Skip to content
2000
Volume 32, Issue 29
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

The inflammation phenotypes are often closely related to oxidative stress and autophagy pathway activation, which could be developed as a treatment target.

Aims

The aim of this study was to explore the underlying mechanism of inflammation in chronic obstructive pulmonary disease (COPD).

 Methods

The lung tissue single-cell RNA-seq (scRNA-seq) dataset of GSE171541 was downloaded from the Gene Expression Omnibus (GEO) database. The marker genes were obtained from the CellMarker database. “Seurat” and “harmony” R packages were used for single-cell profiling analysis. Then, the “AUCell” R package was employed to calculate the reactive oxygen species (ROS) and autophagy pathway scores. Gene regulation network analysis was performed by applying the “SCENIC” package, followed by conducting correlation analysis with Spearman’s rank correlation method. The cigarettes were used to develop a COPD model in mice, and the expression of relevant genes was measured by qRT-PCR.

Results

The scRNA-seq analysis classified 12 cell subgroups in which the contractility of myofibroblasts was closely associated with the progression of COPD. Further analysis showed that ROS and autophagy pathways were significantly activated in myofibroblasts and that the nuclear factor erythroid 2-related factor 2 (NRF2) and its mediated oxidative stress pathway were inhibited in myofibroblasts. In addition, the downregulated NRF2 gene was negatively correlated with the expression of autophagy and ROS activation. In the COPD mice model, NRF2 was downregulated in COPD mice but further elevated in the COPD+NRF2 mice group. Interestingly, the mRNA levels of Kelch- like ECH-associated protein 1 (Keap1), NADPH oxidase (NOX), and Cathepsin B (CTSB) were upregulated in COPD group in comparison to the control group but they were downregulated by NRF2. These results suggested that low-expressed NFR2 promoted autophagy and ROS pathway activation in myofibroblasts for COPD progression.

Conclusion

We identified a cell myofibroblast cluster closely associated with COPD progression using the scRNA-seq analysis. The downregulated NFR2, as a key risk factor, mediated myofibroblast death by activating the oxidative stress and autophagy pathway for COPD progression.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673326250240806051127
2024-08-08
2025-09-10
Loading full text...

Full text loading...

References

  1. AgustíA. VogelmeierC. FanerR. COPD 2020: Changes and challenges.Am. J. Physiol. Lung Cell. Mol. Physiol.20203195L879L88310.1152/ajplung.00429.202032964724
    [Google Scholar]
  2. HajatC. SteinE. The global burden of multiple chronic conditions: A narrative review.Prev. Med. Rep.20181228429310.1016/j.pmedr.2018.10.00830406006
    [Google Scholar]
  3. PohT.Y. Mac AogáinM. ChanA.K.W. YiiA.C.A. YongV.F.L. TiewP.Y. KohM.S. ChotirmallS.H. Understanding COPD-overlap syndromes.Expert Rev. Respir. Med.201711428529810.1080/17476348.2017.130589528282995
    [Google Scholar]
  4. EstebanC. QuintanaJ.M. MorazaJ. AburtoM. EgurrolaM. EspañaP.P. Pérez-IzquierdoJ. AguirreU. AizpiriS. CapelasteguiA. Impact of hospitalisations for exacerbations of COPD on health-related quality of life.Respir. Med.200910381201120810.1016/j.rmed.2009.02.00219272762
    [Google Scholar]
  5. CelliB.R. FabbriL.M. AaronS.D. AgustiA. BrookR. CrinerG.J. FranssenF.M.E. HumbertM. HurstJ.R. O’DonnellD. PantoniL. PapiA. Rodriguez-RoisinR. SethiS. TorresA. VogelmeierC.F. WedzichaJ.A. An updated definition and severity classification of chronic obstructive pulmonary disease exacerbations: the rome proposal.Am. J. Respir. Crit. Care Med.2021204111251125810.1164/rccm.202108‑1819PP34570991
    [Google Scholar]
  6. SafiriS. Carson-ChahhoudK. NooriM. NejadghaderiS.A. SullmanM.J.M. Ahmadian HerisJ. AnsarinK. MansourniaM.A. CollinsG.S. KolahiA.A. KaufmanJ.S. Burden of chronic obstructive pulmonary disease and its attributable risk factors in 204 countries and territories, 1990-2019: Results from the global burden of disease study 2019.BMJ2022378e06967910.1136/bmj‑2021‑06967935896191
    [Google Scholar]
  7. YoungR.P. DuanF. ChilesC. HopkinsR.J. GambleG.D. GrecoE.M. GatsonisC. AberleD. The NLST-ACRIN cohort substudy.Am. J. Respir. Crit. Care Med.201519291060106710.1164/rccm.201505‑0894OC26199983
    [Google Scholar]
  8. TakiguchiY. SekineI. IwasawaS. KurimotoR. TatsumiK. Chronic obstructive pulmonary disease as a risk factor for lung cancer.World J. Clin. Oncol.20145466066610.5306/wjco.v5.i4.66025300704
    [Google Scholar]
  9. BekaertS. FilletM. DetryB. PichavantM. MaréeR. NoelA. RocksN. CataldoD. Inflammation-generated extracellular matrix fragments drive lung metastasis.Cancer Growth Metastasis201710p. 117906441774553910.1177/117906441774553929308014
    [Google Scholar]
  10. JingB. WangT. SunB. XuJ. XuD. LiaoY. SongH. GuoW. LiK. HuM. ZhangS. LingJ. KuangY. ZhangT. ZhouB.P. YaoF. DengJ. IL6/STAT3 Signaling orchestrates premetastatic niche formation and immunosuppressive traits in lung.Cancer Res.202080478479710.1158/0008‑5472.CAN‑19‑201331848193
    [Google Scholar]
  11. El RayesT. CatenaR. LeeS. StawowczykM. JoshiN. FischbachC. PowellC.A. DannenbergA.J. AltorkiN.K. GaoD. MittalV. Lung inflammation promotes metastasis through neutrophil protease-mediated degradation of Tsp-1.Proc. Natl. Acad. Sci. USA201511252160001600510.1073/pnas.150729411226668367
    [Google Scholar]
  12. ParkH.Y. KangD. ShinS.H. YooK.H. RheeC.K. SuhG.Y. KimH. ShimY.M. GuallarE. ChoJ. KwonO.J. Chronic obstructive pulmonary disease and lung cancer incidence in never smokers: A cohort study.Thorax202075650650910.1136/thoraxjnl‑2019‑21373232241883
    [Google Scholar]
  13. Faghani BaladehiR. Yousef MemarM. Jafari SalesA. BazmaniA. Sadri NahandJ. Shiri AghbashP. Bannazadeh BaghiH. The effect of oncogene proteins of human papillomaviruses on apoptosis pathways in prostate cancer.Oncologie202224222724510.32604/oncologie.2022.020648
    [Google Scholar]
  14. VyveF.X.V. CarbonezK. HubrechtsJ. BecoG. RubayJ.E. MomeniM. DetailleT. PonceletA.J. Analysis of risk factors for early mortality in surgical shunt palliation: Time for a change?Congenit. Heart Dis.202318553955010.32604/chd.2023.042344
    [Google Scholar]
  15. RacanelliA.C. ChoiA.M.K. ChoiM.E. Autophagy in chronic lung disease.Prog. Mol. Biol. Transl. Sci.202017213515610.1016/bs.pmbts.2020.02.00132620240
    [Google Scholar]
  16. ZhaoX. ZhangQ. ZhengR. The interplay between oxidative stress and autophagy in chronic obstructive pulmonary disease.Front. Physiol.202213100427510.3389/fphys.2022.100427536225291
    [Google Scholar]
  17. ValavanidisA. VlachogianniT. FiotakisK. Tobacco smoke: Involvement of reactive oxygen species and stable free radicals in mechanisms of oxidative damage, carcinogenesis and synergistic effects with other respirable particles.Int. J. Environ. Res. Public Health20096244546210.3390/ijerph602044519440393
    [Google Scholar]
  18. ZuoL. HeF. SergakisG.G. KoozehchianM.S. StimpflJ.N. RongY. DiazP.T. BestT.M. Interrelated role of cigarette smoking, oxidative stress, and immune response in COPD and corresponding treatments.Am. J. Physiol. Lung Cell. Mol. Physiol.20143073L205L21810.1152/ajplung.00330.201324879054
    [Google Scholar]
  19. NakahiraK. CloonanS.M. MizumuraK. ChoiA.M.K. RyterS.W. Autophagy: A crucial moderator of redox balance, inflammation, and apoptosis in lung disease.Antioxid. Redox Signal.201420347449410.1089/ars.2013.537323879400
    [Google Scholar]
  20. MitsuishiY. MotohashiH. YamamotoM. The Keap1–Nrf2 system in cancers: Stress response and anabolic metabolism.Front. Oncol.2012220010.3389/fonc.2012.0020023272301
    [Google Scholar]
  21. SuzukiT. YamamotoM. Stress-sensing mechanisms and the physiological roles of the Keap1–Nrf2 system during cellular stress.J. Biol. Chem.201729241168171682410.1074/jbc.R117.80016928842501
    [Google Scholar]
  22. JainA. LamarkT. SjøttemE. Bowitz LarsenK. Atesoh AwuhJ. ØvervatnA. McMahonM. HayesJ.D. JohansenT. p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription.J. Biol. Chem.201028529225762259110.1074/jbc.M110.11897620452972
    [Google Scholar]
  23. PeroniE. RandiM.L. RosatoA. CagninS. Acute myeloid leukemia: From NGS, through scRNA-seq, to CAR-T. dissect cancer heterogeneity and tailor the treatment.J. Exp. Clin. Cancer Res.202342125910.1186/s13046‑023‑02841‑837803464
    [Google Scholar]
  24. HuangQ. WangY. ZhangL. QianW. ShenS. WangJ. WuS. XuW. ChenB. LinM. WuJ. Single-cell transcriptomics highlights immunological dysregulations of monocytes in the pathobiology of COPD.Respir. Res.202223136710.1186/s12931‑022‑02293‑236539833
    [Google Scholar]
  25. FaizA. PavlidisS. KuoC.H. RoweA. HiemstraP.S. TimensW. BergM. WismanM. GuoY.K. DjukanovićR. SterkP. MeyerK.B. NawijnM.C. AdcockI. ChungK.F. van den BergeM. Th2 high and mast cell gene signatures are associated with corticosteroid sensitivity in COPD.Thorax202378433534310.1136/thorax‑2021‑21773636598042
    [Google Scholar]
  26. DwyerD.F. Ordovas-MontanesJ. AllonS.J. BuchheitK.M. VukovicM. DerakhshanT. FengC. LaiJ. HughesT.K. NyquistS.K. GiannettiM.P. BergerB. BhattacharyyaN. RoditiR.E. KatzH.R. NawijnM.C. BergM. van den BergeM. LaidlawT.M. ShalekA.K. BarrettN.A. BoyceJ.A. Human airway mast cells proliferate and acquire distinct inflammation-driven phenotypes during type 2 inflammation.Sci. Immunol.2021656eabb722110.1126/sciimmunol.abb722133637594
    [Google Scholar]
  27. HuL. ChenM. DaiH. WangH. YangW. A metabolism-related gene signature predicts the prognosis of breast cancer patients: Combined analysis of high-throughput sequencing and gene chip data sets.Oncologie202224480382210.32604/oncologie.2022.026419
    [Google Scholar]
  28. CloughE. BarrettT. The gene expression omnibus database.Methods Mol. Biol.201614189311010.1007/978‑1‑4939‑3578‑9_527008011
    [Google Scholar]
  29. ButlerA. HoffmanP. SmibertP. PapalexiE. SatijaR. Integrating single-cell transcriptomic data across different conditions, technologies, and species.Nat. Biotechnol.201836541142010.1038/nbt.409629608179
    [Google Scholar]
  30. TanZ. ChenX. ZuoJ. FuS. WangH. WangJ. Comprehensive analysis of scRNA-Seq and bulk RNA-Seq reveals dynamic changes in the tumor immune microenvironment of bladder cancer and establishes a prognostic model.J. Transl. Med.202321122310.1186/s12967‑023‑04056‑z36973787
    [Google Scholar]
  31. CaoG. XuanX. LiY. HuJ. ZhangR. JinH. DongH. Single-cell RNA sequencing reveals the vascular smooth muscle cell phenotypic landscape in aortic aneurysm.Cell Commun. Signal.202321111310.1186/s12964‑023‑01120‑537189183
    [Google Scholar]
  32. HuC. LiT. XuY. ZhangX. LiF. BaiJ. ChenJ. JiangW. YangK. OuQ. LiX. WangP. ZhangY. CellMarker 2.0: An updated database of manually curated cell markers in human/mouse and web tools based on scRNA-seq data.Nucleic Acids Res.202351D1D870D87610.1093/nar/gkac94736300619
    [Google Scholar]
  33. KanehisaM. FurumichiM. TanabeM. SatoY. MorishimaK. KEGG: New perspectives on genomes, pathways, diseases and drugs.Nucleic Acids Res.201745D1D353D36110.1093/nar/gkw109227899662
    [Google Scholar]
  34. LuT. XuR. WangC. ZhouX. Parra-MedinaR. Díaz-PeñaR. PengB. ZhangL. Bioinformatics analysis and single-cell RNA sequencing: elucidating the ubiquitination pathways and key enzymes in lung adenocarcinoma.J. Thorac. Dis.20231573885390710.21037/jtd‑23‑79537559628
    [Google Scholar]
  35. YangT. YanC. YangL. TanJ. JiangS. HuJ. GaoW. WangQ. LiY. Identification and validation of core genes for type 2 diabetes mellitus by integrated analysis of single-cell and bulk RNA-sequencing.Eur. J. Med. Res.202328134010.1186/s40001‑023‑01321‑137700362
    [Google Scholar]
  36. AibarS. González-BlasC.B. MoermanT. Huynh-ThuV.A. ImrichovaH. HulselmansG. RambowF. MarineJ.C. GeurtsP. AertsJ. van den OordJ. AtakZ.K. WoutersJ. AertsS. SCENIC: single-cell regulatory network inference and clustering.Nat. Methods201714111083108610.1038/nmeth.446328991892
    [Google Scholar]
  37. GengY. FengJ. HuangH. WangY. YiX. WeiS. ZhangM. LiZ. WangW. HuW. Single-cell transcriptome analysis of tumor immune microenvironment characteristics in colorectal cancer liver metastasis.Ann. Transl. Med.20221021117010.21037/atm‑22‑527036467341
    [Google Scholar]
  38. ShannonP. MarkielA. OzierO. BaligaN.S. WangJ.T. RamageD. AminN. SchwikowskiB. IdekerT. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.123930314597658
    [Google Scholar]
  39. ZhangJ. ZhangJ. NiH. WangY. KatwalG. ZhaoY. SunK. WangM. LiQ. ChenG. MiaoY. GongN. Downregulation of XBP1 protects kidney against ischemia-reperfusion injury via suppressing HRD1-mediated NRF2 ubiquitylation.Cell Death Discov.2021714410.1038/s41420‑021‑00425‑z33654072
    [Google Scholar]
  40. CuiQ. WangW. NamaniA. WangH. HammadA. HuangP. GaoY. ElshaerM. WuY. WangX.J. TangX. NRF2 has a splicing regulatory function involving the survival of motor neuron (SMN) in non-small cell lung cancer.Oncogene202342372751276310.1038/s41388‑023‑02799‑z37573407
    [Google Scholar]
  41. FurukawaM. XiongY. BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase.Mol. Cell. Biol.200525116217110.1128/MCB.25.1.162‑171.200515601839
    [Google Scholar]
  42. SciarrettaS. YeeD. AmmannP. NagarajanN. VolpeM. FratiG. SadoshimaJ. Role of NADPH oxidase in the regulation of autophagy in cardiomyocytes.Clin Sci (Lond).2015128738740310.1042/CS20140336.
    [Google Scholar]
  43. LiuF. LiX. LuC. BaiA. BielawskiJ. BielawskaA. MarshallB. SchoenleinP.V. LebedyevaI.O. LiuK. Ceramide activates lysosomal cathepsin B and cathepsin D to attenuate autophagy and induces ER stress to suppress myeloid-derived suppressor cells.Oncotarget2016751839078392510.18632/oncotarget.1343827880732
    [Google Scholar]
  44. OrnatowskiW. LuQ. YegambaramM. GarciaA.E. ZemskovE.A. MaltepeE. FinemanJ.R. WangT. BlackS.M. Complex interplay between autophagy and oxidative stress in the development of pulmonary disease.Redox Biol.20203610167910.1016/j.redox.2020.10167932818797
    [Google Scholar]
  45. KirkhamP.A. BarnesP.J. Oxidative stress in COPD.Chest2013144126627310.1378/chest.12‑266423880677
    [Google Scholar]
  46. BarnesP.J. BakerJ. DonnellyL.E. Cellular senescence as a mechanism and target in chronic lung diseases.Am. J. Respir. Crit. Care Med.2019200555656410.1164/rccm.201810‑1975TR30860857
    [Google Scholar]
  47. KumarM. SeegerW. VoswinckelR. Senescence-associated secretory phenotype and its possible role in chronic obstructive pulmonary disease.Am. J. Respir. Cell Mol. Biol.201451332333310.1165/rcmb.2013‑0382PS25171460
    [Google Scholar]
  48. OhsumiY. Historical landmarks of autophagy research.Cell Res.201424192310.1038/cr.2013.16924366340
    [Google Scholar]
  49. MizushimaN. LevineB. Autophagy in Human Diseases.N. Engl. J. Med.2020383161564157610.1056/NEJMra202277433053285
    [Google Scholar]
  50. RibattiD. TammaR. Giulio Gabbiani and the discovery of myofibroblasts.Inflamm Res.201968324124510.1007/s00011‑018‑01211‑x.
    [Google Scholar]
  51. FrankenbergerM. EderC. HoferT.P.J. HeimbeckI. SkokannK. KaßnerG. WeberN. MöllerW. Ziegler-HeitbrockL. Chemokine expression by small sputum macrophages in COPD.Mol. Med.2011177-876277010.2119/molmed.2010.0020221327296
    [Google Scholar]
  52. SuJ. ZhangY. ChengC. ZhuY. YeY. SunY. XiangS. WangY. LiuZ. ZhangX. Hydrogen regulates the M1/M2 polarization of alveolar macrophages in a rat model of chronic obstructive pulmonary disease.Exp. Lung Res.202147730131010.1080/01902148.2021.191978834282696
    [Google Scholar]
  53. LeaS. PlumbJ. MetcalfeH. SpicerD. WoodmanP. FoxJ.C. SinghD. The effect of peroxisome proliferator-activated receptor- ligands on in vitro and in vivo models of COPD.Eur. Respir. J.201443240942010.1183/09031936.0018781223794466
    [Google Scholar]
  54. HeS. TianR. ZhangX. YaoQ. ChenQ. LiuB. LiaoL. GongY. YangH. WangD. PPARγ inhibits small airway remodeling through mediating the polarization homeostasis of alveolar macrophages in COPD.Clin. Immunol.202325010929310.1016/j.clim.2023.10929336934848
    [Google Scholar]
  55. HinzB. LagaresD. Evasion of apoptosis by myofibroblasts: a hallmark of fibrotic diseases.Nat. Rev. Rheumatol.2020161113110.1038/s41584‑019‑0324‑531792399
    [Google Scholar]
  56. Ortiz-ZapaterE. Signes-CostaJ. MonteroP. RogerI. Lung fibrosis and fibrosis in the lungs: Is it all about myofibroblasts?Biomedicines2022106142310.3390/biomedicines1006142335740444
    [Google Scholar]
  57. KendallR.T. Feghali-BostwickC.A. Fibroblasts in fibrosis: Novel roles and mediators.Front. Pharmacol.2014512310.3389/fphar.2014.0012324904424
    [Google Scholar]
  58. ShenM. FuJ. ZhangY. ChangY. LiX. ChengH. QiuY. ShaoM. HanY. ZhouY. LuoZ. A novel senolytic drug for pulmonary fibrosis: BTSA1 targets apoptosis of senescent myofibroblasts by activating BAX.Aging Cell2024e1422910.1111/acel.1422938831635
    [Google Scholar]
  59. van PuttenS. ShafieyanY. HinzB. Mechanical control of cardiac myofibroblasts.J. Mol. Cell. Cardiol.20169313314210.1016/j.yjmcc.2015.11.02526620422
    [Google Scholar]
  60. HinzB. Myofibroblasts.Exp. Eye Res.2016142567010.1016/j.exer.2015.07.00926192991
    [Google Scholar]
  61. MaruokaM. SakaoS. KantakeM. TanabeN. KasaharaY. KurosuK. TakiguchiY. MasudaM. YoshinoI. VoelkelN.F. TatsumiK. Characterization of myofibroblasts in chronic thromboembolic pulmonary hypertension.Int. J. Cardiol.2012159211912710.1016/j.ijcard.2011.02.03721406312
    [Google Scholar]
  62. JaramilloM.C. ZhangD.D. The emerging role of the Nrf2–Keap1 signaling pathway in cancer.Genes Dev.201327202179219110.1101/gad.225680.11324142871
    [Google Scholar]
  63. MartinezV.D. VucicE.A. ThuK.L. PikorL.A. LamS. LamW.L. Disruption of KEAP1/CUL3/RBX1 E3-ubiquitin ligase complex components by multiple genetic mechanisms: Association with poor prognosis in head and neck cancer.Head Neck201537572773410.1002/hed.2366324596130
    [Google Scholar]
  64. HeF. RuX. WenT. NRF2, A transcription factor for stress response and beyond.Int. J. Mol. Sci.20202113477710.3390/ijms2113477732640524
    [Google Scholar]
  65. IchimuraY. WaguriS. SouY. KageyamaS. HasegawaJ. IshimuraR. SaitoT. YangY. KounoT. FukutomiT. HoshiiT. HiraoA. TakagiK. MizushimaT. MotohashiH. LeeM.S. YoshimoriT. TanakaK. YamamotoM. KomatsuM. Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy.Mol. Cell201351561863110.1016/j.molcel.2013.08.00324011591
    [Google Scholar]
  66. TaguchiK. FujikawaN. KomatsuM. IshiiT. UnnoM. AkaikeT. MotohashiH. YamamotoM. Keap1 degradation by autophagy for the maintenance of redox homeostasis.Proc. Natl. Acad. Sci. USA201210934135611356610.1073/pnas.112157210922872865
    [Google Scholar]
  67. AggarwalN. SloaneB.F. CathepsinB. Cathepsin B: Multiple roles in cancer.Proteomics Clin. Appl.201485-642743710.1002/prca.20130010524677670
    [Google Scholar]
  68. LiuY. WangD. LiZ. LiX. JinM. JiaN. CuiX. HuG. TangT. YuQ. Pan-cancer analysis on the role of PIK3R1 and PIK3R2 in human tumors.Sci. Rep.2022121592410.1038/s41598‑022‑09889‑035395865
    [Google Scholar]
  69. DengH. HuangY. WangL. ChenM. High Expression of UBB, RAC1, and ITGB1 Predicts Worse Prognosis among Nonsmoking Patients with Lung Adenocarcinoma through Bioinformatics Analysis.BioMed Res. Int.2020202011410.1155/2020/207159333134373
    [Google Scholar]
  70. HaakonsenD.L. RapeM. Ubiquitin levels: The next target against gynecological cancers?J. Clin. Invest.2017127124228423010.1172/JCI9826229130938
    [Google Scholar]
  71. LiuY. ZhouZ. LiK. WangP. ChenY. DengS. LiW. YuK. WangK. VMP1 regulated by chi-miR-124a effects goat myoblast proliferation, autophagy, and apoptosis through the PI3K/ULK1/mTOR signaling pathway.Cells20221114222710.3390/cells1114222735883670
    [Google Scholar]
  72. LeiL. HanF. CuiQ. LiaoW. LiuH. GuanG. YangL. IRS2 depletion inhibits cell proliferation and decreases hormone secretion in mouse granulosa cells.J. Reprod. Dev.201864540941610.1262/jrd.2018‑05529998910
    [Google Scholar]
  73. ChenC.Y. ChenJ. HeL. StilesB.L. PTEN: Tumor suppressor and metabolic regulator.Front. Endocrinol. (Lausanne)2018933810.3389/fendo.2018.0033830038596
    [Google Scholar]
  74. ZengQ. JinF. QianH. ChenH. WangY. ZhangD. WeiY. ChenT. GuoB. ChaiC. The miR-345-3p/PPP2CA signaling axis promotes proliferation and invasion of breast cancer cells.Carcinogenesis202243215015910.1093/carcin/bgab12434922339
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673326250240806051127
Loading
/content/journals/cmc/10.2174/0109298673326250240806051127
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test