Skip to content
2000
Volume 32, Issue 36
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Introduction

High glucose-induced angiogenesis is the main component in Proliferative Diabetic Retinopathy (PDR) development. In PDR, ischemia and hypoxia have been identified as key stimuli that promote pathological neoangiogenesis by increasing Vascular Endothelial Growth Factor A (VEGFA). Furthermore, it has been demonstrated that TRIM65 knockdown in tumor cells reduces VEGFA expression. Building on these findings, the present study aimed to study the role of TRIM protein members in proliferative diabetic retinopathy.

Methods

In comparison to the control group, TRIM65 expression was significantly increased in human retinal endothelial cells (HREC) after high glucose treatment. Moreover, FITC/PI staining, cell wound scratch assay, transwell assay, tube formation assay, and immunofluorescence staining of VEGFA and HIF-3α were carried out, which indicated that TRIM65 knockdown inhibited high glucose-induced HREC cell apoptosis and angiogenesis and decreased the expression of VEGFA and HIF-3α, both of which are potential targets of miR-29a-3p. MIR-29a-3p inhibitor significantly reduced the effects of TRIM65 knockdown on VEGFA and HIF-3α expression levels in cells. TRIM65 induced ubiquitination and degradation of TNRC6A, resulting in suppressed miR-29a-3p expression.

Results

Furthermore, studies revealed that intravitreal injection of miR-29a-3p inhibited neoangiogenesis in mice with Oxygen-Induced Retinopathy (OIR). The retinal tissues of OIR mice showed higher TRIM65 mRNA expression and lower miR-29a-3p expression than those of control mice. Furthermore, the analysis showed a negative correlation between the expression of miR-29a-3p and TRIM65 in the retinal tissues of OIR mice.

Conclusion

In conclusion, this study demonstrated that the knockdown of TRIM65 inhibits neoangiogenesis in proliferative diabetic retinopathy by regulating miR-29a-3p.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673325802240813103408
2025-06-18
2025-10-31
Loading full text...

Full text loading...

References

  1. LinK.Y. HsihW.H. LinY.B. WenC.Y. ChangT.J. Update in the epidemiology, risk factors, screening, and treatment of diabetic retinopathy.J. Diabetes Investig.20211281322132510.1111/jdi.1348033316144
    [Google Scholar]
  2. KleinR. KleinB.E.K. MossS.E. Epidemiology of proliferative diabetic retinopathy.Diabetes Care199215121875189110.2337/diacare.15.12.18751464243
    [Google Scholar]
  3. CheungN. MitchellP. WongT.Y. Diabetic retinopathy.Lancet2010376973512413610.1016/S0140‑6736(09)62124‑320580421
    [Google Scholar]
  4. TomitaY. LeeD. TsubotaK. NegishiK. KuriharaT. Updates on the current treatments for diabetic retinopathy and possibility of future oral therapy.J. Clin. Med.20211020466610.3390/jcm1020466634682788
    [Google Scholar]
  5. CrabtreeG.S. ChangJ.S. Management of complications and vision loss from proliferative diabetic retinopathy.Curr. Diab. Rep.20212193310.1007/s11892‑021‑01396‑234477996
    [Google Scholar]
  6. GerhardtH. GoldingM. FruttigerM. RuhrbergC. LundkvistA. AbramssonA. JeltschM. MitchellC. AlitaloK. ShimaD. BetsholtzC. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia.J. Cell Biol.200316161163117710.1083/jcb.20030204712810700
    [Google Scholar]
  7. VanderBeekB.L. BonaffiniS.G. MaL. Association of compounded bevacizumab with postinjection endophthalmitis.JAMA Ophthalmol.2015133101159116410.1001/jamaophthalmol.2015.255626270251
    [Google Scholar]
  8. FerraraN. AdamisA.P. Ten years of anti-vascular endothelial growth factor therapy.Nat. Rev. Drug Discov.201615638540310.1038/nrd.2015.1726775688
    [Google Scholar]
  9. LeN.T. KroegerZ.A. LinW.V. KhananiA.M. WengC.Y. Novel treatments for diabetic macular edema and proliferative diabetic retinopathy.Curr. Diab. Rep.202121104310.1007/s11892‑021‑01412‑534719742
    [Google Scholar]
  10. BartelD.P. MicroRNAs: Target recognition and regulatory functions.Cell2009136221523310.1016/j.cell.2009.01.00219167326
    [Google Scholar]
  11. WuX.G. ZhouC.F. ZhangY.M. YanR.M. WeiW.F. ChenX.J. YiH.Y. LiangL.J. FanL. LiangL. WuS. WangW. Cancer-derived exosomal miR-221-3p promotes angiogenesis by targeting THBS2 in cervical squamous cell carcinoma.Angiogenesis201922339741010.1007/s10456‑019‑09665‑130993566
    [Google Scholar]
  12. DongH. WengC. BaiR. ShengJ. GaoX. LiL. XuZ. The regulatory network of miR-141 in the inhibition of angiogenesis.Angiogenesis201922225126210.1007/s10456‑018‑9654‑130465119
    [Google Scholar]
  13. ZhaoX. LingF. ZhangG. YuN. YangJ. XinX. The correlation between microRNAs and diabetic retinopathy.Front. Immunol.20221394198210.3389/fimmu.2022.94198235958584
    [Google Scholar]
  14. ZouJ. LiuK.C. WangW.P. XuY. Circular RNA COL1A2 promotes angiogenesis via regulating miR-29b/VEGF axis in diabetic retinopathy.Life Sci.202025611788810.1016/j.lfs.2020.11788832497630
    [Google Scholar]
  15. FuX. OuB. miR-152/LIN28B axis modulates high-glucose-induced angiogenesis in human retinal endothelial cells via VEGF signaling.J. Cell. Biochem.2020121295496210.1002/jcb.2897831609010
    [Google Scholar]
  16. TanA. LiT. RuanL. YangJ. LuoY. LiL. WuX. Knockdown of malat1 alleviates high-glucose-induced angiogenesis through regulating miR-205-5p/VEGF-A axis.Exp. Eye Res.202120710858510.1016/j.exer.2021.10858533887222
    [Google Scholar]
  17. DaiY. LiY. ChengR. GaoJ. LouC. TRIM37 inhibits PDGF-BB-induced proliferation and migration of airway smooth muscle cells.Biomed Pharmacother.2018101242910.1016/j.biopha.2018.02.057.
    [Google Scholar]
  18. PanX. ChenY. ShenY. TantaiJ. Knockdown of TRIM65 inhibits autophagy and cisplatin resistance in A549/DDP cells by regulating miR-138-5p/ATG7.Cell Death Dis.201910642910.1038/s41419‑019‑1660‑831160576
    [Google Scholar]
  19. WangJ. LiangX. YuT. XuY.L. XuL.H. ZhangX.J. MaJ. WangY.R. HeS.L. TRIM65 is a potential oncogenic protein via ERK1/2 on Jurkat and Raji cells: A therapeutic target in human lymphoma malignancies.Cell Biol. Int.201842111503151010.1002/cbin.1103530039885
    [Google Scholar]
  20. LiS. WangL. FuB. DorfM.E. Trim65: A cofactor for regulation of the microRNA pathway.RNA Biol.20141191113112110.4161/rna.3617925483047
    [Google Scholar]
  21. ZhouG. WuH. LinJ. LinR. FengB. LiuZ. TRIM21 is decreased in colitis-associated cancer and negatively regulates epithelial carcinogenesis.Inflamm. Bowel Dis.202127445846810.1093/ibd/izaa22932860065
    [Google Scholar]
  22. LiY.J. ZhangG.P. ZhaoF. LiR.Q. LiuS.J. ZhaoZ.R. WangX. Target therapy of TRIM-14 inhibits osteosarcoma aggressiveness through the nuclear factor-κB signaling pathway.Exp. Ther. Med.20181532365237329467844
    [Google Scholar]
  23. ChangH.W. WangW.D. ChiuC.C. ChenC.H. WangY.S. ChenZ.Y. LiuW. TaiM.H. WenZ.H. WuC.Y. Ftr82 is critical for vascular patterning during zebrafish development.Int. J. Mol. Sci.201718115610.3390/ijms1801015628098794
    [Google Scholar]
  24. ZhouZ.X. MaX.F. XiongW.H. RenZ. JiangM. DengN.H. ZhouB.B. LiuH.T. ZhouK. HuH.J. TangH.F. ZhengH. JiangZ.S. TRIM65 promotes vascular smooth muscle cell phenotypic transformation by activating PI3K/Akt/mTOR signaling during atherogenesis.Atherosclerosis202439011743010.1016/j.atherosclerosis.2023.11743038301602
    [Google Scholar]
  25. MaX.F. ZhouY.R. ZhouZ.X. LiuH.T. ZhouaB.B. DengN.H. ZhouK. TianZ. WuZ.F. LiuX.Y. FuM.G. JiangZ.S. TRIM65 suppresses oxLDL-induced endothelial inflammation by interaction with VCAM-1 in atherogenesis.Curr. Med. Chem.202431304898491137608612
    [Google Scholar]
  26. LiuH. ZhouZ. DengH. TianZ. WuZ. LiuX. RenZ. JiangZ. Trim65 attenuates isoproterenol-induced cardiac hypertrophy by promoting autophagy and ameliorating mitochondrial dysfunction via the Jak1/Stat1 signaling pathway.Eur. J. Pharmacol.202394917573510.1016/j.ejphar.2023.17573537080331
    [Google Scholar]
  27. YaoH. XieW. DaiY. LiuY. GuW. LiJ. WuL. XieJ. RuiW. RenB. XueL. ChengY. LinS. LiC. TangH. WangY. LouM. ZhangX. HuR. ShangH. HuangJ. WuZ.B. TRIM65 determines the fate of a novel subtype of pituitary neuroendocrine tumors via ubiquitination and degradation of TPIT.Neuro-oncol.20222481286129710.1093/neuonc/noac05335218667
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673325802240813103408
Loading
/content/journals/cmc/10.2174/0109298673325802240813103408
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test