS. TiratsuyanS. Molecular simulations and markov state modeling reveal inactive form of quorum sensing regulator sdiA of Escherichia coli.IEEE/ACM Trans. Comput. Biol. Bioinformatics20211862835284010.1109/TCBB.2021.307456733877985
    [Google Scholar]
  16. KanamaruK. KanamaruK. TatsunoI. TobeT. SasakawaC. SdiA, an Escherichia coli homologue of quorum-sensing regulators, controls the expression of virulence factors in enterohaemorrhagic Escherichia coli O157:H7.Mol. Microbiol.200038480581610.1046/j.1365‑2958.2000.02171.x11115115
    [Google Scholar]
  17. NguyenY. NguyenN.X. RogersJ.L. LiaoJ. MacMillanJ.B. JiangY. SperandioV. Structural and mechanistic roles of novel chemical ligands on the SdiA quorum-sensing transcription regulator.MBio201562e02429-1410.1128/mBio.02429‑1425827420
    [Google Scholar]
  18. AliM.M. GhouriR.G. AnsA.H. AkbarA. ToheedA. Recommendations for anti-inflammatory treatments in Alzheimer’s disease: A comprehensive review of the literature.Cureus2019115e462010.7759/cureus.462031312547
    [Google Scholar]
  19. Rivers-AutyJ. MatherAE. PetersR. LawrenceCB. BroughD. Anti-inflammatories in Alzheimer's disease-potential therapy or spurious correlate?Brain Commun202022fcaa10910.1093/braincomms/fcaa109
    [Google Scholar]
  20. ShinyuyL. LoeG. JansenO. MamedeL. LedouxA. NoukimiS. AbenwieS. GhogomuS. SouopguiJ. RobertA. DemeyerK. FrederichM. Metabolites isolated from Artemisia afra and Artemisia annua and their anti- malarial, anti-inflammatory and immunomodulating properties-pharmacokinetics and pharmacodynamics: A review.Metabolites202313561310.3390/metabo13050613
    [Google Scholar]
  21. KrungkraiJ. KrungkraiS.R. Antimalarial qinghaosu/artemisinin: The therapy worthy of a Nobel Prize.Asian Pac. J. Trop. Biomed.20166537137510.1016/j.apjtb.2016.03.010
    [Google Scholar]
  22. EkiertH. ŚwiątkowskaJ. KlinP. RzepielaA. SzopaA. Artemisia annua – importance in traditional medicine and current state of knowledge on the chemistry, biological activity and possible applications.Planta Med.202187858459910.1055/a‑1345‑952833482666
    [Google Scholar]
  23. TiratsuyanS. HambardzumyanY. PoghosyanM. DanielyanM. HovhannisyanA. In vivo and in silico studies of the neuroprotective effect of artemisinin in prevention of Alzheimer’s disease in an animal model.6th International Conference on Nanotechnologies and Biomedical Engineering202319920710.1007/978‑3‑031‑42782‑4_22
    [Google Scholar]
  24. KrishnaS. BustamanteL. HaynesR.K. StainesH.M. Artemisinins: their growing importance in medicine.Trends Pharmacol. Sci.2008291052052710.1016/j.tips.2008.07.00418752857
    [Google Scholar]
  25. AppalasamyS. LoK.Y. Ch’ngS.J. NornadiaK. OthmanA.S. ChanL.K. Antimicrobial activity of artemisinin and precursor derived from in vitro plantlets of Artemisia annua L.BioMed Res. Int.201420141610.1155/2014/21587224575401
    [Google Scholar]
  26. HuangY. YangY. LiuG. XuM. HuD. New clinical application prospects of artemisinin and its derivatives: a scoping review. Infect. Dis. Poverty202312111510.1186/s40249‑023‑01152‑638072951
    [Google Scholar]
  27. KrishnaS. GanapathiS. SterI.C. SaeedM.E.M. CowanM. FinlaysonC. KovacsevicsH. JansenH. KremsnerP.G. EfferthT. KumarD. A randomised, double blind, placebo-controlled pilot study of oral artesunate therapy for colorectal cancer.EBioMedicine201521829010.1016/j.ebiom.2014.11.01026137537
    [Google Scholar]
  28. von HagensC. Walter-SackI. GoeckenjanM. OsburgJ. Storch-HagenlocherB. SertelS. ElsässerM. RemppisB.A. EdlerL. MunzingerJ. EfferthT. SchneeweissA. StrowitzkiT. Prospective open uncontrolled phase I study to define a well-tolerated dose of oral artesunate as add-on therapy in patients with metastatic breast cancer (ARTIC M33/2).Breast Cancer Res. Treat.2017164235936910.1007/s10549‑017‑4261‑128439738
    [Google Scholar]
  29. von HagensC. Walter-SackI. GoeckenjanM. Storch-HagenlocherB. SertelS. ElsässerM. RemppisB.A. MunzingerJ. EdlerL. EfferthT. SchneeweissA. StrowitzkiT. Long-term add-on therapy (compassionate use) with oral artesunate in patients with metastatic breast cancer after participating in a phase I study (ARTIC M33/2).Phytomedicine20195414014810.1016/j.phymed.2018.09.17830668363
    [Google Scholar]
  30. GengY. LiW. WongN.K. XueF. LiQ. ZhangY. XuJ. DengZ. ZhouY. Discovery of artemisinins as microsomal prostaglandins synthase-2 inhibitors for the treatment of colorectal cancer via chemoproteomics.J. Med. Chem.20246732083209410.1021/acs.jmedchem.3c0198938287228
    [Google Scholar]
  31. WuChun. YanYongsi. WangYucheng. SunPing. QiRongrong. Antibacterial epoxy composites with addition of natural Artemisia annua waste.e-Polymers202020110.1515/epoly‑2020‑0029
    [Google Scholar]
  32. MohammedS. DekaboA. HailuT. Phytochemical analysis and anti-microbial activities of Artemisia spp. and rapid isolation methods of artemisinin.AMB Express20221211710.1186/s13568‑022‑01346‑535150378
    [Google Scholar]
  33. KimW.S. ChoiW.J. LeeS. KimW.J. LeeD.C. SohnU.D. ShinH.S. KimW. Anti-inflammatory, antioxidant and antimicrobial effects of artemisinin extracts from Artemisia annua L.Korean J. Physiol. Pharmacol.2014191212710.4196/kjpp.2015.19.1.2125605993
    [Google Scholar]
  34. BaoL. GuoJ. FengL. ZhouX. LuQ. Efficacy of artesunate against pseudomonas aeruginosa biofilm mediated by iron.Biomed. Res. Int.2019481021710.1155/2019/4810217
    [Google Scholar]
  35. YongJ. LuC. OlatundeO.Z. An overview of dihydroartemisinin as a promising lead compound for development of anticancer agents.Mini Rev. Med. Chem.202323326528910.2174/138955752266622042512492335469566
    [Google Scholar]
  36. YuR. JinG. FujimotoM. Dihydroartemisinin: A potential drug for the treatment of malignancies and inflammatory diseases.Front. Oncol.20211172233110.3389/fonc.2021.72233134692496
    [Google Scholar]
  37. CoperchiniF. ChiovatoL. CroceL. MagriF. RotondiM. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system.Cytokine Growth Factor Rev.202053253210.1016/j.cytogfr.2020.05.00332446778
    [Google Scholar]
  38. HuangL.K. KuanY.C. LinH.W. HuC.J. Clinical trials of new drugs for Alzheimer disease: a 2020–2023 update.J. Biomed. Sci.20233018310.1186/s12929‑023‑00976‑637784171
    [Google Scholar]
  39. JiangYY. ShuiJC. ZhangBX. ChinJW. YueRS. The potential roles of artemisinin and its derivatives in the treatment of Type 2 diabetes mellitus.Front Pharmacol20201158548710.3389/fphar.2020.585487
    [Google Scholar]
  40. OsonoiY. MitaT. AzumaK. NakajimaK. MasuyamaA. GotoH. NishidaY. MiyatsukaT. FujitaniY. KoikeM. MitsumataM. WatadaH. Defective autophagy in vascular smooth muscle cells enhances cell death and atherosclerosis.Autophagy201814111991200610.1080/15548627.2018.150113230025494
    [Google Scholar]
  41. LiJ. CasteelsT. FrogneT. IngvorsenC. HonoréC. CourtneyM. HuberK.V.M. SchmitnerN. KimmelR.A. RomanovR.A. SturtzelC. LardeauC.H. KlughammerJ. FarlikM. SdelciS. VieiraA. AvolioF. BriandF. BaburinI. MájekP. PaulerF.M. PenzT. StukalovA. GridlingM. ParapaticsK. BarbieuxC. BerishviliE. SpittlerA. ColingeJ. BennettK.L. HeringS. SulpiceT. BockC. DistelM. HarkanyT. MeyerD. Superti-FurgaG. CollombatP. Hecksher-SørensenJ. KubicekS. Artemisinins target GABAA receptor signaling and impair α cell identity.Cell20171681-286100.e1510.1016/j.cell.2016.11.01027916275
    [Google Scholar]
  42. HoW.E. PehH.Y. ChanT.K. WongW.S.F. Artemisinins: Pharmacological actions beyond anti- malarial.Pharmacol. Ther.2014142112613910.1016/j.pharmthera.2013.12.00124316259
    [Google Scholar]
  43. WongY.K. XuC. KaleshK.A. HeY. LinQ. WongW.S.F. ShenH.M. WangJ. Artemisinin as an anticancer drug: Recent advances in target profiling and mechanisms of action.Med. Res. Rev.20173761492151710.1002/med.2144628643446
    [Google Scholar]
  44. ShiZ. ChenY. LuC. DongL. LvJ. TuoQ. QinL. ChengS. BuL. LinN. ZhuX. LiaoD. LiuX. Resolving neuroinflammation, the therapeutic potential of the anti-malaria drug family of artemisinin.Pharmacol. Res.201813617218010.1016/j.phrs.2018.09.00230196102
    [Google Scholar]
  45. AbdalkaderM. LampinenR. KanninenK.M. MalmT.M. LiddellJ.R. Targeting Nrf2 to suppress ferroptosis and mitochondrial dysfunction in neurodegeneration.Front. Neurosci.20181246610.3389/fnins.2018.0046630042655
    [Google Scholar]
  46. OkorjiU.P. VelagapudiR. El-BakoushA. FiebichB.L. OlajideO.A. Antimalarial drug artemether inhibits neuroinflammation in BV2 microglia through Nrf2-dependent mechanisms.Mol. Neurobiol.20165396426644310.1007/s12035‑015‑9543‑126607631
    [Google Scholar]
  47. YaoW. WangF. WangH. Immunomodulation of artemisinin and its derivatives.Sci. Bull. (Beijing)201661181399140610.1007/s11434‑016‑1105‑z
    [Google Scholar]
  48. ChongC.M. ZhengW. Artemisinin protects human retinal pigment epithelial cells from hydrogen peroxide-induced oxidative damage through activation of ERK/CREB signaling.Redox Biol.20169505610.1016/j.redox.2016.06.00227372058
    [Google Scholar]
  49. ChiuK. XieL-K. LuB-W. BaumL. SoK-F. More than anti-malarial agents: therapeutic potential of artemisinins in neurodegeneration.Neural Regen. Res.20191491494149810.4103/1673‑5374.25596031089038
    [Google Scholar]
  50. SeoE.J. FischerN. EfferthT. Phytochemicals as inhibitors of NF-κB for treatment of Alzheimer’s disease.Pharmacol. Res.201812926227310.1016/j.phrs.2017.11.03029179999
    [Google Scholar]
  51. DaiY.F. ZhouW.W. MengJ. DuX.L. SuiY.P. DaiL. WangP.Q. HuoH.R. SuiF. The pharmacological activities and mechanisms of artemisinin and its derivatives: a systematic review.Med. Chem. Res.201726586788010.1007/s00044‑016‑1778‑5
    [Google Scholar]
  52. ZhelyazkovaM. HadjimitovaV. Hristova-AvakumovaN. Antioxidant and prooxidant properties of artemisinin and epirubicin on in vitro biophysical models.Izv. Him.201951119124
    [Google Scholar]
  53. BurkO. ArnoldK.A. NusslerA.K. SchaeffelerE. EfimovaE. AveryB.A. AveryM.A. FrommM.F. EichelbaumM. Antimalarial artemisinin drugs induce cytochrome P450 and MDR1 expression by activation of xenosensors pregnane X receptor and constitutive androstane receptor.Mol. Pharmacol.20056761954196510.1124/mol.104.00901915761118
    [Google Scholar]
  54. DavisT.M.E. Pharmacokinetic studies of antimalarials: recent developments.Expert Rev. Clin. Pharmacol.20169334134310.1586/17512433.2016.110819026512938
    [Google Scholar]
  55. LangmiaI.M. JustK.S. YamouneS. BrockmöllerJ. MasimirembwaC. StinglJ.C. CYP2B6 functional variability in drug metabolism and exposure across populations-implication for drug safety, dosing, and individualized therapy.Front. Genet.20211269223410.3389/fgene.2021.69223434322158
    [Google Scholar]
  56. SangkuhlK. KleinT.E. AltmanR.B. PharmGKB summary.Pharmacogenet. Genomics2011211176977210.1097/FPC.0b013e328346063f21546862
    [Google Scholar]
  57. WangD. WuM. LiS. GaoQ. ZengQ. Artemisinin mimics calorie restriction to extend yeast lifespan via a dual-phase mode: a conclusion drawn from global transcriptome profiling.Sci. China Life Sci.201558545146510.1007/s11427‑014‑4736‑925682392
    [Google Scholar]
  58. PaxinosG. WatsonCh. The Rat Brain in Stereotaxic Coordinates2006
    [Google Scholar]
  59. DarbinyanL.V. HambardzumyanL.E. SimonyanK.V. ChavushyanV.A. ManukyanL.P. BadalyanS.A. KhalajiN. SarkisianV.H. Protective effects of curcumin against rotenone-induced rat model of Parkinson’s disease: In vivo electrophysiological and behavioral study.Metab. Brain Dis.20173261791180310.1007/s11011‑017‑0060‑y28695411
    [Google Scholar]
  60. YenkoyanK. SafaryanK. ChavushyanV. MeliksetyanI. NavasardyanG. SarkissianJ. GaloyanA. AghajanovM. Neuroprotective action of proline-rich polypeptide-1 in β-amyloid induced neurodegeneration in rats.Brain Res. Bull.2011863-426227110.1016/j.brainresbull.2011.08.00321839813
    [Google Scholar]
  61. DanielyanM.H. КarapetyanK.V. NebogovaK.A. NazaryanO.H. KhachatryanV.P. Effects of galarmin and cobra venom on the morphofunctional state of the substantia nigra in a rat model of parkinson’s disease.Neurophysiology2021531222910.1007/s11062‑021‑09909‑1
    [Google Scholar]
  62. SuvarnaS.K. LaytonCh. BancroftJ.D. Bancroft’s theory and practice of histological techniquesElsevier201910.1016/C2015‑0‑00143‑5
    [Google Scholar]
  63. PalkovitsM. Maps and guide to microdissection of the rat brainNew York, Amsterdam, LondonElsevier1988
    [Google Scholar]
  64. KazaryanS.A. RshtuniL.R. HovhannisyanA.A. The synergistic antibacterial activity of silver nanoparticles and T. polium extracts.Biophysics (Oxf.)202166462362810.1134/S0006350921040084
    [Google Scholar]
  65. BauerA.W. KirbyW.M. SherrisJ.C. TurckM. Antibiotic susceptibility testing by a standardized single disk method.Am. J. Clin. Pathol.1966454436610.1093/ajcp/45.4_ts.4935325707
    [Google Scholar]
  66. AnushK. ShushanikK. SusannaT. AshkhenH. Antibacterial effect of silver and iron oxide nanoparticles in combination with antibiotics on E. coli K12.Bionanoscience20199358759610.1007/s12668‑019‑00640‑0
    [Google Scholar]
  67. BermanH.M. WestbrookJ. FengZ. GillilandG. BhatT.N. WeissigH. ShindyalovI.N. BourneP.E. The protein data bank.Nucleic Acids Res.20002812354210.1093/nar/28.1.23510592235
    [Google Scholar]
  68. DingF. YinS. DokholyanN.V. Rapid flexible docking using a stochastic rotamer library of ligands.J. Chem. Inf. Model.20105091623163210.1021/ci100218t20712341
    [Google Scholar]
  69. BoltonE.E. WangY. ThiessenP.A. BryantS.H. PubChem: Integrated platform of small molecules and biological activities.Annu. Rep. Comput. Chem.2008421724110.1016/S1574‑1400(08)00012‑1
    [Google Scholar]
  70. Sousa da SilvaA.W. VrankenW.F. ACPYPE - anteChamber PYthon parser interfacE.BMC Res. Notes20125136710.1186/1756‑0500‑5‑36722824207
    [Google Scholar]
  71. WangJ. WolfR.M. CaldwellJ.W. KollmanP.A. CaseD.A. Development and testing of a general amber force field.J. Comput. Chem.20042591157117410.1002/jcc.2003515116359
    [Google Scholar]
  72. WallaceA.C. LaskowskiR.A. ThorntonJ.M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions.Protein Eng. Des. Sel.19958212713410.1093/protein/8.2.1277630882
    [Google Scholar]
  73. DeLanoW. The PyMOL molecular graphics system.Delano Scientific2002
    [Google Scholar]
  74. TrottO. OlsonA.J. AutoDock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.20103124556110.1002/jcc.21334
    [Google Scholar]
  75. KotaP. DingF. RamachandranS. DokholyanNV. Gaia: Automated quality assessment of protein structure models.Bioinformatics2011271622091510.1093/bioinformatics/btr374
    [Google Scholar]
  76. KazaryanS. FarsiyanL. TumoyanJ. KirakosyanG. AyvazyanN. GasparyanH. BuloyanS. ArshakyanL. KirakosyanA. HovhannisyanA. Oxidative stress and histopathological changes in several organs of mice injected with biogenic silver nanoparticles.Artif. Cells Nanomed. Biotechnol.202250133134210.1080/21691401.2022.214993136476283
    [Google Scholar]
  77. PagadalaN.S. SyedK. TuszynskiJ. Software for molecular docking: A review.Biophys. Rev.2017929110210.1007/s12551‑016‑0247‑128510083
    [Google Scholar]
  78. GinosyanS. ChilingaryanG. GrabskiH. GhulikyanL. AyvazyanN. TiratsuyanS. Mode of artemisinin’s action on oxidative stress, genomic and G-quadruplex DNA. 4th International. IFMBE Proc.20207754354810.1007/978‑3‑030‑31866‑6_97
    [Google Scholar]
  79. QiangW. CaiW. YangQ. YangL. DaiY. ZhaoZ. YinJ. LiY. LiQ. WangY. WengX. ZhangD. ChenY. ZhuX. ART B improves learning and memory impairment in AD dementia mice by suppressing neuroinflammation.Neuroscience201839511210.1016/j.neuroscience.2018.10.04130399421
    [Google Scholar]
  80. ZhaoX. LiS. GaurU. ZhengW. ART improved neuronal functions in Alzheimer’s disease animal model 3xtg mice and neuronal cells via stimulating the ERK/CREB signaling pathway.Aging Dis.202011480181910.14336/AD.2019.081332765947
    [Google Scholar]
  81. EspositoZ. BelliL. TonioloS. SancesarioG. BianconiC. MartoranaA. Amyloid β, glutamate, excitotoxicity in Alzheimer’s disease: are we on the right track?CNS Neurosci. Ther.201319854955510.1111/cns.1209523593992
    [Google Scholar]
  82. SimõesA.P. SilvaC.G. MarquesJ.M. PochmannD. PorciúnculaL.O. FerreiraS. OsesJ.P. BelezaR.O. RealJ.I. KöfalviA. BahrB.A. LermaJ. CunhaR.A. RodriguesR.J. Glutamate-induced and NMDA receptor- mediated neurodegeneration entails P2Y1 receptor activation.Cell Death Dis.20189329710.1038/s41419‑018‑0351‑129463792
    [Google Scholar]
  83. LiuQ. DingX. WangY. ChuH. GuanY. LiM. SunK. Artemisinin reduces PTSD-like symptoms, improves synaptic plasticity, and inhibits apoptosis in rats subjected to single prolonged stress.Front. Pharmacol.202415130312310.3389/fphar.2024.130312338379899
    [Google Scholar]
  84. ZhaoX. FangJ. LiS. GaurU. XingX. WangH. ZhengW. Artemisinin attenuated hydrogen peroxide (H2O2)-induced oxidative injury in SH-SY5Y and hippocampal neurons via the activation of AMPK pathway.Int. J. Mol. Sci.20192011268010.3390/ijms2011268031151322
    [Google Scholar]
  85. YanJ. MaH. LaiX. WuJ. LiuA. HuangJ. SunW. ShenM. ZhangY. Artemisinin attenuated oxidative stress and apoptosis by inhibiting autophagy in MPP+-treated SH-SY5Y cells.J. Biol. Res. (Thessalon.)2021281610.1186/s40709‑021‑00137‑633632304
    [Google Scholar]
  86. АмбарцумянЕ.Р. ГиносянС.В. ТирацуянС.Г. Schemes of inhibition of BACE-1 activity and aggregation of amyloidogenic peptides by herbal medicines.Biotechnology: A look into the future, Proceedings of the VII International Scientific and Practical Conference2021810
    [Google Scholar]
  87. АмбарцумянЕ.Р. ТирацуянС.Г. Molecular modeling of the interaction of herbal medicines with glycogen synthase-3β, MARK-4 and amyloid peptide 18aβ9-40.Proceedings of the IX international scientific Internet conference, Biotechnology: A look into the future202335
    [Google Scholar]
  88. GinosyanS. HambardzumyanY. MkrtchyanT. GrabskiH. TiratsuyanS. Molecular docking of compounds modulating amyloid peptide aggregation schemes.IFMBE Proc.2020777736136610.1007/978‑3‑030‑31866‑6_67
    [Google Scholar]
  89. ZhipingMi. StevenH. Graham. Role of UCHL1 in the pathogenesis of neurodegenerative diseases and brain injury.Ageing Res. Rev.202386101856
    [Google Scholar]
  90. BarronJ.C. HurleyE.P. ParsonsM.P. Huntingtin and the synapse.Front. Cell. Neurosci.2021151568933210.3389/fncel.2021.68933234211373
    [Google Scholar]
  91. DasB. YanR. A close look at BACE1 inhibitors for Alzheimer’s disease treatment.CNS Drugs201933325126310.1007/s40263‑019‑00613‑730830576
    [Google Scholar]
  92. ChaytowH. HuangY.T. GillingwaterT.H. FallerK.M.E. The role of survival motor neuron protein (SMN) in protein homeostasis.Cell. Mol. Life Sci.201875213877389410.1007/s00018‑018‑2849‑129872871
    [Google Scholar]
  93. GinosyanS. GrabskiH. TiratsuyanS. Comparative analysis of the interaction of artemisinin and SCH772984 inhibitor with ERK2.Becтник RAU2020295101
    [Google Scholar]
  94. LiB. YaoQ. PanX.C. WangN. ZhangR. LiJ. DingG. LiuX. WuC. RanD. ZhengJ. ZhouH. Artesunate enhances the antibacterial effect of β-lactam antibiotics against Escherichia coli by increasing antibiotic accumulation via inhibition of the multidrug efflux pump system AcrAB-TolC.J. Antimicrob. Chemother.201166476977710.1093/jac/dkr01721393180
    [Google Scholar]
  95. SugiuraS. KitagawaK. Omura-MatsuokaE. SasakiT. TanakaS. YagitaY. MatsushitaK. StormD.R. HoriM. CRE-mediated gene transcription in the peri-infarct area after focal cerebral ischemia in mice.J. Neurosci. Res.200475340140710.1002/jnr.1088114743453
    [Google Scholar]
  96. NavaratnamV. MansorS.M. SitN.W. GraceJ. LiQ. OlliaroP. Pharmacokinetics of artemisinin-type compounds.Clin. Pharmacokinet.200039425527010.2165/00003088‑200039040‑0000211069212
    [Google Scholar]
  97. CaiH.H. YangP.H. ChenJ. LiangZ.H. ChenQ. CaiJ. Visual characterization and quantitative measurement of artemisinin-induced DNA breakage.Electrochim. Acta200954133651365610.1016/j.electacta.2009.01.042
    [Google Scholar]
  98. Crespo-OrtizM.P. WeiM.Q. Antitumor activity of artemisinin and its derivatives: from a well-known antimalarial agent to a potential anticancer drug.J. Biomed. Biotechnol.2012201211810.1155/2012/24759722174561
    [Google Scholar]
  99. O’NeillP.M. BartonV.E. WardS.A. The molecular mechanism of action of artemisinin-the debate continues.Molecules20101531705172110.3390/molecules1503170520336009
    [Google Scholar]
  100. OhY.T. YueP. ZhouW. BalkoJ.M. BlackE.P. OwonikokoT.K. KhuriF.R. SunS.Y. Correction: Oncogenic Ras and B-Raf proteins positively regulate death receptor 5 expression through co-activation of ERK and JNK signaling.J. Biol. Chem.202029526887010.1074/jbc.AAC120.01443532591446
    [Google Scholar]
  101. HanantaL. AstutiI. SadewaA.H. AliceJ. HutagalungJ. Mustofa The prevalence of CYP2B6 gene polymorphisms in malaria-endemic population of timor in East Nusa Tenggara Indonesia.Osong. Public Health Res. Perspect.20189419219610.24171/j.phrp.2018.9.4.0830159225
    [Google Scholar]
  102. SvenssonU.S.H. AshtonM. HaiT.N. BertilssonL. HuongD.X. Van HuongN. NiêuN.T. SyN.D. LykkesfeldtJ. CôngL.D. Artemisinin induces omeprazole metabolism in human beings.Clin. Pharmacol. Ther.199864216016710.1016/S0009‑9236(98)90149‑79728896
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673312842241003111836
Loading
/content/journals/cmc/10.2174/0109298673312842241003111836
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test