Skip to content
2000
Volume 32, Issue 37
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Objective

This study aims to investigate the effect of Gallic Acid (GA) on the alleviation of chemotherapy-induced bone marrow suppression, with a comparison to Diyu sheng bai tablets (DYSB) and RhG-CSF.

Methods

A mouse model of bone marrow suppression was established in BALB/c mice using intraperitoneal injections of cyclophosphamide (CTX). All procedures were performed after obtaining ethical clearance from the institutional animal ethics committee. Mice were treated with low (100 mg/kg/d), medium (200 mg/kg/d), and high (400 mg/kg/d) doses of Gallic Acid (GA) to mitigate CTX-induced bone marrow suppression. In parallel, mice in the positive control group were also treated with DYSB and RhG-CSF at their respective standard doses (DYSB: 100 mg/kg/day, RhG-CSF: 125 mg/kg/day). The efficacy of GA in alleviating chemotherapy-induced bone marrow suppression was evaluated through blood cell counts, immune organ (thymus and spleen) indices, bone marrow nucleated cell (BMNC) counts, cell cycle analysis, apoptosis, histopathology of bone marrow and spleen, and analysis of splenic hematopoietic factors.

Results

CTX induced a decrease in peripheral blood cells and BMNC counts, reduced spleen and thymus indices, and diminished abnormal pathology of bone marrow and spleen, as well as decreasing disturbances in hematopoietic factors. GA was able to alleviate these abnormalities in the bone marrow. It modulated cell proliferation and apoptosis, adjusted the proportion of cells in the G0/G1 phase, and reduced apoptosis in femoral bone marrow.

Conclusion

Gallic Acid (GA) alleviates chemotherapy-induced bone marrow suppression by improving immune organ function, promoting bone marrow cell recovery, and inhibiting apoptosis. These findings support GA as a potential adjunct therapy for chemotherapy, with promising clinical applications.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673354122241220051407
2025-01-20
2025-11-01
Loading full text...

Full text loading...

References

  1. MattiuzziC. Current cancer epidemiology.J. Epidemiol. Glob. Health201994217222
    [Google Scholar]
  2. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  3. TurnerN. BiganzoliL. LeoD.A. Continued value of adjuvant anthracyclines as treatment for early breast cancer.Lancet Oncol.2015167e362e36910.1016/S1470‑2045(15)00079‑026149888
    [Google Scholar]
  4. EmadiA. Cyclophosphamide and cancer: Golden anniversary.Nat. Rev. Clin. Oncol.2009611638647
    [Google Scholar]
  5. WagenaarH.C. ColomboN. VergoteI. BoesH.G. ZanettaG. PecorelliS. LacaveA.J. Hoeselv.Q. CervantesA. BolisG. NamerM. LhomméC. GuastallaJ.P. NooijM.A. PovedaA. di PalumboS.V. VermorkenJ.B. Bleomycin, methotrexate, and CCNU in locally advanced or recurrent, inoperable, squamous-cell carcinoma of the vulva: An EORTC gynaecological cancer cooperative group study.Gynecol. Oncol.200181334835410.1006/gyno.2001.618011371121
    [Google Scholar]
  6. AresP.L. DvorkinM. ChenY. ReinmuthN. HottaK. TrukhinD. StatsenkoG. HochmairM.J. ÖzgüroğluM. JiJ.H. VoitkoO. PoltoratskiyA. PonceS. VerderameF. HavelL. BondarenkoI. KazarnowiczA. LosonczyG. ConevN.V. ArmstrongJ. ByrneN. ShireN. JiangH. GoldmanJ.W. BatageljE. CasariniI. PastorA.V. SenaS.N. ZarbaJ.J. BurghuberO. HartlS. HochmairM.J. LamprechtB. StudnickaM. SchlittlerA.L. de OliveiraA.M.F. CalabrichA. GirottoC.G. ReisD.P. GoriniF.N.C. De MarchiR.M.P. BaldottoS.R.C. SetteC. ZukinM. ConevN.V. DudovA. IlievaR. KoynovK. KrastevaR. TonevI. ValevS. VenkovaV. BiM. ChenC. ChenY. ChenZ. FangJ. FengJ. HanZ. HuJ. HuY. LiW. LiangZ. LinZ. MaR. MaS. NanK. ShuY. WangK. WangM. WuG. YangN. YangZ. ZhangH. ZhangW. ZhaoJ. ZhaoY. ZhouC. ZhouJ. ZhouX. HavelL. KolekV. KoubkovaL. RoubecJ. SkrickovaJ. ZemanovaM. ChouaidC. HilgersW. LenaH. SibilotM.D. RobinetG. SouquetP-J. AltJ. BischoffH. GroheC. LaackE. LangS. PanseJ. ReinmuthN. SchulzC. BogosK. CsánkyE. FülöpA. HorváthZ. KósaJ. LaczóI. LosonczyG. PajkosG. PápaiZ. SzékelyP.Z. SárosiV. SomfayA. EzerS.É. TelekesA. BarJ. GottfriedM. HechingN.I. KuchZ.A. BartolucciR. BettiniA.C. DelmonteA. GarassinoM.C. MinelliM. RoilaF. VerderameF. AtagiS. AzumaK. GotoH. GotoK. HaraY. HayashiH. HidaT. HottaK. KanazawaK. KandaS. KimY.H. KuyamaS. MaedaT. MoriseM. NakaharaY. NishioM. NogamiN. OkamotoI. SaitoH. ShinodaM. UmemuraS. YoshidaT. ClaessensN. CornelissenR. HeniksL. HiltermannJ. SmitE. van den BrekelS.A. KazarnowiczA. KowalskiD. MańdziukS. MrózR. WojtukiewiczM. CiuleanuT. GaneaD. UngureanuA. DvorkinM. LuftA. MoiseenkoV. PoltoratskiyA. SakaevaD. SmolinA. StatsenkoG. VasilyevA. VladimirovaL. AnasinaI. ChovanecJ. DemoP. GodalR. KasanP. StreskoM. UrdaM. ChoE.K. JiJ.H. KimJ-H. KimS-W. LeeG-W. LeeJ-S. LeeK.H. LeeK.H. LeeY.G. MollaA.I.M. GomezD.M. MingoranceI.D.J. CasadoI.D. BreaL.M. TarruellaM.M. BuenoM.T. MendivilN.A. RodríguezP.A.L. AixP.S. CampeloR.G.M. ChangG-C. ChenY-H. ChiuC-H. HsiaT-C. LeeK-Y. LiC-T. WangC-C. WeiY-F. WuS-Y. AlacacıoğluA. ÇiçinI. DemirkazikA. ErmanM. GökselT. ÖzgüroğluM. AdamchukH. BondarenkoI. KolesnikO. KryzhanivskaA. OstapenkoY. ShevniaS. ShparykY. TrukhinD. UrsolG. VoitkoN. VoitkoO. VynnychenkoI. BabuS. ChenY. ChiangA. ChuaW. DakhilS. DowlatiA. GoldmanJ.W. HaqueB. JamilR. KnobleJ. LakhanpalS. MiK. NikolinakosP. PowellS. RossH. SchaeferE. SchneiderJ. SpahrJ. SpigelD. StilwillJ. SumeyC. WilliamsonM. Durvalumab plus platinum–etoposide versus platinum–etoposide in first-line treatment of extensive- stage small-cell lung cancer (CASPIAN): A randomised, controlled, open-label, phase 3 trial.Lancet2019394102121929193910.1016/S0140‑6736(19)32222‑631590988
    [Google Scholar]
  7. ShimadaK. YamaguchiM. AtsutaY. MatsueK. SatoK. KusumotoS. NagaiH. TakizawaJ. FukuharaN. NagafujiK. MiyazakiK. OhtsukaE. OkamotoM. SugitaY. UchidaT. KayukawaS. WakeA. EnnishiD. KondoY. IzumiT. KinY. TsukasakiK. HashimotoD. YugeM. YanagisawaA. KuwatsukaY. ShimadaS. MasakiY. NiitsuN. KiyoiH. SuzukiR. TokunagaT. NakamuraS. KinoshitaT. Rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone combined with high-dose methotrexate plus intrathecal chemotherapy for newly diagnosed intravascular large B-cell lymphoma (PRIMEUR-IVL): A multicentre, single-arm, phase 2 trial.Lancet Oncol.202021459360210.1016/S1470‑2045(20)30059‑032171071
    [Google Scholar]
  8. LiangranG. Combination of trail and actinomycin D liposomes enhances antitumor effect in non-small cell lung cancer.Int. J. Nanomedicine2012714496010.2147/IJN.S24711
    [Google Scholar]
  9. AdairJ.E. KubekS.P. KiemH.P. Hematopoietic stem cell approaches to cancer.Hematol. Oncol. Clin. North Am.201731589791210.1016/j.hoc.2017.06.01228895855
    [Google Scholar]
  10. HongD.Z. OngT.C.C. TimbadiaD.P. TanH.T.A. KwaE.D. ChongW.Q. GohB.C. LohW.S. LohK.S. TanE.C. TayJ.K. Systematic review and meta-analysis of the influence of genetic variation on ototoxicity in platinum-based chemotherapy.Otolaryngol. Head Neck Surg.202316861324133710.1002/ohn.22236802061
    [Google Scholar]
  11. AbidS.H. MalhotraV. PerryM.C. Radiation-induced and chemotherapy-induced pulmonary injury.Curr. Opin. Oncol.200113424224810.1097/00001622‑200107000‑0000611429481
    [Google Scholar]
  12. KurtN. GunesO. SuleymanB. BakanN. The effect of taxifolin on high-dose-cisplatin-induced oxidative liver injury in rats.Adv. Clin. Exp. Med.202130101025103010.17219/acem/13831834435476
    [Google Scholar]
  13. ImZ. Management of chemotherapy side effects and their long-term sequelae.Der Urologe. Ausg. A2021607862871
    [Google Scholar]
  14. YangS. Traditional Chinese medicine on treating myelosuppression after chemotherapy: A protocol for systematic review and meta-analysis.Medicine20211004e24307
    [Google Scholar]
  15. ElmslieR.E. GlaweP. DowS.W. Metronomic therapy with cyclophosphamide and piroxicam effectively delays tumor recurrence in dogs with incompletely resected soft tissue sarcomas.J. Vet. Intern. Med.20082261373137910.1111/j.1939‑1676.2008.0179.x18976288
    [Google Scholar]
  16. AhlmannM. HempelG. The effect of cyclophosphamide on the immune system: Implications for clinical cancer therapy.Cancer Chemother. Pharmacol.201678466167110.1007/s00280‑016‑3152‑127646791
    [Google Scholar]
  17. HuyanX.H. LinY.P. GaoT. ChenR.Y. FanY.M. Immunosuppressive effect of cyclophosphamide on white blood cells and lymphocyte subpopulations from peripheral blood of Balb/c mice.Int. Immunopharmacol.20111191293129710.1016/j.intimp.2011.04.01121530682
    [Google Scholar]
  18. LudemanS.M. The chemistry of the metabolites of cyclophosphamide.Curr. Pharm. Des.19995862764310.2174/138161280566623011021545810469895
    [Google Scholar]
  19. EpsteinR.S. AaproM.S. RoyB.U.K. SalimiT. KrenitskyJ. PerkinsL.M.L. GirmanC. SchlusserC. CrawfordJ. Patient burden and real-world management of chemotherapy-induced myelosuppression: Results from an online survey of patients with solid tumors.Adv. Ther.20203783606361810.1007/s12325‑020‑01419‑632642965
    [Google Scholar]
  20. WangJ. YingY-Y. ChenZ-H. ShaoK-D. ZhangW-P. LinS-Y. Guilu erxian glue () inhibits chemotherapy-induced bone marrow hematopoietic stem cell senescence in mice may via p16INK4a-rb signaling pathway.Chin. J. Integr. Med.2020261181982410.1007/s11655‑020‑3098‑332915425
    [Google Scholar]
  21. IsmailZ.M.K. AminN.M.A. YacoubM.F.Y. MohamedA.M.O. Myelo- enhancement by Astragalus membranaceus in male albino rats with chemotherapy myelo-suppression. Histological and immunohistochemical study.Int. J. Stem Cells201471122210.15283/ijsc.2014.7.1.1224921023
    [Google Scholar]
  22. CrawfordJ. HerndonD. GmitterK. WeissJ. The impact of myelosuppression on quality of life of patients treated with chemotherapy.Future Oncol.202420211515153010.2217/fon‑2023‑0513
    [Google Scholar]
  23. SongT. TPGS-Modified long-circulating liposomes loading ziyuglycoside I for enhanced therapy of myelosuppression.Int. J. Nanomedicine20211662816295
    [Google Scholar]
  24. HaihongF. Ziyuglycoside II alleviates cyclophosphamide-induced leukopenia in mice via regulation of HSPC proliferation and differentiation.Biomed. Pharmacother.202013211086210.1016/j.biopha.2020.110862
    [Google Scholar]
  25. SilinZ. Ginsenoside compound k regulates HIF-1α-Mediated glycolysis through Bclaf1 to inhibit the proliferation of human liver cancer cells.Front Pharmacol.20201158333410.3389/fphar.2020.583334
    [Google Scholar]
  26. HongboJ. Ginsenoside Rh4 suppresses metastasis of gastric cancer via SIX1-dependent TGF-β/Smad2/3 signaling pathway.Nutrients2022148156410.3390/nu14081564
    [Google Scholar]
  27. LiX. ChuS. LinM. GaoY. LiuY. YangS. ZhouX. ZhangY. HuY. WangH. ChenN. Anticancer property of ginsenoside Rh2 from ginseng.Eur. J. Med. Chem.202020311262710.1016/j.ejmech.2020.11262732702586
    [Google Scholar]
  28. LiuX. ZhangZ. LiuJ. WangY. ZhouQ. WangS. WangX. Ginsenoside Rg3 improves cyclophosphamide-induced immunocompetence in Balb/c mice.Int. Immunopharmacol.2019729811110.1016/j.intimp.2019.04.00330974284
    [Google Scholar]
  29. YaoF. Phenolic compounds and ginsenosides in ginseng shoots and their antioxidant and anti-inflammatory capacities in LPS-induced RAW264.7 mouse macrophages.Int. J. Mol. Sci.201920122951
    [Google Scholar]
  30. HanJ. XiaJ. ZhangL. CaiE. ZhaoY. FeiX. JiaX. YangH. LiuS. Studies of the effects and mechanisms of ginsenoside Re and Rk3 on myelosuppression induced by cyclophosphamide.J. Ginseng Res.201943461862410.1016/j.jgr.2018.07.00931695568
    [Google Scholar]
  31. PricciM. Curcumin and colorectal cancer: From basic to clinical evidences.Int. J. Mol. Sci.20202172364
    [Google Scholar]
  32. WnbW.M.T. NhL. Mechanistic understanding of curcumin’s therapeutic effects in lung cancer.Nutrients201911122989
    [Google Scholar]
  33. Al-HawaryS.S.I. JasimA.S. KadhimM.M. SaadoonJ.S. AhmadI. ParraR.R.M. HammoodiH.S. AbulkassimR. Curcumin in the treatment of liver cancer: From mechanisms of action to nanoformulations.Phytother. Res.20233741624163910.1002/ptr.775736883769
    [Google Scholar]
  34. HatamieS. AkhavanO. SadrnezhaadS.K. AhadianM.M. ShirolkarM.M. WangH.Q. Curcumin-reduced graphene oxide sheets and their effects on human breast cancer cells.Mater. Sci. Eng. C20155548248910.1016/j.msec.2015.05.07726117780
    [Google Scholar]
  35. PengY. AoM. DongB. JiangY. YuL. ChenZ. HuC. XuR. Anti-inflammatory effects of curcumin in the inflammatory diseases: Status, limitations and countermeasures.Drug Des. Devel. Ther.2021154503452510.2147/DDDT.S32737834754179
    [Google Scholar]
  36. MohammadJ.D. Antioxidant and anti-inflammatory effects of curcumin/turmeric supplementation in adults: A GRADE-assessed systematic review and dose-response meta-analysis of randomized controlled trials.Cytokine202316415614410.1016/j.cyto.2023.156144
    [Google Scholar]
  37. MaP. The influence of curcumin and (-)-epicatechin on the genotoxicity and myelosuppression induced by etoposide in bone marrow cells of male rats.Drug Chem. Toxicol.201336193101
    [Google Scholar]
  38. PatraK. BoseS. SarkarS. RakshitJ. JanaS. MukherjeeA. RoyA. MandalD.P. BhattacharjeeS. Amelioration of cyclophosphamide induced myelosuppression and oxidative stress by cinnamic acid.Chem. Biol. Interact.2012195323123910.1016/j.cbi.2012.01.00122285266
    [Google Scholar]
  39. ZedongX. Dietary gallic acid as an antioxidant: A review of its food industry applications, health benefits, bioavailability, nano-delivery systems, and drug interactions.Food Res. Int.,202418011406810.1016/j.foodres.2024.114068
    [Google Scholar]
  40. DongW. Gallic acid impedes non-small cell lung cancer progression via suppression of EGFR-dependent CARM1-PELP1 complex.Drug Des. Devel. Ther.2020141583159210.2147/DDDT.S228123
    [Google Scholar]
  41. RanH. Anticancer effect of gallic acid on acidity-induced invasion of MCF7 breast cancer cells.Nutrients20231516359610.3390/nu15163596
    [Google Scholar]
  42. JangY.G. KoE.B. ChoiK.C. Gallic acid, a phenolic acid, hinders the progression of prostate cancer by inhibition of histone deacetylase 1 and 2 expression.J. Nutr. Biochem.20208410844410.1016/j.jnutbio.2020.10844432615369
    [Google Scholar]
  43. JinrongB. Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases.Biomed. Pharmacother.202113311098510.1016/j.biopha.2020.110985
    [Google Scholar]
  44. BiaolongD. Gallic acid induces T-helper-1-like Treg cells and strengthens immune checkpoint blockade efficacy.J. Immunother. Cancer2022107e00403710.1136/jitc‑2021‑004037
    [Google Scholar]
  45. GuoM.Z. MengM. FengC.C. WangX. WangC.L. A novel polysaccharide obtained from Craterellus cornucopioides enhances immunomodulatory activity in immunosuppressive mice models via regulation of the TLR4-NF-κB pathway.Food Funct.20191084792480110.1039/C9FO00201D31314026
    [Google Scholar]
  46. ZengM. ZhangY. ZhangX. ZhangW. YuQ. ZengW. MaD. GanJ. YangZ. JiangX. Two birds with one stone: YQSSF regulates both proliferation and apoptosis of bone marrow cells to relieve chemotherapy-induced myelosuppression.J. Ethnopharmacol.202228911502810.1016/j.jep.2022.11502835077825
    [Google Scholar]
  47. CrawfordJ. Chemotherapy-induced neutropenia: Risks, consequences, and new directions for its management.Cancer20041002228237
    [Google Scholar]
  48. HosseinimehrS.J. AhmadashrafiS. NaghshvarF. AhmadiA. EhasnalaviS. TanhaM. Chemoprotective effects of Zataria multiflora against genotoxicity induced by cyclophosphamide in mice bone marrow cells.Integr. Cancer Ther.20109221922310.1177/153473540936036120356951
    [Google Scholar]
  49. WangS. YangX. ZhangY. CaiE. ZhengX. ZhaoY. LiG. HanM. YangL. Study on the changes of chemical constituents in different compatibilities of ginseng- prepared rehmannia root and their effects on bone marrow inhibition after chemotherapy.Chem. Pharm. Bull.202068542843510.1248/cpb.c19‑0099432188797
    [Google Scholar]
  50. DengJ. ZhongY.F. WuY.P. LuoZ. SunY.M. WangG.E. KuriharaH. LiY.F. HeR.R. Carnosine attenuates cyclophosphamide-induced bone marrow suppression by reducing oxidative DNA damage.Redox Biol.2018141610.1016/j.redox.2017.08.00328826042
    [Google Scholar]
  51. CareyP.J. Drug-induced myelosuppression.Drug Saf.2003261069170610.2165/00002018‑200326100‑0000312862504
    [Google Scholar]
  52. ZhangW.N. GongL.L. LiuY. ZhouZ.B. WanC.X. XuJ.J. WuQ-X. ChenL. LuY-M. ChenY. Immunoenhancement effect of crude polysaccharides of Helvella leucopus on cyclophosphamide-induced immunosuppressive mice.J. Funct. Foods20206910394210.1016/j.jff.2020.103942
    [Google Scholar]
  53. GridleyD.S. MaoX.W. StodieckL.S. FergusonV.L. BatemanT.A. MoldovanM. CunninghamC.E. JonesT.A. SlaterJ.M. PecautM.J. Changes in mouse thymus and spleen after return from the STS-135 mission in space.PLoS One201389e7509710.1371/journal.pone.007509724069384
    [Google Scholar]
  54. HanJ. DaiM. ZhaoY. CaiE. ZhangL. JiaX. SunN. FeiX. ShuH. Compatibility effects of ginseng and Ligustrum lucidum Ait herb pair on hematopoietic recovery in mice with cyclophosphamide-induced myelosuppression and its material basis.J. Ginseng Res.202044229129910.1016/j.jgr.2019.01.00132148411
    [Google Scholar]
  55. DolgovaE.V. EfremovY.R. OrishchenkoK.E. AndrushkevichO.M. AlyamkinaE.A. ProskurinaA.S. BayborodinS.I. NikolinV.P. PopovaN.A. ChernykhE.R. OstaninA.A. TaranovO.S. OmigovV.V. MinkevichA.M. RogachevV.A. BogachevS.S. ShurdovM.A. Delivery and processing of exogenous double-stranded DNA in mouse CD34+ hematopoietic progenitor cells and their cell cycle changes upon combined treatment with cyclophosphamide and double-stranded DNA.Gene20135282748310.1016/j.gene.2013.06.05823911305
    [Google Scholar]
  56. ChenQ. HanX. WangW. ZhaoL. ChenA. Danggui sini decoction ameliorates myelosuppression in animal model by upregulating Thrombopoietin expression.Cell Biochem. Biophys.201571294595010.1007/s12013‑014‑0291‑z25308860
    [Google Scholar]
  57. VeibyO.P. MikhailA.A. SnodgrassH.R. Growth factors and hematopoietic stem cells.Hematol. Oncol. Clin. North Am.19971161173118410.1016/S0889‑8588(05)70487‑19443050
    [Google Scholar]
  58. IoannisM. Modulation of myelopoiesis progenitors is an integral component of trained immunity.Cell20181721-2147161.e1210.1016/j.cell.2017.11.034
    [Google Scholar]
  59. GarlandaC. The interleukin-1 family: Back to the future.Immunity201339610031018
    [Google Scholar]
  60. EderM. IL-3 in the clinic.Stem Cells1997155327333
    [Google Scholar]
  61. HunterC.A. JonesS.A. IL-6 as a keystone cytokine in health and disease.Nat. Immunol.201516544845710.1038/ni.315325898198
    [Google Scholar]
  62. TsiftsoglouA.S. Erythropoietin (EPO) as a key regulator of erythropoiesis, bone remodeling and endothelial transdifferentiation of multipotent mesenchymal stem cells (MSCs): Implications in regenerative medicine.Cells2021108214010.3390/cells1008214034440909
    [Google Scholar]
  63. AkkermanJ.W. Thrombopoietin and platelet function.Semin. Thromb. Hemost.200632329530410.1055/s‑2006‑93944216673285
    [Google Scholar]
  64. KumarA. GM-CSF: A double-edged sword in cancer immunotherapy.Front. Immunol.202213901277
    [Google Scholar]
  65. WaskowC. Spatiotemporal resolution of SCF supply in early hematopoiesis.Cell Stem Cell2019243349350
    [Google Scholar]
  66. SeJ FwJ TNF-alpha, the great imitator: Role of p55 and p75 TNF receptors in hematopoiesis.Stem Cells19941211126
    [Google Scholar]
  67. ShruthiS. ShenoyB.K. Genoprotective effects of gallic acid against cisplatin induced genotoxicity in bone marrow cells of mice.Toxicol. Res.20187595195810.1039/C8TX00058A30310672
    [Google Scholar]
  68. ShruthiS. ShenoyK.B. Gallic acid: A promising genoprotective and hepatoprotective bioactive compound against cyclophosphamide induced toxicity in mice.Environ. Toxicol.202136112313110.1002/tox.2301832902929
    [Google Scholar]
  69. BaharmiS. KalantariH. KalantarM. GoudarziM. MansouriE. KalantarH. Pretreatment with gallic acid mitigates cyclophosphamide induced inflammation and oxidative stress in mice.Curr. Mol. Pharmacol.202215120421234061011
    [Google Scholar]
  70. ShruthiS VijayalaxmiKK ShenoyKB Immunomodulatory effects of gallic acid against cyclophosphamide- and cisplatin-induced immunosuppression in swiss albino mice.Ind. J. Pharm. Sci.2018801150160
    [Google Scholar]
  71. ZhangY. LiuJ. WangY. SunC. LiW. QiuJ. QiaoY. WuF. HuoX. AnY. ZhangB. MaS. ZhengJ. MaX. Nucleosides and amino acids, isolated from Cordyceps sinensis, protected against cyclophosphamide-induced myelosuppression in mice.Nat. Prod. Res.202236236056605910.1080/14786419.2022.204330735188001
    [Google Scholar]
  72. HanJ. SunN. XingJ. FeiX. CaiE. SuF. Effect and mechanism of specnuezhenide on chemotherapy-induced myelosuppression.Comb. Chem. High Throughput Screen.202326132393240010.2174/138620732666623022812060836852800
    [Google Scholar]
  73. LiuY.H. QinH.Y. ZhongY.Y. LiS. WangH.J. WangH. ChenL.L. TangX. LiY.L. QianZ.Y. LiH.Y. ZhangL. ChenT. Neutral polysaccharide from Panax notoginseng enhanced cyclophosphamide antitumor efficacy in hepatoma H22-bearing mice.BMC Cancer20212113710.1186/s12885‑020‑07742‑z33413214
    [Google Scholar]
  74. RaghavendranH.R.B. SathyanathR. ShinJ. KimH.K. HanJ.M. ChoJ. SonC.G. Panax ginseng modulates cytokines in bone marrow toxicity and myelopoiesis: Ginsenoside Rg1 partially supports myelopoiesis.PLoS One201274e3373310.1371/journal.pone.003373322523542
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673354122241220051407
Loading
/content/journals/cmc/10.2174/0109298673354122241220051407
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test