Skip to content
2000
Volume 32, Issue 36
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Osteoporosis, a metabolic disorder distinguished by decreased bone density and degradation of bone tissue microarchitecture, is a silent disease that evolves without any clinical symptoms or signs. An individual may not be aware of osteoporosis until a fracture occurs. The lifetime risk of osteoporosis is estimated to be between 10 and 20%. The disease can have intrinsic causes, such as genetic predisposition, aging, and lack of sex hormones. However, it can also occur secondary to calcium and vitamin D deficiencies due to the influence of various factors. With a global increase in osteoporotic fractures, there is a need for macro-level and micro-level interventions to prevent and treat osteoporosis and its complications. This review highlights the crucial role of various biomolecules in diagnosing and managing osteoporosis and emphasizes the importance of further research in the field.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673358991250210111956
2025-02-24
2025-10-31
Loading full text...

Full text loading...

References

  1. WuQ. XiaoX. XuY. Performance of FRAX in predicting fractures in us postmenopausal women with varied race and genetic profiles.J. Clin. Med.20209128510.3390/jcm901028531968614
    [Google Scholar]
  2. ChangY.F. ChangC.S. WangM.W. WuC.F. ChenC.Y. ChangH.J. KuoP.H. WuC.H. Effects of age and body mass index on thoracolumbar spine x-ray for diagnosing osteoporosis in elderly women: Tianliao old people (TOP) Study 07.PLoS One2016119e016177310.1371/journal.pone.016177327606706
    [Google Scholar]
  3. SalehA. Vertebral Compression Fractures in Osteoporotic and Pathologic Bone.Springer2020576210.1007/978‑3‑030‑33861‑9_6
    [Google Scholar]
  4. JohnellO. KanisJ.A. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures.Osteoporos. Int.200617121726173310.1007/s00198‑006‑0172‑416983459
    [Google Scholar]
  5. GoldhahnJ. LittleD. MitchellP. FazzalariN.L. ReidI.R. AspenbergP. MarshD. Evidence for anti-osteoporosis therapy in acute fracture situations-recommendations of a multidisciplinary workshop of the International Society for Fracture Repair.Bone2010462267271
    [Google Scholar]
  6. CurateF. Osteoporosis and paleopathology: A review.J. Anthropol. Sci.20149211914624607995
    [Google Scholar]
  7. Von Recklinghausen F. Untersuchungen uber Rachitis und osteomalacie. Jena Verlag Gustav Fischer. 1910.
    [Google Scholar]
  8. RachnerT.D. KhoslaS. HofbauerL.C. Osteoporosis: Now and the future.Lancet201137797731276128710.1016/S0140‑6736(10)62349‑521450337
    [Google Scholar]
  9. KanisJ.A. McCloskeyE. JohanssonH. OdenA. LeslieW.D. FRAX® with and without bone mineral density.Calcif. Tissue Int.201290111310.1007/s00223‑011‑9544‑722057815
    [Google Scholar]
  10. NazrunA.S. TzarM.N. MokhtarS.A. MohamedI.N. A systematic review of the outcomes of osteoporotic fracture patients after hospital discharge: Morbidity, subsequent fractures, and mortality.Ther. Clin. Risk Manag.20141093794825429224
    [Google Scholar]
  11. EdwardsC.J. HartD.J. SpectorT.D. Oral statins and increased bone-mineral density in postmenopausal women.Lancet200035592222218221910.1016/S0140‑6736(00)02408‑910881898
    [Google Scholar]
  12. TangY. XieH. ChenJ. GengL. ChenH. LiX. HouY. LuL. ShiS. ZengX. SunL. Activated NF-κB in bone marrow mesenchymal stem cells from systemic lupus erythematosus patients inhibits osteogenic differentiation through downregulating Smad signaling.Stem Cells Dev.201322466867810.1089/scd.2012.022622897816
    [Google Scholar]
  13. WeissR.J. WickM.C. AckermannP.W. MontgomeryS.M. Increased fracture risk in patients with rheumatic disorders and other inflammatory diseases - A case-control study with 53,108 patients with fracture.J. Rheumatol.201037112247225010.3899/jrheum.10036320889599
    [Google Scholar]
  14. AmouzouganA. LafaieL. MarotteH. DẻnariẻD. ColletP. Pallot-PradesB. ThomasT. High prevalence of dementia in women with osteoporosis.Joint Bone Spine201784561161410.1016/j.jbspin.2016.08.00227697401
    [Google Scholar]
  15. AdlerR.A. Osteoporosis in men: A review.Bone Res.2014211400110.1038/boneres.2014.126273515
    [Google Scholar]
  16. LookerA.C. FrenkS.M. Percentage of adults aged 65 and over with osteoporosis or low bone mass at the femur neck or lumbar spine: United States, 2005–2010.2015Available from: https://www.cdc.gov/nchs/data/hestat/osteoporsis/osteoporosis2005_2010.htm
  17. HernlundE. SvedbomA. IvergårdM. CompstonJ. CooperC. StenmarkJ. McCloskeyE.V. JönssonB. KanisJ.A. Osteoporosis in the European Union: Medical management, epidemiology and economic burden.Arch. Osteoporos.201381-213610.1007/s11657‑013‑0136‑124113837
    [Google Scholar]
  18. BeckB.R. DalyR.M. SinghM.A.F. TaaffeD.R. Exercise and Sports Science Australia (ESSA) position statement on exercise prescription for the prevention and management of osteoporosis.J. Sci. Med. Sport201720543844510.1016/j.jsams.2016.10.00127840033
    [Google Scholar]
  19. BaccaroL.F. CondeD. Costa-PaivaL. Pinto-NetoA.M. The epidemiology and management of postmenopausal osteoporosis: A viewpoint from Brazil.Clin. Interv. Aging20151058359110.2147/CIA.S5461425848234
    [Google Scholar]
  20. ParukF. TsabasviM. KallaA.A. Osteoporosis in Africa—Where are we now.Clin. Rheumatol.20214093419342810.1007/s10067‑020‑05335‑632797362
    [Google Scholar]
  21. EbelingP.R. Eisman, J.A. Vitamin D.Elsevier201820322010.1016/B978‑0‑12‑809963‑6.00068‑7
    [Google Scholar]
  22. EmkeyR. KoltunW. BeusterienK. SeidmanL. KivitzA. DevasV. MasanauskaiteD. Patient preference for once-monthly ibandronate versus once-weekly alendronate in a randomized, open-label, cross-over trial: The Boniva Alendronate Trial in Osteoporosis (BALTO).Curr. Med. Res. Opin.200521121895190310.1185/030079905X7486216368038
    [Google Scholar]
  23. GradosF. DepriesterC. CayrolleG. HardyN. DeramondH. FardelloneP. Long-term observations of vertebral osteoporotic fractures treated by percutaneous vertebroplasty.Rheumatology200039121410141410.1093/rheumatology/39.12.141011136886
    [Google Scholar]
  24. BlakeG.M. FogelmanI. The role of DXA bone density scans in the diagnosis and treatment of osteoporosis.Postgrad. Med. J.20078398250951710.1136/pgmj.2007.05750517675543
    [Google Scholar]
  25. WardL.M. MaJ. In Pediatric endocrinology.Springer201852556510.1007/978‑3‑319‑73782‑9_24
    [Google Scholar]
  26. NishizawaY. MiuraM. IchimuraS. InabaM. ImanishiY. ShirakiM. TakadaJ. ChakiO. HaginoH. FukunagaM. FujiwaraS. MikiT. YoshimuraN. OhtaH. Executive summary of the Japan osteoporosis society guide for the use of bone turnover markers in the diagnosis and treatment of osteoporosis (2018 Edition).Clin. Chim. Acta201949810110710.1016/j.cca.2019.08.01231425674
    [Google Scholar]
  27. BoonenS. SingerA.J. Osteoporosis management: Impact of fracture type on cost and quality of life in patients at risk for fracture I.Curr. Med. Res. Opin.20082461781178810.1185/0300799080211579618489813
    [Google Scholar]
  28. GorthiC. KodugantiR.R. ReddyP.V. SandeepN. Osteoporosis: “A risk factor for periodontitis”.J. Indian Soc. Periodontol.2009132909610.4103/0972‑124X.5584120407657
    [Google Scholar]
  29. ParkY.S. KimH.S. Prevention and treatment of multiple osteoporotic compression fracture.Asian Spine J.20148338239010.4184/asj.2014.8.3.38224967055
    [Google Scholar]
  30. AsprayT.J. HillT.R. Osteoporosis and the ageing skeleton.Subcell. Biochem.20199145347610.1007/978‑981‑13‑3681‑2_1630888662
    [Google Scholar]
  31. BjørklundG. PivinaL. DadarM. SemenovaY. ChirumboloS. AasethJ. Long-term accumulation of metals in the skeleton as related to osteoporotic derangements.Curr. Med. Chem.202027406837684810.2174/092986732666619072215330531333081
    [Google Scholar]
  32. MillerP.D. Management of severe osteoporosis.Expert Opin. Pharmacother.201617447348810.1517/14656566.2016.112485626605922
    [Google Scholar]
  33. KennyA.M. RaiszL.G. Mechanisms of bone remodeling: Implications for clinical practice.J. Reprod. Med.2002471Suppl.637011829079
    [Google Scholar]
  34. ArmasL.A.G. ReckerR.R. Pathophysiology of Osteoporosis.Endocrinol. Metab. Clin. North Am.201241347548610.1016/j.ecl.2012.04.00622877425
    [Google Scholar]
  35. AnthamattenA. ParishA. Clinical update on Osteoporosis.J. Midwifery Womens Health201964326527510.1111/jmwh.1295430869832
    [Google Scholar]
  36. KenkreJ.S. BassettJ.H.D. The bone remodelling cycle.Ann. Clin. Biochem.201855330832710.1177/000456321875937129368538
    [Google Scholar]
  37. BuckleyL. HumphreyM.B. Glucocorticoid-induced osteoporosis.N. Engl. J. Med.2018379262547255610.1056/NEJMcp180021430586507
    [Google Scholar]
  38. DingZ. ShiH. YangW. Osteoprotective effect of cimiracemate in glucocorticoid-induced osteoporosis by Osteoprotegerin/Receptor activator of nuclear factor κ B/Receptor activator of nuclear factor Kappa-Β ligand signaling.Pharmacology20191033-416317210.1159/00049550930695776
    [Google Scholar]
  39. TobeihaM. MoghadasianM.H. AminN. JafarnejadS. RANKL/RANK/OPG pathway: A mechanism involved in exercise-induced bone remodeling.Biomed. Res. Int.202020206910312
    [Google Scholar]
  40. JiangJ. PangX. LiuH. YangX. ZhangY. XiangX. LiJ. LiT. ZhaoP. Reduced TIPE2 expression is inversely associated with proinflammatory cytokines and positively correlated with bone mineral density in patients with osteoporosis.Life Sci.201921622723210.1016/j.lfs.2018.11.05430496728
    [Google Scholar]
  41. BordoniV. ReinaG. OrecchioniM. FuresiG. ThieleS. GardinC. ZavanB. CunibertiG. BiancoA. RaunerM. DeloguL.G. Stimulation of bone formation by monocyte-activator functionalized graphene oxide in vivo.Nanoscale20191141194081942110.1039/C9NR03975A31386739
    [Google Scholar]
  42. MukaiyamaK. KamimuraM. UchiyamaS. IkegamiS. NakamuraY. KatoH. Elevation of serum alkaline phosphatase (ALP) level in postmenopausal women is caused by high bone turnover.Aging Clin. Exp. Res.201527441341810.1007/s40520‑014‑0296‑x25534961
    [Google Scholar]
  43. GiriT.K. NewtonD. ChaudharyO. DeychE. NapoliN. VillarealR. DiemerK. MilliganP.E. GageB.F. Maximal dose-response of vitamin-K2 (menaquinone-4) on undercarboxylated osteocalcin in women with osteoporosis.Int. J. Vitam. Nutr. Res.201930816822
    [Google Scholar]
  44. RossiM. BattafaranoG. PepeJ. MinisolaS. Del FattoreA. The endocrine function of osteocalcin regulated by bone resorption: A lesson from reduced and increased bone mass diseases.Int. J. Mol. Sci.20192018450210.3390/ijms2018450231514440
    [Google Scholar]
  45. ChenY.N. WeiP. Yu BsJ. Higher concentration of serum C-terminal cross-linking telopeptide of type I collagen is positively related with inflammatory factors in postmenopausal women with H-type hypertension and osteoporosis.Orthop. Surg.20191161135114110.1111/os.1256731823500
    [Google Scholar]
  46. SimsekB. KaracaerO. KaracaI. Urine products of bone breakdown as markers of bone resorption and clinical usefulness of urinary hydroxyproline: An overview.Chin. Med. J.2004117229129514975218
    [Google Scholar]
  47. EastellR. SzulcP. Use of bone turnover markers in postmenopausal osteoporosis.Lancet Diabetes Endocrinol.201751190892310.1016/S2213‑8587(17)30184‑528689768
    [Google Scholar]
  48. YangY. HuangY. ZhangL. ZhangC. Transcriptional regulation of bone sialoprotein gene expression by Osx.Biochem. Biophys. Res. Commun.2016476457457910.1016/j.bbrc.2016.05.16427261434
    [Google Scholar]
  49. SolbergL.B. StangE. BrorsonS.H. AnderssonG. ReinholtF.P. Tartrate-resistant acid phosphatase (TRAP) co-localizes with receptor activator of NF-KB ligand (RANKL) and osteoprotegerin (OPG) in lysosomal-associated membrane protein 1 (LAMP1)-positive vesicles in rat osteoblasts and osteocytes.Histochem. Cell Biol.2015143219520710.1007/s00418‑014‑1272‑425201349
    [Google Scholar]
  50. StoneJ.A. McCreaJ.B. WitterR. ZajicS. StochS.A. Clinical and translational pharmacology of the cathepsin K inhibitor odanacatib studied for osteoporosis.Br. J. Clin. Pharmacol.20198561072108310.1111/bcp.1386930663085
    [Google Scholar]
  51. DrakeM.T. ClarkeB.L. OurslerM.J. KhoslaS. Cathepsin K inhibitors for osteoporosis: Biology, potential clinical utility, and lessons learned.Endocr. Rev.201738432535010.1210/er.2015‑111428651365
    [Google Scholar]
  52. JohnstonC.B. DagarM. Osteoporosis in older adults.Med. Clin. North Am.2020104587388410.1016/j.mcna.2020.06.00432773051
    [Google Scholar]
  53. SpotornoL. RomagnoliS. IvaldoN. GrappioloG. BibbianiE. BlahaD.J. GuenT.A. The CLS system. Theoretical concept and results.Acta Orthop. Belg.199359Suppl. 11441488116390
    [Google Scholar]
  54. EnsrudK.E. CrandallC.J. Osteoporosis.Ann. Intern. Med.20171673ITC17ITC3210.7326/AITC20170801028761958
    [Google Scholar]
  55. U.S. Preventive Services Task Force Screening for osteoporosis: U.S. preventive services task force recommendation statement.Ann. Intern. Med.2011154535636410.7326/0003‑4819‑154‑5‑201103010‑0030721242341
    [Google Scholar]
  56. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group.World Health Organ. Tech. Rep. Ser.199484311297941614
    [Google Scholar]
  57. NayakS. OlkinI. LiuH. GrabeM. GouldM.K. AllenI.E. OwensD.K. BravataD.M. Meta-analysis: Accuracy of quantitative ultrasound for identifying patients with osteoporosis.Ann. Intern. Med.20061441183284110.7326/0003‑4819‑144‑11‑200606060‑0000916754925
    [Google Scholar]
  58. LinariS. MontorziG. BartolozziD. BorderiM. MelchiorreD. BenelliM. MorfiniM. Hypovitaminosis D and osteopenia/osteoporosis in a haemophilia population: a study in HCV / HIV or HCV infected patients.Haemophilia201319112613310.1111/j.1365‑2516.2012.02899.x22776099
    [Google Scholar]
  59. Rodriguez-MerchanE.C. Osteoporosis in hemophilia.International Blood Research & Reviews20144855
    [Google Scholar]
  60. WallnyT.A. ScholzD.T. OldenburgJ. NicolayC. EzziddinS. PennekampP.H. Stoffel-WagnerB. KraftC.N. Osteoporosis in haemophilia – An underestimated comorbidity?Haemophilia2007131798410.1111/j.1365‑2516.2006.01405.x17212729
    [Google Scholar]
  61. FitzpatrickL.A. Secondary causes of osteoporosis.Mayo Clin. Proc.200277545346810.1016/S0025‑6196(11)62214‑312004995
    [Google Scholar]
  62. SweetM.G. SweetJ.M. JeremiahM.P. GalazkaS.S. Diagnosis and treatment of osteoporosis.Am. Fam. Physician200979319320019202966
    [Google Scholar]
  63. BaeD.C. SteinB.S. The diagnosis and treatment of osteoporosis in men on androgen deprivation therapy for advanced carcinoma of the prostate.J. Urol.20041726 Part 12137214410.1097/01.ju.0000141515.67372.e515538219
    [Google Scholar]
  64. GiustiA. In Arthritis research & therapy.BioMed Central20121418
    [Google Scholar]
  65. KarinkantaS. PiirtolaM. SievänenH. Uusi-RasiK. KannusP. Physical therapy approaches to reduce fall and fracture risk among older adults.Nat. Rev. Endocrinol.20106739640710.1038/nrendo.2010.7020517287
    [Google Scholar]
  66. GiangregorioL.M. PapaioannouA. MacIntyreN.J. AsheM.C. HeinonenA. ShippK. WarkJ. McGillS. KellerH. JainR. LapradeJ. CheungA.M. Too Fit To Fracture: Exercise recommendations for individuals with osteoporosis or osteoporotic vertebral fracture.Osteoporos. Int.201425382183510.1007/s00198‑013‑2523‑224281053
    [Google Scholar]
  67. MaurelD.B. BoisseauN. BenhamouC.L. JaffreC. Alcohol and bone: Review of dose effects and mechanisms.Osteoporos. Int.201223111610.1007/s00198‑011‑1787‑721927919
    [Google Scholar]
  68. BodyJ.J. BergmannP. BoonenS. BoutsenY. BruyereO. DevogelaerJ.P. GoemaereS. HollevoetN. KaufmanJ.M. MilisenK. RozenbergS. ReginsterJ.Y. Non-pharmacological management of osteoporosis: A consensus of the Belgian Bone Club.Osteoporos. Int.201122112769278810.1007/s00198‑011‑1545‑x21360219
    [Google Scholar]
  69. EastellR. WalshJ.S. WattsN.B. SirisE. Bisphosphonates for postmenopausal osteoporosis.Bone2011491828810.1016/j.bone.2011.02.01121349354
    [Google Scholar]
  70. GeusensP. Bisphosphonates for postmenopausal osteoporosis: Determining duration of treatment.Curr. Osteoporos. Rep.200971121710.1007/s11914‑009‑0003‑619239824
    [Google Scholar]
  71. PapapoulosS.E. In Osteoporosis.Elsevier200163165010.1016/B978‑012470862‑4/50073‑8
    [Google Scholar]
  72. BoonenS. LaanR.F. BartonI.P. WattsN.B. Effect of osteoporosis treatments on risk of non-vertebral fractures: Review and meta-analysis of intention-to-treat studies.Osteoporos. Int.200516101291129810.1007/s00198‑005‑1945‑x15986101
    [Google Scholar]
  73. SilvermanS.L. WattsN.B. DelmasP.D. LangeJ.L. LindsayR. Effectiveness of bisphosphonates on nonvertebral and hip fractures in the first year of therapy: The risedronate and alendronate (REAL) cohort study.Osteoporos. Int.2007181253410.1007/s00198‑006‑0274‑z17106785
    [Google Scholar]
  74. PapapoulosS.E. Ibandronate: A potent new bisphosphonate in the management of postmenopausal osteoporosis.Int. J. Clin. Pract.200357541742210.1111/j.1742‑1241.2003.tb10518.x12846348
    [Google Scholar]
  75. DelmasP.D. ReckerR.R. ChesnutC.H.III SkagA. StakkestadJ.A. EmkeyR. GilbrideJ. SchimmerR.C. ChristiansenC. Daily and intermittent oral ibandronate normalize bone turnover and provide significant reduction in vertebral fracture risk: Results from the BONE study.Osteoporos. Int.2004151079279810.1007/s00198‑004‑1602‑915071723
    [Google Scholar]
  76. ReginsterJ.Y. WilsonK.M. DumontE. BonvoisinB. BarrettJ. Monthly oral ibandronate is well tolerated and efficacious in postmenopausal women: Results from the monthly oral pilot study.J. Clin. Endocrinol. Metab.20059095018502410.1210/jc.2004‑175015972582
    [Google Scholar]
  77. MillerP.D. McclungM.R. MacoveiL. StakkestadJ.A. LuckeyM. BonvoisinB. ReginsterJ.Y. ReckerR.R. HughesC. LewieckiE.M. FelsenbergD. DelmasP.D. KendlerD.L. BologneseM.A. MaironN. CooperC. Monthly oral ibandronate therapy in postmenopausal osteoporosis: 1-year results from the MOBILE study.J. Bone Miner. Res.20052081315132210.1359/JBMR.05031316007327
    [Google Scholar]
  78. DelmasP.D. AdamiS. StrugalaC. StakkestadJ.A. ReginsterJ.Y. FelsenbergD. ChristiansenC. CivitelliR. DreznerM.K. ReckerR.R. BologneseM. HughesC. MasanauskaiteD. WardP. SambrookP. ReidD.M. Intravenous ibandronate injections in postmenopausal women with osteoporosis: One-year results from the dosing intravenous administration study.Arthritis Rheum.20065461838184610.1002/art.2191816729277
    [Google Scholar]
  79. ReginsterJ-Y. AdamiS. LakatosP. GreenwaldM. StepanJ.J. SilvermanS.L. ChristiansenC. RowellL. MaironN. BonvoisinB. DreznerM.K. EmkeyR. FelsenbergD. CooperC. DelmasP.D. MillerP.D. Efficacy and tolerability of once-monthly oral ibandronate in postmenopausal osteoporosis: 2 year results from the MOBILE study.Ann. Rheum. Dis.200665565466110.1136/ard.2005.04495816339289
    [Google Scholar]
  80. HadjiP. BenhamouC-L. DevasV. MasanauskaiteD. Barrett-ConnorE. In Osteoporosis international; Springer London Ltd Ashbourne House, The Guildway.Old Portsmouth Road200617S69S69
    [Google Scholar]
  81. LataP.F. ElliottM.E. Patient assessment in the diagnosis, prevention, and treatment of osteoporosis.Nutr. Clin. Pract.200722326127510.1177/011542650702200326117507727
    [Google Scholar]
  82. SchurmanL. BagurA. Claus-HermbergH. MessinaO.D. NegriA.L. SánchezA. GonzálezC. DiehlM. ReyP. GambaJ. ChiarpenelloJ. MoggiaM.S. MastagliaS. Guidelines for the diagnosis, prevention and treatment of osteoporosis, 2012.Medicina2013731557423335710
    [Google Scholar]
  83. NunkooS. KrissheevenM. ChitravanshiA. RamanahM. RobinsonJ. BanerjeeI. Clinical efficacy and safety of teriparatide versus alendronate in postmenopausal osteoporosis: A systematic review of randomized controlled trials.Cureus20241611e7306810.7759/cureus.7306839640163
    [Google Scholar]
  84. BessueilleL. BriolayA. GuillotN. MebarekS. ViallonS. LarocheN. Lafage-ProustM.H. MagneD. Teriparatide administration is osteoanabolic but does not impact atherosclerotic plaque calcification and progression in a mouse model of menopause.Bone202519011731610.1016/j.bone.2024.11731639491714
    [Google Scholar]
  85. TabatabaiL CosmanF CurtisJR DeSapriKT LaBaumeCT ReginsterJY RizzoliR CortetB WangY ChiodoJ3rd MitlakBH. Comparative effectiveness of abaloparatide and teriparatide in women 50 years of age and older: Update of a real-world retrospective analysis.Endocr. Pract.202531215916810.1016/j.eprac.2024.10.017
    [Google Scholar]
  86. KobayakawaT. KanayamaY. HiranoY. YukishimaT. NakamuraY. Therapy with transitions from one bone- forming agent to another: A retrospective cohort study on teriparatide and romosozumab.JBMR Plus2024812ziae13110.1093/jbmrpl/ziae13139605880
    [Google Scholar]
  87. KobayakawaT. NakamuraY. Verifying the effectiveness of romosozumab re-administration on bone mineral density.J. Bone Miner. Res.2024zjae19610.1093/jbmr/zjae19639657234
    [Google Scholar]
  88. LiS. ZouJ. RanJ. WangL. NieG. LiuY. TianC. YangX. LiuY. WanJ. PengW. Advances in the study of denosumab treatment for osteoporosis and Sarcopenia in the Chinese middle-Aged and elderly population.Int. J. Gen. Med.2024176089609910.2147/IJGM.S49475939678680
    [Google Scholar]
  89. KrishnanJ. SanthanamS. SinghB. PatelS. BhojwaniD.G. MuchhalaS. Denosumab: A useful addition to the armamentarium for the management of male osteoporosis.Cureus2024166e6273610.7759/cureus.6273639036230
    [Google Scholar]
  90. ShangguanL. DingM. WangY. XuH. LiaoB. Denosumab ameliorates osteoarthritis by protecting cartilage against degradation and modulating subchondral bone remodeling.Regen. Ther.20242718119010.1016/j.reth.2024.03.01938840731
    [Google Scholar]
  91. KatoK. YaginumaT. KobayashiA. NakashimaA. OhkidoI. YokooT. Long-term effects of denosumab on bone mineral density and turnover markers in patients undergoing hemodialysis.J. Bone Miner. Metab.202442226427010.1007/s00774‑024‑01505‑738512458
    [Google Scholar]
  92. GhaniA. ArfeeS. Role of calcitonin and strontium ranelate in osteoporosis.Indian J. Orthop.202357S1Suppl. 111511910.1007/s43465‑023‑01034‑x38107820
    [Google Scholar]
  93. Tomczyk-WarunekA. TurżańskaK. PosturzyńskaA. KowalF. BlicharskiT. PanoI.T. Winiarska-MieczanA. NikodemA. DreslerS. SowaI. WójciakM. DobrowolskiP. Influence of various strontium formulations (Ranelate, Citrate, and Chloride) on bone mineral density, morphology, and microarchitecture: A comparative study in an ovariectomized female mouse model of Osteoporosis.Int. J. Mol. Sci.2024257407510.3390/ijms2507407538612883
    [Google Scholar]
  94. SunQ. LiuF. FangJ. LianQ. HuY. NanX. TianF.M. ZhangG. QiD. ZhangL. ZhangJ. LuoY. ZhangZ. ZhouZ. Strontium ranelate retards disc degradation and improves endplate and bone micro-architecture in ovariectomized rats with lumbar fusion induced – Adjacent segment disc degeneration.Bone Rep.20242010174410.1016/j.bonr.2024.10174438404727
    [Google Scholar]
  95. TurżańskaK. Tomczyk-WarunekA. DobrzyńskiM. JarzębskiM. PatrynR. Niezbecka-ZającJ. WojciechowskaM. MelaA. Zarębska-MrózA. Strontium ranelate and strontium chloride supplementation influence on bone microarchitecture and bone turnover markers—A preliminary study.Nutrients20231619110.3390/nu1601009138201922
    [Google Scholar]
  96. SunR. ZhuJ. SunK. GaoL. ZhengB. ShiJ. Strontium ranelate ameliorates intervertebral disc degeneration via regulating TGF-β1/NF-κB axis.Int. J. Med. Sci.202320131679169710.7150/ijms.8666537928874
    [Google Scholar]
  97. PrestwoodK.M. PilbeamC.C. RaiszL.G. CarolC. RaiszM. LawrenceG. Treatment of osteoporosis.Annu. Rev. Med.199546124925610.1146/annurev.med.46.1.2497598461
    [Google Scholar]
  98. MathisJ.M. Percutaneous vertebroplasty: Complication avoidance and technique optimization.AJNR Am. J. Neuroradiol.20032481697170613679295
    [Google Scholar]
  99. KawanishiM. MorimotoA. OkudaY. SatohD. MatsudaN. ItohY. HandaH. Percutaneous vertebroplasty for vertebral compression fracture: Indication, technique, and review of the literature.Neurosurg. Q.200515317217710.1097/01.wnq.0000174598.91817.mL
    [Google Scholar]
  100. KumarK. VermaA.K. WilsonJ. LaFontaineA. Vertebroplasty in osteoporotic spine fractures: A quality of life assessment.Can. J. Neurol. Sci.200532448749510.1017/S031716710000449216408580
    [Google Scholar]
  101. RyuK.S. ParkC.K. The prognostic factors influencing on the therapeutic effect of percutaneous vertebroplasty in treating osteoporotic vertebral compression fractures.J. Korean Neurosurg. Soc.2009451162310.3340/jkns.2009.45.1.1619242566
    [Google Scholar]
  102. BarrJ.D. BarrM.S. LemleyT.J. McCannR.M. Percutaneous vertebroplasty for pain relief and spinal stabilization.Spine200025892392810.1097/00007632‑200004150‑0000510767803
    [Google Scholar]
  103. AfzalS. DharS. VasavadaN.B. AkbarS. Percutaneous vertebroplasty for osteoporotic fractures.Pain Physician200741055966310.36076/ppj.2007/10/55917660854
    [Google Scholar]
  104. LiK.C. LiA.F.Y. HsiehC.H. ChenH.H. Transpedicle body augmenter in painful osteoporotic compression fractures.Eur. Spine J.200716558959810.1007/s00586‑006‑0197‑616957946
    [Google Scholar]
  105. GromovaO. DoschanovaA. LokshinV. TuletovaA. GrebennikovaG. DaniyarovaL. KaishibayevaG. NurpeissovT. KhanV. SemenovaY. ChibisovaA. SuzdalskayaN. AitalyZ. GlushkovaN. Vitamin D deficiency in Kazakhstan: Cross-sectional study.J. Steroid Biochem. Mol. Biol.202019910556510.1016/j.jsbmb.2019.10556531812522
    [Google Scholar]
  106. GasmiA. BjørklundG. PeanaM. MujawdiyaP.K. PivinaL. OngenaeA. PiscopoS. SeverinB. Phosphocalcic metabolism and the role of vitamin D, vitamin K2, and nattokinase supplementation.Crit. Rev. Food Sci. Nutr.202262257062707110.1080/10408398.2021.191048133966563
    [Google Scholar]
  107. JacksonR.D. LaCroixA.Z. GassM. WallaceR.B. RobbinsJ. LewisC.E. BassfordT. BeresfordS.A.A. BlackH.R. BlanchetteP. BondsD.E. BrunnerR.L. BrzyskiR.G. CaanB. CauleyJ.A. ChlebowskiR.T. CummingsS.R. GranekI. HaysJ. HeissG. HendrixS.L. HowardB.V. HsiaJ. HubbellF.A. JohnsonK.C. JuddH. KotchenJ.M. KullerL.H. LangerR.D. LasserN.L. LimacherM.C. LudlamS. MansonJ.E. MargolisK.L. McGowanJ. OckeneJ.K. O’SullivanM.J. PhillipsL. PrenticeR.L. SartoG.E. StefanickM.L. Van HornL. Wactawski-WendeJ. WhitlockE. AndersonG.L. AssafA.R. BaradD. Calcium plus vitamin D supplementation and the risk of fractures.N. Engl. J. Med.2006354766968310.1056/NEJMoa05521816481635
    [Google Scholar]
  108. CashmanK.D. Calcium intake, calcium bioavailability and bone health.Br. J. Nutr.200287S2Suppl. 2S169S17710.1079/BJN/200253412088515
    [Google Scholar]
  109. Oliai AraghiS. Kiefte-de JongJ.C. TrajanoskaK. KoromaniF. RivadeneiraF. ZillikensM.C. van SchoorN.M. de GrootL.C.P.G.M. IkramM.A. UitterlindenA.G. StrickerB.H. van der VeldeN. Do vitamin D level and dietary calcium intake modify the association between loop diuretics and bone health?Calcif. Tissue Int.2020106210411410.1007/s00223‑019‑00621‑131608419
    [Google Scholar]
  110. AndersonP.H. AtkinsG.J. TurnerA.G. KogawaM. FindlayD.M. MorrisH.A. Vitamin D metabolism within bone cells: Effects on bone structure and strength.Mol. Cell. Endocrinol.20113471-2424710.1016/j.mce.2011.05.02421664230
    [Google Scholar]
  111. SeibelM.J. RobinsS.P. BilezikianJ.P. Dynamics of bone and cartilage metabolism: Principles and clinical applications.Elsevier2006
    [Google Scholar]
  112. DalyR.M. Dalla ViaJ. DuckhamR.L. FraserS.F. HelgeE.W. Exercise for the prevention of osteoporosis in postmenopausal women: An evidence-based guide to the optimal prescription.Braz. J. Phys. Ther.201923217018010.1016/j.bjpt.2018.11.01130503353
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673358991250210111956
Loading
/content/journals/cmc/10.2174/0109298673358991250210111956
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): biomolecules; bone mineral density; bone tissue; Osteoporosis; risk factors; sex hormones
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test