Skip to content
2000
Volume 32, Issue 38
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

AGEs are molecules formed by nonenzymatic glycation of proteins, lipids, and nucleic acids, a process accelerated under hyperglycemic conditions such as DM1. These molecules interact with specific receptors, particularly the Receptor for AGEs (RAGE), triggering intracellular signaling cascades that promote oxidative stress through the generation of Reactive Oxygen Species (ROS) and activation of inflammatory pathways. A critical pathological mechanism involves the formation of neoantigens, modified self-proteins that elicit immune responses. Structural alterations caused by AGEs expose new epitopes or modify existing ones, making them targets for autoreactive T cells and autoantibodies. This mechanism is implicated in autoimmune skin diseases such as vitiligo and bullous pemphigoid. Oxidative stress plays a central role in these diseases, exacerbated by AGEs through the generation of ROS and depletion of antioxidants, leading to melanocyte destruction in vitiligo and tissue damage in bullous pemphigoid. In addition, hypoxia enhances ROS production, mitochondria, and other cellular systems contributing to oxidative stress. Emerging evidence suggests that hypoxia can be mitigated by oxygen nanobubbles. Targeting AGE formation and oxidative stress presents a promising approach for the management of autoimmune skin disorders in DM1. Therapeutic strategies targeting AGE formation, oxidative stress, and immune dysregulation show promise for managing autoimmune skin disorders in Type 1 Diabetes Mellitus (T1DM). AGE inhibitors, such as aminoguanidine and pyridoxamine, reduce non-enzymatic protein glycation, limiting AGE accumulation and inflammatory signaling. Antioxidants, including polyphenols, vitamins C and E, N-acetylcysteine, selenium, and hydrogen-rich water, help neutralize Reactive Oxygen Species (ROS), restoring oxidative balance. Combining AGE inhibitors and antioxidants may provide synergistic benefits by reducing oxidative stress and protein immunogenicity. Additionally, immune modulation therapies, such as Treg therapy and cytokine inhibitors, aim to restore immune tolerance and prevent autoimmune activation. Anti-TNF-α and IL-6 inhibitors offer targeted inflammation suppression, while RAGE antagonists mitigate AGE-induced immune dysregulation. This study aims to explore the role of Advanced Glycation End products (AGEs) in the pathogenesis of autoimmune skin disorders associated with type 1 Diabetes Mellitus (DM1) and to evaluate potential therapeutic strategies targeting AGE formation and oxidative stress.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673374335250410074811
2025-04-25
2025-11-01
Loading full text...

Full text loading...

References

  1. ChangW.L. LeeW.R. KuoY.C. HuangY.H. Vitiligo: An autoimmune skin disease and its immunomodulatory therapeutic intervention.Front. Cell Dev. Biol.2021979702610.3389/fcell.2021.79702634970551
    [Google Scholar]
  2. GenoveseG. Di ZenzoG. CozzaniE. BertiE. CugnoM. MarzanoA.V. New insights into the pathogenesis of bullous pemphigoid: 2019 update.Front. Immunol.201910150610.3389/fimmu.2019.0150631312206
    [Google Scholar]
  3. ChisnoiuT. MihaiC.M. PantaziA.C. BalasaA.L. MihaiL. FrecusC.E. ConstantinB.M. AndruscaA. LupuA. ChirilaS. An overview of celiac disease in childhood type 1 diabetes - A single center experience from South East Romania.Rom. J. Oral Rehabil.202416130731710.62610/RJOR.2024.1.16.28
    [Google Scholar]
  4. PopoviciuM.S. KakaN. SethiY. PatelN. ChopraH. CavaluS. Type 1 diabetes mellitus and autoimmune diseases: A critical Review of the association and the application of personalized medicine.J. Pers. Med.202313342210.3390/jpm1303042236983604
    [Google Scholar]
  5. KhalidM. PetroianuG. AdemA. Advanced glycation end products and diabetes mellitus: Mechanisms and perspectives.Biomolecules202212454210.3390/biom1204054235454131
    [Google Scholar]
  6. MengstieM.A. Chekol AbebeE. Behaile TeklemariamA. Tilahun MuluA. AgidewM.M. Teshome AzezewM. ZewdeE.A. Agegnehu TeshomeA. Endogenous advanced glycation end products in the pathogenesis of chronic diabetic complications.Front. Mol. Biosci.20229100271010.3389/fmolb.2022.100271036188225
    [Google Scholar]
  7. MaiS. IzumiK. MaiY. NatsugaK. NishieW. UjiieH. 053 Conformational epitope mapping of autoantibodies against BP180 in dipeptidyl peptidase-4 inhibitors-associated bullous pemphigoid.J. Invest. Dermatol.20231435Suppl.S910.1016/j.jid.2023.03.054
    [Google Scholar]
  8. YueQ. SongY. LiuZ. ZhangL. YangL. LiJ. Receptor for advanced glycation end products (RAGE): A pivotal hub in immune diseases.Molecules20222715492210.3390/molecules2715492235956875
    [Google Scholar]
  9. XianD. GuoM. XuJ. YangY. ZhaoY. ZhongJ. Current evidence to support the therapeutic potential of flavonoids in oxidative stress-related dermatoses.Redox Rep.202126113414610.1080/13510002.2021.196209434355664
    [Google Scholar]
  10. FournetM. BontéF. DesmoulièreA. Glycation damage: A possible hub for major pathophysiological disorders and aging.Aging Dis.20189588090010.14336/AD.2017.112130271665
    [Google Scholar]
  11. Carrión-BarberàI. TriginerL. TíoL. Pérez-GarcíaC. RibesA. AbadV. ProsA. Bermúdez-LópezM. Castro-BoquéE. LecubeA. ValdivielsoJ.M. GroupI.P. MonfortJ. Salman-MonteT.C. Role of advanced glycation end products as new biomarkers in systemic lupus erythematosus.Int. J. Mol. Sci.2024253022
    [Google Scholar]
  12. ChristidisG. KüppersF. KaratayliS.C. KaratayliE. WeberS.N. LammertF. KrawczykM. Skin advanced glycation end-products as indicators of the metabolic profile in diabetes mellitus: Correlations with glycemic control, liver phenotypes and metabolic biomarkers.BMC Endocr. Disord.20242413138443880
    [Google Scholar]
  13. SalazarJ. NavarroC. OrtegaÁ. NavaM. MorilloD. TorresW. HernándezM. CabreraM. AngaritaL. OrtizR. ChacínM. D’MarcoL. BermúdezV. Advanced glycation end products: New clinical and molecular perspectives.Int. J. Environ. Res. Public Health20211814723634299683
    [Google Scholar]
  14. ForbesJ.M. SoldatosG. ThomasM.C. Below the radar: Advanced glycation end products that detour “around the side”. Is HbA1c not an accurate enough predictor of long term progression and glycaemic control in diabetes?Clin. Biochem. Rev.200526412313416648883
    [Google Scholar]
  15. MarchioroH.Z. Silva de CastroC.C. FavaV.M. SakiyamaP.H. DellatorreG. MiotH.A. Update on the pathogenesis of vitiligo.An. Bras. Dermatol.202297447849035643735
    [Google Scholar]
  16. XuanY. YangY. XiangL. ZhangC. The role of oxidative stress in the pathogenesis of vitiligo: A culprit for melanocyte death.Oxid. Med. Cell. Longev.20222022849847235103096
    [Google Scholar]
  17. FarajS. KempE.H. GawkrodgerD.J. Patho-immunological mechanisms of vitiligo: the role of the innate and adaptive immunities and environmental stress factors.Clin. Exp. Immunol.20222071274335020865
    [Google Scholar]
  18. ZhangZ. JingJ. YeY. ChenZ. JingY. LiS. HongW. RuanH. LiuY. HuQ. WangJ. LiW. LinC. DiaoL. ZhouY. HanL. Characterization of the dual functional effects of heat shock proteins (HSPs) in cancer hallmarks to aid development of HSP inhibitors.Genome Med.202012110133225964
    [Google Scholar]
  19. FangH. ZhangY. LiN. WangG. LiuZ. The autoimmune skin disease bullous pemphigoid: The role of mast cells in autoantibody-induced tissue injury.Front. Immunol.2018940729545809
    [Google Scholar]
  20. DongH. ZhangY. HuangY. DengH. Pathophysiology of RAGE in inflammatory diseases.Front. Immunol.20221393147335967420
    [Google Scholar]
  21. AsmatU. AbadK. IsmailK. Diabetes mellitus and oxidative stress-A concise review.Saudi Pharm. J.201624554755327752226
    [Google Scholar]
  22. XiangY. ZhangM. JiangD. SuQ. ShiJ. The role of inflammation in autoimmune disease: A therapeutic target.Front. Immunol.202314126709137859999
    [Google Scholar]
  23. SogkasG. AtschekzeiF. AdriawanI.R. DubrowinskajaN. WitteT. SchmidtR.E. Cellular and molecular mechanisms breaking immune tolerance in inborn errors of immunity.Cell. Mol. Immunol.20211851122114010.1038/s41423‑020‑00626‑z33795850
    [Google Scholar]
  24. McGarryT. BinieckaM. VealeD.J. FearonU. Hypoxia, oxidative stress and inflammation.Free Radic. Biol. Med.2018125152410.1016/j.freeradbiomed.2018.03.04229601945
    [Google Scholar]
  25. AfshariR. AkhavanO. HamblinM.R. VarmaR.S. Review of oxygenation with nanobubbles: Possible treatment for hypoxic COVID-19 patients.ACS Appl. Nano Mater.2021411113861141210.1021/acsanm.1c0190737556289
    [Google Scholar]
  26. KanyS. VollrathJ.T. ReljaB. Cytokines in inflammatory disease.Int. J. Mol. Sci.20192023600810.3390/ijms2023600831795299
    [Google Scholar]
  27. ChaudhuriJ. BainsY. GuhaS. KahnA. HallD. BoseN. GugliucciA. KapahiP. The role of advanced glycation end products in aging and metabolic diseases: Bridging association and causality.Cell Metab.201828333735210.1016/j.cmet.2018.08.01430184484
    [Google Scholar]
  28. XieN. ShenG. GaoW. HuangZ. HuangC. FuL. Neoantigens: promising targets for cancer therapy.Signal Transduct. Target. Ther.202381910.1038/s41392‑022‑01270‑x36604431
    [Google Scholar]
  29. VojdaniA. VojdaniE. The role of exposomes in the pathophysiology of autoimmune diseases I: Toxic chemicals and food.Pathophysiology202128451354310.3390/pathophysiology2804003435366249
    [Google Scholar]
  30. ChenD. XuZ. CuiJ. ChenT. A mouse model of vitiligo based on endogenous auto-reactive CD8 + T cell targeting skin melanocyte.Cell Regen.20221113110.1186/s13619‑022‑00132‑936182982
    [Google Scholar]
  31. de Nicolas-RuanesB. Ballester-MartinezA. Garcia- MouronteE. Berna-RicoE. Azcarraga-LlobetC. Fernandez-GuarinoM. From molecular insights to clinical perspectives in drug-associated bullous pemphigoid.Int. J. Mol. Sci.202324231678610.3390/ijms24231678638069109
    [Google Scholar]
  32. DelrueC. SpeeckaertR. DelangheJ.R. SpeeckaertM.M. The potential influence of advanced glycation end products and (s)RAGE in rheumatic diseases.Int. J. Mol. Sci.2023243289410.3390/ijms2403289436769213
    [Google Scholar]
  33. ChenC.Y. ZhangJ-Q. LiL. GuoM.M. HeY.F. DongY.M. MengH. YiF. Advanced glycation end products in the skin: Molecular mechanisms, methods of measurement, and inhibitory pathways.Front. Med.2022983722235646963
    [Google Scholar]
  34. PalanissamiG. PaulS.F.D. AGEs and RAGE: Metabolic and molecular signatures of the glycation-inflammation axis in malignant or metastatic cancers.Explor. Target. Antitumor Ther.20234581284937970208
    [Google Scholar]
  35. KurowskaA. ZiemichódW. HerbetM. Piątkowska-ChmielI. The role of diet as a modulator of the inflammatory process in the neurological diseases.Nutrients2023156143610.3390/nu1506143636986165
    [Google Scholar]
  36. DuC. WhiddettR.O. BuckleI. ChenC. ForbesJ.M. FotheringhamA.K. Advanced glycation end products and inflammation in type 1 diabetes development.Cells20221121350310.3390/cells1121350336359899
    [Google Scholar]
  37. LiuY. LiL. XiaY. BP180 is critical in the autoimmunity of bullous pemphigoid.Front. Immunol.20178175210.3389/fimmu.2017.0175229276517
    [Google Scholar]
  38. BarnabeiL. LaplantineE. MbongoW. Rieux-LaucatF. WeilR. NF-κB: At the borders of autoimmunity and inflammation.Front. Immunol.20211271646910.3389/fimmu.2021.71646934434197
    [Google Scholar]
  39. KandhwalM. BehlT. SinghS. SharmaN. AroraS. BhatiaS. Al-HarrasiA. SachdevaM. BungauS. Role of matrix metalloproteinase in wound healing.Am. J. Transl. Res.20221474391440535958464
    [Google Scholar]
  40. SerbanA.I. StancaL. GeicuO.I. MunteanuM.C. DinischiotuA. RAGE and TGF-β1 cross-talk regulate extracellular matrix turnover and cytokine synthesis in AGEs exposed fibroblast cells.PLoS One2016113e015237610.1371/journal.pone.015237627015414
    [Google Scholar]
  41. TomitaT. Apoptosis of pancreatic β-cells in Type 1 diabetes.Bosn. J. Basic Med. Sci.201717318319310.17305/bjbms.2017.196128368239
    [Google Scholar]
  42. KanetoH. NakataniY. KawamoriD. MiyatsukaT. MatsuokaT.A. Involvement of oxidative stress and the JNK pathway in glucose toxicity.Rev. Diabet. Stud.20041416517410.1900/RDS.2004.1.16517491701
    [Google Scholar]
  43. ZawadaA. MachowiakA. RychterA.M. RatajczakA.E. Szymczak-TomczakA. DobrowolskaA. Krela-KaźmierczakI. Accumulation of advanced glycation end-products in the body and dietary habits.Nutrients20221419398210.3390/nu1419398236235635
    [Google Scholar]
  44. AkhavanO. KalaeeM. AlaviZ.S. GhiasiS.M.A. EsfandiarA. Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide.Carbon20125083015302510.1016/j.carbon.2012.02.087
    [Google Scholar]
  45. PadayattyS.J. KatzA. WangY. EckP. KwonO. LeeJ.H. ChenS. CorpeC. DuttaA. DuttaS.K. LevineM. Vitamin C as an antioxidant: Evaluation of its role in disease prevention.J. Am. Coll. Nutr.2003221183510.1080/07315724.2003.1071927212569111
    [Google Scholar]
  46. NiC. ZhouW. YuM. LiX. LiJ. CuiY. CuiW. VitaminE. Vitamin E treatment improves the antioxidant capacity of patients receiving dialysis: A systematic review and meta-analysis.Mol. Nutr. Food Res.20236722230026910.1002/mnfr.20230026937726247
    [Google Scholar]
  47. SantusP. SignorelloJ.C. DanzoF. LazzaroniG. SaadM. RadovanovicD. Anti-inflammatory and anti-oxidant properties of n-acetylcysteine: A fresh perspective.J. Clin. Med.202413144127
    [Google Scholar]
  48. AmaniH. HabibeyR. ShokriF. HajmiresmailS.J. AkhavanO. MashaghiA. Pazoki-ToroudiH. Selenium nanoparticles for targeted stroke therapy through modulation of inflammatory and metabolic signaling.Sci. Rep.201991604410.1038/s41598‑019‑42633‑930988361
    [Google Scholar]
  49. AkhavanO. AzimiradR. GholizadehH.T. GhorbaniF. Hydrogen-rich water for green reduction of graphene oxide suspensions.Int. J. Hydrogen Energy201540165553556010.1016/j.ijhydene.2015.02.106
    [Google Scholar]
  50. Muñoz-SánchezG. Godínez-MéndezL.A. Fafutis-MorrisM. Delgado-RizoV. Effect of antioxidant supplementation on NET formation induced by LPS in vitro; the roles of vitamins E and C, glutathione, and N-acetyl cysteine.Int. J. Mol. Sci.202324171316210.3390/ijms24171316237685966
    [Google Scholar]
  51. GoswamiT.K. SinghM. DhawanM. MitraS. EmranT.B. RabaanA.A. MutairA.A. AlawiZ.A. AlhumaidS. DhamaK. Regulatory T cells (Tregs) and their therapeutic potential against autoimmune disorders – Advances and challenges.Hum. Vaccin. Immunother.2022181203511710.1080/21645515.2022.203511735240914
    [Google Scholar]
  52. HuangQ. ZhuJ. Regulatory T cell-based therapy in type 1 diabetes: Latest breakthroughs and evidence.Int. Immunopharmacol.202414011272410.1016/j.intimp.2024.11272439098233
    [Google Scholar]
  53. ZhouM. ZhangY. ShiL. LiL. ZhangD. GongZ. WuQ. Activation and modulation of the AGEs-RAGE axis: Implications for inflammatory pathologies and therapeutic interventions – A review.Pharmacol. Res.202420610728210.1016/j.phrs.2024.10728238914383
    [Google Scholar]
  54. KangQ. DaiH. JiangS. YuL. Advanced glycation end products in diabetic retinopathy and phytochemical therapy.Front. Nutr.20229103718610.3389/fnut.2022.103718636466410
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673374335250410074811
Loading
/content/journals/cmc/10.2174/0109298673374335250410074811
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test