Skip to content
2000
Volume 32, Issue 36
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Parkinson's disease (PD) is a multifaceted disease that is influenced by both genetic and environmental parameters. Non-coding RNAs have been shown to be ideal biomarkers for several diseases, including PD. This study was conducted to evaluate the expression levels of NEAT1, hsa-let-7a-5p, and miR-506-3p in individuals with PD to assess their efficacy for early-stage PD diagnosis.

Methods

Twenty-four patients with PD and 29 healthy individuals participated in this study. The IntaRNA tool was used to predict potential base pairings between NEAT1 and let-7a-5p, and NEAT1 and miR-506-3p. RT-qPCR was employed to measure the relative expression of tyrosine hydroxylase (TH), as well as nuclear enriched abundant transcript 1 (NEAT1), hsa-let-7a-5p, and miR-506-3p levels in both groups. The area under the receiver operating characteristic curve (AUC) was calculated to evaluate the diagnostic value.

Results

The PD group exhibited significantly elevated NEAT1 expression levels compared to the healthy control group. While the PD group exhibited an insignificant decreased TH expression level relative to the healthy group. Furthermore, the levels of hsa-let-7a-5p and miR-506-3p expression were seen to be decreased in patients with PD in comparison to the control group. Integration of NEAT1, hsa-let-7a-5p, and miR-506-3p levels significantly enhanced diagnostic capabilities and increased the AUC to 0.9501 (95% confidence interval: 0.8978-1.000, < .0001).

Conclusion

The elevated NEAT1 expression and the decreased expression of hsa-let-7a-5p and miR-506-3p in PD patients indicate that these factors might contribute to the disease's pathogenesis. Combining the ROC curves of NEAT1 and hsa-let-7a-5p with miR-506-3p showed improved sensitivity and specificity, facilitating more accurate PD diagnosis. More importantly, they may contribute as promising non-invasive biomarkers for PD diagnosis.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673336756241016063552
2024-10-31
2025-10-30
Loading full text...

Full text loading...

References

  1. CabeleiraM.E.P. PagnussatA.S. do PinhoA.S. AsquidaminiA.C.D. FreireA.B. PereiraB.T. de Mello RiederC.R. SchifinoG.P. FornariL.H.T. JuniorN.S. CorrêaP.S. CechettiF. Impairments in gait kinematics and postural control may not correlate with dopamine transporter depletion in individuals with mild to moderate Parkinson’s disease.Eur. J. Neurosci.201949121640164810.1111/ejn.1432830589477
    [Google Scholar]
  2. CarrollP.J. ShethU. HenryP. A systematic review of shoulder arthroplasty in Parkinson’s Disease.J. Shoulder Elb. Arthroplast.202372471549223116230210.1177/2471549223116230236937106
    [Google Scholar]
  3. SurmeierD.J. ObesoJ.A. HallidayG.M. Parkinson’s disease is not simply a prion disorder.J. Neurosci.201737419799980710.1523/JNEUROSCI.1787‑16.201729021297
    [Google Scholar]
  4. PoeweW. SeppiK. TannerC.M. HallidayG.M. BrundinP. VolkmannJ. SchragA.E. LangA.E. Parkinson disease.Nat. Rev. Dis. Primers2017311701310.1038/nrdp.2017.1328332488
    [Google Scholar]
  5. ZhouQ. ZhangM.M. LiuM. TanZ.G. QinQ.L. JiangY.G. LncRNA XIST sponges miR-199a-3p to modulate the Sp1/LRRK2 signal pathway to accelerate Parkinson’s disease progression.Aging (Albany NY)20211334115413710.18632/aging.20237833494069
    [Google Scholar]
  6. RauschW.D. WangF. RadadK. From the tyrosine hydroxylase hypothesis of Parkinson’s disease to modern strategies: a short historical overview.J. Neural Transm. (Vienna)20221295-648749510.1007/s00702‑022‑02488‑335460433
    [Google Scholar]
  7. ZhuY. ZhangJ. ZengY. Overview of tyrosine hydroxylase in Parkinson's disease.CNS Neurolog. Disord. Drug Targ.201211435035810.2174/187152712800792901
    [Google Scholar]
  8. StatelloL. GuoC.J. ChenL.L. HuarteM. Gene regulation by long non-coding RNAs and its biological functions.Nat. Rev. Mol. Cell Biol.20212229611810.1038/s41580‑020‑00315‑933353982
    [Google Scholar]
  9. HuT. ChitnisN. MonosD. DinhA. Next-generation sequencing technologies: An overview.Hum. Immunol.2021821180181110.1016/j.humimm.2021.02.01233745759
    [Google Scholar]
  10. GrammatikakisI. LalA. Significance of lncRNA abundance to function.Mamm. Genome202233227128010.1007/s00335‑021‑09901‑434406447
    [Google Scholar]
  11. BhanA. SoleimaniM. MandalS.S. Long noncoding RNA and cancer: a new paradigm.Cancer Res.201777153965398110.1158/0008‑5472.CAN‑16‑263428701486
    [Google Scholar]
  12. KazimierczykM. KasprowiczM.K. KasprzykM.E. WrzesinskiJ. Human long noncoding RNA interactome: detection, characterization and function.Int. J. Mol. Sci.2020213102710.3390/ijms2103102732033158
    [Google Scholar]
  13. LiL. ZhuangY. ZhaoX. LiX. Long non-coding RNA in neuronal development and neurological disorders.Front. Genet.2019974410.3389/fgene.2018.0074430728830
    [Google Scholar]
  14. ZhaoM.Y. WangG.Q. WangN.N. YuQ.Y. LiuR.L. ShiW.Q. The long-non-coding RNA NEAT1 is a novel target for Alzheimer’s disease progression via miR-124/BACE1 axis.Neurol. Res.201941648949710.1080/01616412.2018.154874731014193
    [Google Scholar]
  15. WangY. HuS.B. WangM.R. YaoR.W. WuD. YangL. ChenL.L. Genome-wide screening of NEAT1 regulators reveals cross-regulation between paraspeckles and mitochondria.Nat. Cell Biol.201820101145115810.1038/s41556‑018‑0204‑230250064
    [Google Scholar]
  16. SimchovitzA. HananM. NiederhofferN. MadrerN. YayonN. BennettE.R. GreenbergD.S. KadenerS. SoreqH. NEAT1 is overexpressed in Parkinson’s disease substantia nigra and confers drug-inducible neuroprotection from oxidative stress.FASEB J.20193310112231123410.1096/fj.201900830R31311324
    [Google Scholar]
  17. BornL.J. HarmonJ.W. JayS.M. Therapeutic potential of extracellular vesicle-associated long noncoding RNA.Bioeng. Transl. Med.202053e1017210.1002/btm2.1017233005738
    [Google Scholar]
  18. WeiW. WangZ.Y. MaL.N. ZhangT.T. CaoY. LiH. Ma L-N, Zhang T-T, Cao Y, Li H. MicroRNAs in Alzheimer’s disease: function and potential applications as diagnostic biomarkers.Front. Mol. Neurosci.20201316010.3389/fnmol.2020.0016032973449
    [Google Scholar]
  19. GuterresA. de Azeredo LimaC.H. MirandaR.L. GadelhaM.R. What is the potential function of microRNAs as biomarkers and therapeutic targets in COVID-19?Infect. Genet. Evol.20208510441710.1016/j.meegid.2020.10441732526370
    [Google Scholar]
  20. TeppanJ. BarthD.A. PrinzF. JonasK. PichlerM. KlecC. Involvement of long non-coding RNAs (lncRNAs) in tumor angiogenesis.Noncoding RNA2020644210.3390/ncrna604004232992718
    [Google Scholar]
  21. TüfekciK.U. MeuwissenR.L.J. GençŞ. The role of microRNAs in biological processes.Methods Mol Biol.201411071531
    [Google Scholar]
  22. ZhangH. WangZ. HuK. LiuH. Downregulation of long noncoding RNA SNHG7 protects against inflammation and apoptosis in Parkinson’s disease model by targeting the miR-425-5p/TRAF5/NF-κB axis.J. Biochem. Mol. Toxicol.20213510e2286710.1002/jbt.2286734369042
    [Google Scholar]
  23. KaragkouniD. KaravangeliA. ParaskevopoulouM.D. HatzigeorgiouA.G. Characterizing miRNA–lncRNA interplay. Long non-coding RNAs.Methods Protoc.2021243262
    [Google Scholar]
  24. MaH. WangL.Y. YangR.H. ZhouY. ZhouP. KongL. Identification of reciprocal microRNA-mRNA pairs associated with metastatic potential disparities in human prostate cancer cells and signaling pathway analysis.J. Cell. Biochem.201912010177791779010.1002/jcb.2904531127646
    [Google Scholar]
  25. SchwienbacherC. FocoL. PicardA. CorradiE. SerafinA. PanzerJ. ZanigniS. BlankenburgH. FacherisM.F. GianniniG. FallaM. CortelliP. PramstallerP.P. HicksA.A. Plasma and white blood cells show different miRNA expression profiles in Parkinson’s disease.J. Mol. Neurosci.201762224425410.1007/s12031‑017‑0926‑928540642
    [Google Scholar]
  26. Santos-GarcíaD. MirP. CuboE. VelaL. Rodríguez-OrozM.C. MartíM.J. COPPADIS-2015 (COhort of Patients with PArkinson’s DIsease in Spain, 2015), a global–clinical evaluations, serum biomarkers, genetic studies and neuroimaging–prospective, multicenter, non-interventional, long-term study on Parkinson’s disease progression.BMC Neurol.201616114
    [Google Scholar]
  27. WrightP.R. GeorgJ. MannM. SorescuD.A. RichterA.S. LottS. KleinkaufR. HessW.R. BackofenR. CopraRNA and IntaRNA: predicting small RNA targets, networks and interaction domains.Nucleic Acids Res.201442W1W119W12310.1093/nar/gku35924838564
    [Google Scholar]
  28. LivakK.J. SchmittgenT.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method.Methods2001254402408
    [Google Scholar]
  29. LevinJ. KurzA. ArzbergerT. GieseA. HöglingerG.U. The differential diagnosis and treatment of atypical parkinsonism.Dtsch. Arztebl. Int.20161135616910.3238/arztebl.2016.006126900156
    [Google Scholar]
  30. YangB. XiaZ. ZhongB. XiongX. ShengC. WangY. GongW. CaoY. WangZ. PengW. Distinct hippocampal expression profiles of long non-coding RNAs in an Alzheimer’s disease model.Mol. Neurobiol.20175474833484610.1007/s12035‑016‑0038‑527501805
    [Google Scholar]
  31. HuayingC. XingJ. LuyaJ. LinhuiN. DiS. XianjunD. A signature of five long non-coding RNAs for predicting the prognosis of Alzheimer’s disease based on competing endogenous RNA networks.Front. Aging Neurosci.20211259860610.3389/fnagi.2020.59860633584243
    [Google Scholar]
  32. ChenL. YangJ. LüJ. CaoS. ZhaoQ. YuZ. Identification of aberrant circulating mi RNA s in Parkinson’s disease plasma samples.Brain Behav.201884e0094110.1002/brb3.94129670823
    [Google Scholar]
  33. BarryG. BriggsJ.A. HwangD.W. NaylerS.P. FortunaP.R.J. JonkhoutN. DachetF. MaagJ.L.V. MestdaghP. SinghE.M. AvessonL. KaczorowskiD.C. OzturkE. JonesN.C. VetterI. Arriola-MartinezL. HuJ. FrancoG.R. WarnV.M. GongA. DingerM.E. RigoF. LipovichL. MorrisM.J. O’BrienT.J. LeeD.S. LoebJ.A. BlackshawS. MattickJ.S. WolvetangE.J. The long non-coding RNA NEAT1 is responsive to neuronal activity and is associated with hyperexcitability states.Sci. Rep.2017714012710.1038/srep4012728054653
    [Google Scholar]
  34. ShenX. ZhaoW. ZhangY. LiangB. Long non-coding RNA-NEAT1 promotes cell migration and invasion via regulating miR-124/NF-κB pathway in cervical cancer.OncoTargets Ther.2020133265327610.2147/OTT.S220306
    [Google Scholar]
  35. HeK. ZhuZ-B. ShuR. HongA. LncRNA NEAT1 mediates progression of oral squamous cell carcinoma via VEGF-A and Notch signaling pathway.World J. Surg. Oncol.202018119
    [Google Scholar]
  36. AnH. WilliamsN.G. ShelkovnikovaT.A. NEAT1 and paraspeckles in neurodegenerative diseases: A missing lnc found?Noncoding RNA Res.20183424325210.1016/j.ncrna.2018.11.00330533572
    [Google Scholar]
  37. YanW. ChenZ.Y. ChenJ.Q. ChenH.M. LncRNA NEAT1 promotes autophagy in MPTP-induced Parkinson’s disease through stabilizing PINK1 protein.Biochem. Biophys. Res. Commun.201849641019102410.1016/j.bbrc.2017.12.14929287722
    [Google Scholar]
  38. LiuY. LuZ. Long non-coding RNA NEAT 1 mediates the toxic of Parkinson’s disease induced by MPTP / MPP + via regulation of gene expression.Clin. Exp. Pharmacol. Physiol.201845884184810.1111/1440‑1681.1293229575151
    [Google Scholar]
  39. ZhaoJ. WanX.N. ZhuJ.P. LiuQ.C. GanL. LncRNA NEAT1 promoted MPP+-induced ferroptosis via regulating miR-150-5p/BAP1 pathway in SK-N-SH cells.Acta Neurobiol. Exp. (Warsz.)202282222623610.55782/ane‑2022‑02135833822
    [Google Scholar]
  40. DongL. ZhengY. LuoX. lncRNA NEAT1 promotes autophagy of neurons in mice by impairing miR-107-5p.Bioengineered2022135122611227410.1080/21655979.2022.206298935587608
    [Google Scholar]
  41. ZhouS. ZhangD. GuoJ. ChenZ. ChenY. ZhangJ. Deficiency of NEAT1 prevented MPP+-induced inflammatory response, oxidative stress and apoptosis in dopaminergic SK-N-SH neuroblastoma cells via miR-1277-5p/ARHGAP26 axis.Brain Res.2021175014715610.1016/j.brainres.2020.14715633069733
    [Google Scholar]
  42. LiuT. ZhangY. LiuW. ZhaoJ. LncRNA NEAT1 regulates the development of Parkinson’s disease by targeting AXIN1 via sponging miR-212-3p.Neurochem. Res.202146223024010.1007/s11064‑020‑03157‑133241432
    [Google Scholar]
  43. ChenM.Y. FanK. ZhaoL.J. WeiJ.M. GaoJ.X. LiZ.F. Long non-coding RNA nuclear enriched abundant transcript 1 (NEAT1) sponges microRNA-124-3p to up-regulate phosphodiesterase 4B (PDE4B) to accelerate the progression of Parkinson’s disease.Bioengineered202112170871910.1080/21655979.2021.188327933522352
    [Google Scholar]
  44. WangS. WenQ. XiongB. ZhangL. YuX. OuyangX. Long noncoding RNA NEAT1 knockdown ameliorates 1-methyl-4-phenylpyridine–induced cell injury through MicroRNA-519a-3p/SP1 axis in Parkinson disease.World Neurosurg.2021156e93e10310.1016/j.wneu.2021.08.14734508910
    [Google Scholar]
  45. LiuJ. LiuD. ZhaoB. JiaC. LvY. LiaoJ. LiK. Long non-coding RNA NEAT1 mediates MPTP/MPP+-induced apoptosis via regulating the miR-124/KLF4 axis in Parkinson’s disease.Open Life Sci.202015166567610.1515/biol‑2020‑006933817255
    [Google Scholar]
  46. ChenH. WangJ. WangH. LiangJ. DongJ. BaiH. JiangG. Advances in the application of Let-7 microRNAs in the diagnosis, treatment and prognosis of leukemia (Review).Oncol. Lett.20212311810.3892/ol.2021.1311934820000
    [Google Scholar]
  47. FadhilR.S. WeiM.Q. NikolarakosD. GoodD. NairR.G. Salivary microRNA miR-let-7a-5p and miR-3928 could be used as potential diagnostic bio-markers for head and neck squamous cell carcinoma.PLoS One2020153e022177910.1371/journal.pone.022177932208417
    [Google Scholar]
  48. ChenW. LinG. YaoY. ChenJ. ShuiH. YangQ. WangX. WengX. SunL. ChenF. YangS. YangY. ZhouY. MicroRNA hsa-let-7e-5p as a potential prognosis marker for rectal carcinoma with liver metastases.Oncol. Lett.20181556913692410.3892/ol.2018.818129731866
    [Google Scholar]
  49. WangY. HanT. GuoR. SongP. LiuY. WuZ. AiJ. ShenC. Micro-RNA let-7a-5p derived from mesenchymal stem cell-derived extracellular vesicles promotes the regrowth of neurons in spinal-cord-injured rats by targeting the HMGA2/SMAD2 Axis.Front. Mol. Neurosci.20221585036410.3389/fnmol.2022.85036435401112
    [Google Scholar]
  50. BentwichI. AvnielA. KarovY. AharonovR. GiladS. BaradO. BarzilaiA. EinatP. EinavU. MeiriE. SharonE. SpectorY. BentwichZ. Identification of hundreds of conserved and nonconserved human microRNAs.Nat. Genet.200537776677010.1038/ng159015965474
    [Google Scholar]
  51. LiJ. LiuY. DongD. ZhangZ. Evolution of an X-linked primate-specific micro RNA cluster.Mol. Biol. Evol.201027367168310.1093/molbev/msp28419933172
    [Google Scholar]
  52. LiJ. JuJ. NiB. WangH. The emerging role of miR-506 in cancer.Oncotarget2016738627786278810.18632/oncotarget.1129427542202
    [Google Scholar]
  53. WangY. JiaqiC. ZhaoyingC. HuiminC. MicroRNA-506-3p regulates neural stem cell proliferation and differentiation through targeting TCF3.Gene2016593119320010.1016/j.gene.2016.08.02627538704
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673336756241016063552
Loading
/content/journals/cmc/10.2174/0109298673336756241016063552
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Combined diagnosis; hsa-let-7a-5p; miR-506-3p; NEAT1; Parkinson's disease; pathogenesis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test