Skip to content
2000
image of Knockdown of TRIM65 Inhibits Neoangiogenesis in Proliferative Diabetic Retinopathy by Regulating miR29a-3p

Abstract

Introduction

High glucose-induced angiogenesis is the main component in Proliferative Diabetic Retinopathy (PDR) development. In PDR, ischemia and hypoxia have been identified as key stimuli that promote pathological neoangiogenesis by increasing Vascular Endothelial Growth Factor A (VEGFA). Furthermore, it has been demonstrated that TRIM65 knockdown in tumor cells reduces VEGFA expression. Building on these findings, the present study aimed to study the role of TRIM protein members in proliferative diabetic retinopathy.

Methods

In comparison to the control group, TRIM65 expression was significantly increased in human retinal endothelial cells (HREC) after high glucose treatment. Moreover, FITC/PI staining, cell wound scratch assay, transwell assay, tube formation assay, and immunofluorescence staining of VEGFA and HIF-3α were carried out, which indicated that TRIM65 knockdown inhibited high glucose-induced HREC cell apoptosis and angiogenesis and decreased the expression of VEGFA and HIF-3α, both of which are potential targets of miR-29a-3p. MIR-29a-3p inhibitor significantly reduced the effects of TRIM65 knockdown on VEGFA and HIF-3α expression levels in cells. TRIM65 induced ubiquitination and degradation of TNRC6A, resulting in suppressed miR-29a-3p expression.

Results

Furthermore, studies revealed that intravitreal injection of miR-29a-3p inhibited neoangiogenesis in mice with Oxygen-Induced Retinopathy (OIR). The retinal tissues of OIR mice showed higher TRIM65 mRNA expression and lower miR-29a-3p expression than those of control mice. Furthermore, the analysis showed a negative correlation between the expression of miR-29a-3p and TRIM65 in the retinal tissues of OIR mice.

Conclusion

In conclusion, this study demonstrated that the knockdown of TRIM65 inhibits neoangiogenesis in proliferative diabetic retinopathy by regulating miR-29a-3p.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673325802240813103408
2025-06-18
2025-09-10
Loading full text...

Full text loading...

References

  1. Lin K.Y. Hsih W.H. Lin Y.B. Wen C.Y. Chang T.J. Update in the epidemiology, risk factors, screening, and treatment of diabetic retinopathy. J. Diabetes Investig. 2021 12 8 1322 1325 10.1111/jdi.13480 33316144
    [Google Scholar]
  2. Klein R. Klein B.E.K. Moss S.E. Epidemiology of proliferative diabetic retinopathy. Diabetes Care 1992 15 12 1875 1891 10.2337/diacare.15.12.1875 1464243
    [Google Scholar]
  3. Cheung N. Mitchell P. Wong T.Y. Diabetic retinopathy. Lancet 2010 376 9735 124 136 10.1016/S0140‑6736(09)62124‑3 20580421
    [Google Scholar]
  4. Tomita Y. Lee D. Tsubota K. Negishi K. Kurihara T. Updates on the current treatments for diabetic retinopathy and possibility of future oral therapy. J. Clin. Med. 2021 10 20 4666 10.3390/jcm10204666 34682788
    [Google Scholar]
  5. Crabtree G.S. Chang J.S. Management of complications and vision loss from proliferative diabetic retinopathy. Curr. Diab. Rep. 2021 21 9 33 10.1007/s11892‑021‑01396‑2 34477996
    [Google Scholar]
  6. Gerhardt H. Golding M. Fruttiger M. Ruhrberg C. Lundkvist A. Abramsson A. Jeltsch M. Mitchell C. Alitalo K. Shima D. Betsholtz C. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 2003 161 6 1163 1177 10.1083/jcb.200302047 12810700
    [Google Scholar]
  7. VanderBeek B.L. Bonaffini S.G. Ma L. Association of compounded bevacizumab with postinjection endophthalmitis. JAMA Ophthalmol. 2015 133 10 1159 1164 10.1001/jamaophthalmol.2015.2556 26270251
    [Google Scholar]
  8. Ferrara N. Adamis A.P. Ten years of anti-vascular endothelial growth factor therapy. Nat. Rev. Drug Discov. 2016 15 6 385 403 10.1038/nrd.2015.17 26775688
    [Google Scholar]
  9. Le N.T. Kroeger Z.A. Lin W.V. Khanani A.M. Weng C.Y. Novel treatments for diabetic macular edema and proliferative diabetic retinopathy. Curr. Diab. Rep. 2021 21 10 43 10.1007/s11892‑021‑01412‑5 34719742
    [Google Scholar]
  10. Bartel D.P. MicroRNAs: Target recognition and regulatory functions. Cell 2009 136 2 215 233 10.1016/j.cell.2009.01.002 19167326
    [Google Scholar]
  11. Wu X.G. Zhou C.F. Zhang Y.M. Yan R.M. Wei W.F. Chen X.J. Yi H.Y. Liang L.J. Fan L. Liang L. Wu S. Wang W. Cancer-derived exosomal miR-221-3p promotes angiogenesis by targeting THBS2 in cervical squamous cell carcinoma. Angiogenesis 2019 22 3 397 410 10.1007/s10456‑019‑09665‑1 30993566
    [Google Scholar]
  12. Dong H. Weng C. Bai R. Sheng J. Gao X. Li L. Xu Z. The regulatory network of miR-141 in the inhibition of angiogenesis. Angiogenesis 2019 22 2 251 262 10.1007/s10456‑018‑9654‑1 30465119
    [Google Scholar]
  13. Zhao X. Ling F. Zhang G. Yu N. Yang J. Xin X. The correlation between microRNAs and diabetic retinopathy. Front. Immunol. 2022 13 941982 10.3389/fimmu.2022.941982 35958584
    [Google Scholar]
  14. Zou J. Liu K.C. Wang W.P. Xu Y. Circular RNA COL1A2 promotes angiogenesis via regulating miR-29b/VEGF axis in diabetic retinopathy. Life Sci. 2020 256 117888 10.1016/j.lfs.2020.117888 32497630
    [Google Scholar]
  15. Fu X. Ou B. miR-152/LIN28B axis modulates high-glucose-induced angiogenesis in human retinal endothelial cells via VEGF signaling. J. Cell. Biochem. 2020 121 2 954 962 10.1002/jcb.28978 31609010
    [Google Scholar]
  16. Tan A. Li T. Ruan L. Yang J. Luo Y. Li L. Wu X. Knockdown of malat1 alleviates high-glucose-induced angiogenesis through regulating miR-205-5p/VEGF-A axis. Exp. Eye Res. 2021 207 108585 10.1016/j.exer.2021.108585 33887222
    [Google Scholar]
  17. Dai Y. Li Y. Cheng R. Gao J. Lou C. TRIM37 inhibits PDGF-BB-induced proliferation and migration of airway smooth muscle cells. Biomed Pharmacother. 2018 101 24 29 10.1016/j.biopha.2018.02.057.
    [Google Scholar]
  18. Pan X. Chen Y. Shen Y. Tantai J. Knockdown of TRIM65 inhibits autophagy and cisplatin resistance in A549/DDP cells by regulating miR-138-5p/ATG7. Cell Death Dis. 2019 10 6 429 10.1038/s41419‑019‑1660‑8 31160576
    [Google Scholar]
  19. Wang J. Liang X. Yu T. Xu Y.L. Xu L.H. Zhang X.J. Ma J. Wang Y.R. He S.L. TRIM65 is a potential oncogenic protein via ERK1/2 on Jurkat and Raji cells: A therapeutic target in human lymphoma malignancies. Cell Biol. Int. 2018 42 11 1503 1510 10.1002/cbin.11035 30039885
    [Google Scholar]
  20. Li S. Wang L. Fu B. Dorf M.E. Trim65: A cofactor for regulation of the microRNA pathway. RNA Biol. 2014 11 9 1113 1121 10.4161/rna.36179 25483047
    [Google Scholar]
  21. Zhou G. Wu H. Lin J. Lin R. Feng B. Liu Z. TRIM21 is decreased in colitis-associated cancer and negatively regulates epithelial carcinogenesis. Inflamm. Bowel Dis. 2021 27 4 458 468 10.1093/ibd/izaa229 32860065
    [Google Scholar]
  22. Li Y.J. Zhang G.P. Zhao F. Li R.Q. Liu S.J. Zhao Z.R. Wang X. Target therapy of TRIM-14 inhibits osteosarcoma aggressiveness through the nuclear factor-κB signaling pathway. Exp. Ther. Med. 2018 15 3 2365 2373 29467844
    [Google Scholar]
  23. Chang H.W. Wang W.D. Chiu C.C. Chen C.H. Wang Y.S. Chen Z.Y. Liu W. Tai M.H. Wen Z.H. Wu C.Y. Ftr82 is critical for vascular patterning during zebrafish development. Int. J. Mol. Sci. 2017 18 1 156 10.3390/ijms18010156 28098794
    [Google Scholar]
  24. Zhou Z.X. Ma X.F. Xiong W.H. Ren Z. Jiang M. Deng N.H. Zhou B.B. Liu H.T. Zhou K. Hu H.J. Tang H.F. Zheng H. Jiang Z.S. TRIM65 promotes vascular smooth muscle cell phenotypic transformation by activating PI3K/Akt/mTOR signaling during atherogenesis. Atherosclerosis 2024 390 117430 10.1016/j.atherosclerosis.2023.117430 38301602
    [Google Scholar]
  25. Ma X.F. Zhou Y.R. Zhou Z.X. Liu H.T. Zhoua B.B. Deng N.H. Zhou K. Tian Z. Wu Z.F. Liu X.Y. Fu M.G. Jiang Z.S. TRIM65 suppresses oxLDL-induced endothelial inflammation by interaction with VCAM-1 in atherogenesis. Curr. Med. Chem. 2023 37608612
    [Google Scholar]
  26. Liu H. Zhou Z. Deng H. Tian Z. Wu Z. Liu X. Ren Z. Jiang Z. Trim65 attenuates isoproterenol-induced cardiac hypertrophy by promoting autophagy and ameliorating mitochondrial dysfunction via the Jak1/Stat1 signaling pathway. Eur. J. Pharmacol. 2023 949 175735 10.1016/j.ejphar.2023.175735 37080331
    [Google Scholar]
  27. Yao H. Xie W. Dai Y. Liu Y. Gu W. Li J. Wu L. Xie J. Rui W. Ren B. Xue L. Cheng Y. Lin S. Li C. Tang H. Wang Y. Lou M. Zhang X. Hu R. Shang H. Huang J. Wu Z.B. TRIM65 determines the fate of a novel subtype of pituitary neuroendocrine tumors via ubiquitination and degradation of TPIT. Neuro-oncol. 2022 24 8 1286 1297 10.1093/neuonc/noac053 35218667
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673325802240813103408
Loading
/content/journals/cmc/10.2174/0109298673325802240813103408
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test