Skip to content
2000
Volume 32, Issue 36
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Introduction

Inflammation and oxidative stress are related to congestive heart failure in patients with coronary heart disease.

Objective

Chronic congestive heart failure is a serious stage of coronary artery disease and is mainly a disease of elderly people over the age of 65. Elderly heart failure patients are characterized by myocardial ischemia, and post-ischemic myocardial dysfunction. Oxidative Stress, inflammation, and immune response play important roles in the development of heart failure. We tried to examine the mutual triggering of oxidative stress (malondialdehyde), inflammatory cytokines (tumor necrosis factor-α and soluble tumor necrosis factor receptor-1/2), immune response (toll-like receptors 2,3,4), and high sensitivity C-reactive protein expression in elderly patients with recurrent congestive heart failure after coronary stenting and investigated the effect of interplay of these changes on onset and progression of recurrent congestive heart failure in elderly patients underwent coronary stent implantation.

Methods

A total of 726 patients were enrolled in this study. We determined the levels of malondialdehyde (MDA), high sensitivity C-reactive protein (hs-CRP), tumor necrosis factor-α (TNF-α), soluble tumor necrosis factor receptor-1 and 2 (sTNFR-1/2) and toll-like receptor 2,3,4 (TLR2/3/4) in elderly patients with recurrent congestive heart failure after coronary artery stent implantation.

Results

Levels of MDA, hs-CRP, TNF-α, sTNFR-1, sTNFR-2, TLR2, TLR3 and TLR4 were remarkably increased (<0.01) in elderly patients with recurrent congestive heart failure after coronary artery stenting. The results indicated that these markers were closely correlated to each other and showed that these markers were associated with increased New York Heart Association functional classification and low left ventricular ejection fractions. Further analysis confirmed that the independent clinical risk factors for recurrent congestive heart failure were MDA, hs-CRP, TNF-α, sTNFR-1, sTNFR-2, TLR2, TLR3 and TLR4. The interplay of oxidative stress, inflammatory cytokines and toll-like receptors, and hs-CRP expression levels was an important factor involved in recurrent congestive heart failure of elderly patients after coronary stenting.

Conclusion

High levels of MDA, hs-CRP, TNF-α, sTNFR-1, sTNFR-2, TLR2, TLR3 and TLR4 had an important implication for recurrent heart failure with increased New York Heart Association functional classification and low left ventricular ejection fractions. These eight factors amplified each other's positive effects and this interaction may be a key element of their roles in recurrent heart failure. The eight risk factors were inter-dependent and occurred simultaneously, and exerted detrimental effects forming a vicious circle. MDA may trigger the over-expressions of pro-inflammatory risk factors (hs-CRP, TNF-α, sTNFR-1, sTNFR-2) through the activation of TLRs as risk factors (TLR2, TLR3 and TLR4) contributing to the dysfunction of myocardial mitochondria, cardiomyocyte hypertrophy, maladaptive myocardial remodeling, myocardial interstitial fibrosis, cardiac systolic decrease and recurrent heart failure. These eight risk factors were the basis of the mechanisms of recurrent heart failure. Therefore, the mutual triggering of oxidative stress, inflammatory and toll-like receptor signaling pathways, and hs-CRP expression could play key roles in the development of recurrent congestive heart failure in elderly patients after coronary stenting.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673309995240829060533
2024-09-05
2025-10-30
Loading full text...

Full text loading...

References

  1. ArmstrongE.J. MorrowD.A. SabatineM.S. Inflammatory biomarkers in acute coronary syndromes: Part II: Acute-phase reactants and biomarkers of endothelial cell activation.Circulation20061137e152e15510.1161/CIRCULATIONAHA.105.59553816490825
    [Google Scholar]
  2. HoE. Karimi GalougahiK. LiuC.C. BhindiR. FigtreeG.A. Biological markers of oxidative stress: Applications to cardiovascular research and practice.Redox Biol.20131148349110.1016/j.redox.2013.07.00624251116
    [Google Scholar]
  3. FoldenD.V. GuptaA. SharmaA.C. LiS.Y. SaariJ.T. RenJ. Malondialdehyde inhibits cardiac contractile function in ventricular myocytes via a p38 mitogen-activated protein kinase-dependent mechanism.Br. J. Pharmacol.200313971310131610.1038/sj.bjp.070538412890710
    [Google Scholar]
  4. MatsuoY. KuboT. OkumotoY. IshibashiK. KomukaiK. TanimotoT. InoY. KitabataH. HirataK. ImanishiT. AkagiH. AkasakaT. Circulating malondialdehyde-modified low-density lipoprotein levels are associated with the presence of thin-cap fibroatheromas determined by optical coherence tomography in coronary artery disease.Eur. Heart J. Cardiovasc. Imaging2013141435010.1093/ehjci/jes09422573905
    [Google Scholar]
  5. WangA. LiuJ. LiC. GaoJ. LiX. ChenS. WuS. DingH. FanH. HouS. Cumulative exposure to high-Sensitivity C-reactive protein predicts the risk of cardiovascular disease.J. Am. Heart Assoc.2017610e00561010.1161/JAHA.117.00561029066453
    [Google Scholar]
  6. VanhaverbekeM. VeltmanD. PattynN. De CremN. GillijnsH. CornelissenV. JanssensS. SinnaeveP.R. C-reactive protein during and after myocardial infarction in relation to cardiac injury and left ventricular function at follow-up.Clin. Cardiol.20184191201120610.1002/clc.2301729952015
    [Google Scholar]
  7. ShahaniR. MarshallJ.G. RubinB.B. LiR.K. WalkerP.M. LindsayT.F. Role of TNF-α in myocardial dysfunction after hemorrhagic shock and lower-torso ischemia.Am. J. Physiol. Heart Circ. Physiol.20002783H942H95010.1152/ajpheart.2000.278.3.H94210710363
    [Google Scholar]
  8. NilssonL. SzymanowskiA. SwahnE. JonassonL. Soluble TNF receptors are associated with infarct size and ventricular dysfunction in ST-elevation myocardial infarction.PLoS One201382e5547710.1371/journal.pone.005547723405158
    [Google Scholar]
  9. ArslanF. KeoghB. McGuirkP. ParkerA.E. TLR2 and TLR4 in ischemia reperfusion injury.Mediators Inflamm.201020101810.1155/2010/70420220628516
    [Google Scholar]
  10. LavieriR. PiccioliP. CartaS. DelfinoL. CastellaniP. RubartelliA. TLR costimulation causes oxidative stress with unbalance of proinflammatory and anti-inflammatory cytokine production.J. Immunol.2014192115373538110.4049/jimmunol.130348024771848
    [Google Scholar]
  11. LuC. RenD. WangX. HaT. LiuL. LeeE.J. HuJ. KalbfleischJ. GaoX. KaoR. WilliamsD. LiC. Toll-like receptor 3 plays a role in myocardial infarction and ischemia/reperfusion injury.Biochim. Biophys. Acta Mol. Basis Dis.201418421223110.1016/j.bbadis.2013.10.00624140513
    [Google Scholar]
  12. PackerM. BristowM.R. CohnJ.N. ColucciW.S. FowlerM.B. GilbertE.M. ShustermanN.H. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure.N. Engl. J. Med.1996334211349135510.1056/NEJM1996052333421018614419
    [Google Scholar]
  13. LiuZ. LiuY. TuX. ShenH. QiuH. ChenH. HeJ. High serum levels of malondialdehyde and 8-OHdG are both associated with early cognitive impairment in patients with acute ischaemic stroke.Sci. Rep.201771949310.1038/s41598‑017‑09988‑328842715
    [Google Scholar]
  14. PuL.J. LuL. XuX.W. ZhangR.Y. ZhangQ. ZhangJ.S. HuJ. YangZ.K. DingF.H. ChenQ.J. LouS. ShenJ. FangD.H. ShenW.F. Value of serum glycated albumin and high-sensitivity C-reactive protein levels in the prediction of presence of coronary artery disease in patients with type 2 diabetes.Cardiovasc. Diabetol.2006512710.1186/1475‑2840‑5‑2717178005
    [Google Scholar]
  15. AricanO. AralM. SasmazS. CiragilP. Serum levels of TNF-alpha, IFN-gamma, IL-6, IL-8, IL-12, IL-17, and IL-18 in patients with active psoriasis and correlation with disease severity.Mediators Inflamm.20052005527327910.1155/MI.2005.27316258194
    [Google Scholar]
  16. Jiménez-GalloD. de la Varga-MartínezR. Ossorio-GarcíaL. Albarrán-PlanellesC. RodríguezC. Linares-BarriosM. The clinical significance of increased serum oroinflammatory cytokines, C-reactive protein, and erythrocyte sedimentation rate in patients with hidradenitis suppurativa.Mediators Inflamm.201720171810.1155/2017/245040128769536
    [Google Scholar]
  17. SobrinoT. RegueiroU. MalfeitoM. Vieites-PradoA. Pérez-MatoM. CamposF. LemaI. Higher expression of Toll-like receptors 2 and 4 in blood cells of keratoconus patients.Sci. Rep.2017711297510.1038/s41598‑017‑13525‑729021606
    [Google Scholar]
  18. IshikawaY. SatohM. ItohT. MinamiY. TakahashiY. AkamuraM. Local expression of Toll-like receptor 4 at the site of ruptured plaques in patients with acute myocardial infarction.Clin. Sci. (Lond.)2008115413314010.1042/CS2007037918282141
    [Google Scholar]
  19. HouY. ZhouY. ZhengX. WangH. FuY. FangZ. HeS. Modulation of expression and function of Toll-like receptor 3 in A549 and H292 cells by histamine.Mol. Immunol.200643121982199210.1016/j.molimm.2005.11.01316406095
    [Google Scholar]
  20. TamarizL. HareJ.M. Inflammatory cytokines in heart failure: Roles in aetiology and utility as biomarkers.Eur. Heart J.201031776877010.1093/eurheartj/ehq01420172914
    [Google Scholar]
  21. CarusoR. VerdeA. CampoloJ. MilazzoF. RussoC. BoroniC. ParoliniM. TrunfioS. PainoR. MartinelliL. FrigerioM. ParodiO. Severity of oxidative stress and inflammatory activation in end-stage heart failure patients are unaltered after 1 month of left ventricular mechanical assistance.Cytokine201259113814410.1016/j.cyto.2012.04.01822579113
    [Google Scholar]
  22. YuL. FengZ. The role of toll-like receptor signaling in the progression of heart failure.Mediators Inflamm.2018201811110.1155/2018/987410929576748
    [Google Scholar]
  23. IliesiuA. CampeanuA. MartaD. ParvuI. GheorgheG. Uric acid, oxidative stress and inflammation in chronic heart failure with reduced ejection fraction.Rev. Rom. Med. Lab.201523439740610.1515/rrlm‑2015‑0039
    [Google Scholar]
  24. LiuZ. LiL. LuoS. FangJ. Effect of Zhen-wu decoction on chronic heart failure in rats.Trop. J. Pharm. Res.201716102439244310.4314/tjpr.v16i10.18
    [Google Scholar]
  25. DuBrockH.M. AbouEzzeddineO.F. RedfieldM.M. High-sensitivity C-reactive protein in heart failure with preserved ejection fraction.PLoS One2018138e020183610.1371/journal.pone.020183630114262
    [Google Scholar]
  26. Ribeiro-SamoraG.A. RabeloL.A. FerreiraA.C.C. FaveroM. GuedesG.S. PereiraL.S.M. ParreiraV.F. BrittoR.R. Inflammation and oxidative stress in heart failure: Effects of exercise intensity and duration.Braz. J. Med. Biol. Res.2017509e639310.1590/1414‑431x2017639328793058
    [Google Scholar]
  27. GillR. TsungA. BilliarT. Linking oxidative stress to inflammation: Toll-like receptors.Free Radic. Biol. Med.20104891121113210.1016/j.freeradbiomed.2010.01.00620083193
    [Google Scholar]
  28. ThanoonI.A.J. Abdul-JabbarH.A.S. TahaD.A. Oxidative stress and C-reactive protein in patients with cerebrovascular accident (ischaemic stroke): The role of Ginkgo biloba extract.Sultan Qaboos Univ. Med. J.201212219720510.12816/000311322548139
    [Google Scholar]
  29. GowdaB.H.R. MeeraK.S. MaheshE. Serum levels of high sensitivity C reactive protein and malondialdehyde in chronic kidney disease.Int. J. Med. Res. Health Sci.20154360861510.5958/2319‑5886.2015.00116.2
    [Google Scholar]
  30. VermaM.K. JaiswalA. SharmaP. KumarP. Narayan SinghA. Oxidative stress and biomarker of TNF-α, MDA and FRAP in hypertension.J. Med. Life201912325325910.25122/jml‑2019‑003131666827
    [Google Scholar]
  31. SoundravallyR. HotiS.L. PatilS.A. CleetusC.C. ZachariahB. KadhiravanT. NarayananP. KumarB.A. Association between proinflammatory cytokines and lipid peroxidation in patients with severe dengue disease around defervescence.Int. J. Infect. Dis.201418687210.1016/j.ijid.2013.09.02224216294
    [Google Scholar]
  32. KulkarniR. DeshpandeA. SaxenaR. SaxenaK. A study of serum malondialdehyde and cytokine in tuberculosis patients.J. Clin. Diagn. Res.20137102140214210.7860/JCDR/2013/5736.345224298458
    [Google Scholar]
  33. LiB. WanZ. WangZ. ZuoJ. XuY. HanX. PhouthapaneV. MiaoJ. Signaling pathway combats streptococcus uberis infection by inducing mitochondrial reactive oxygen species production.Cells20209249410.3390/cells902049432098158
    [Google Scholar]
  34. WangZ.H. FengY. HuQ. WangX.L. ZhangL. LiuT.T. ZhangJ.T. YangX. FuQ.Y. FuD.N. HuJ. LiuT. Keratinocyte TLR2 and TLR7 contribute to chronic itch through pruritic cytokines and chemokines in mice.J. Cell. Physiol.2023238125727310.1002/jcp.3092336436135
    [Google Scholar]
  35. NovoaC. SalazarP. CisternasP. GherardelliC. Vera-SalazarR. ZolezziJ.M. InestrosaN.C. Inflammation context in Alzheimer’s disease, a relationship intricate to define.Biol. Res.20225513910.1186/s40659‑022‑00404‑336550479
    [Google Scholar]
  36. ChenM. DengH. ZhaoY. MiaoX. GuH. BiY. ZhuY. GuoY. ShiS. XuJ. ZhaoD. LiuF. Toll- like receptor 2 modulates pulmonary inflammation and TNF-alpha release mediated by mycoplasma pneumoniae.Front. Cell. Infect. Microbiol.20221282402710.3389/fcimb.2022.82402735372108
    [Google Scholar]
  37. Ait DjebbaraS. McheikS. PercierP. SegueniN. PonceletA. TruyensC. The macrophage infectivity potentiator of Trypanosoma cruzi induces innate IFN-γ and TNF-α production by human neonatal and adult blood cells through TLR2/1 and TLR4.Front. Immunol.202314118090010.3389/fimmu.2023.118090037304288
    [Google Scholar]
  38. PattanaikK.P. GanguliG. NaikS.K. SonawaneA. Mycobacterium tuberculosis EsxL induces TNF-α secretion through activation of TLR2 dependent MAPK and NF-κB pathways.Mol. Immunol.202113013314110.1016/j.molimm.2020.11.02033419561
    [Google Scholar]
  39. HollaS. TrinathJ. BalajiK.N. TNF-α modulates TLR2-dependent responses during mycobacterial infection.Methods Mol. Biol.2014115513315010.1007/978‑1‑4939‑0669‑7_1224788179
    [Google Scholar]
  40. BerzsenyiM.D. RobertsS.K. PreissS. WoollardD.J. BeardM.R. SkinnerN.A. BowdenD.S. VisvanathanK. Hepatic TLR2 & TLR4 expression correlates with hepatic inflammation and TNF-α in HCV & HCV/HIV infection.J. Viral Hepat.2011181285286010.1111/j.1365‑2893.2010.01390.x21050341
    [Google Scholar]
  41. LiuS. JiaH. HouS. XinT. GuoX. ZhangG. GaoX. LiM. ZhuW. ZhuH. Recombinant Mtb9.8 of Mycobacterium bovis stimulates TNF-α and IL-1β secretion by RAW264.7 macrophages through activation of NF-κB pathway via TLR2.Sci. Rep.201881192810.1038/s41598‑018‑20433‑x29386556
    [Google Scholar]
  42. CoyC. StandishL.J. BenderG. LuH. Significant correlation between TLR2 agonist activity and TNF-alpha induction in J774.A1 macrophage cells by different medicinal mushroom products.Int. J. Med. Mushrooms201517871372210.1615/IntJMedMushrooms.v17.i8.2026559858
    [Google Scholar]
  43. ChenW.L. SheuJ.R. ChenR.J. HsiaoS.H. HsiaoC.J. ChouY.C. ChungC.L. HsiaoG. Mycobacterium tuberculosis upregulates TNF-alpha expression via TLR2/ERK signaling and induces MMP-1 and MMP-9 production in human pleural mesothelial cells.PLoS One2015109e013797910.1371/journal.pone.013797926367274
    [Google Scholar]
  44. TakaharaK. TokiedaS. NagaokaK. InabaK. Efficient capture of Candida albicans and zymosan by SIGNR1 augments TLR2-dependent TNF- production.Int. Immunol.2012242899610.1093/intimm/dxr10322207132
    [Google Scholar]
  45. PhulwaniN.K. EsenN. SyedM.M. KielianT. TLR2 expression in astrocytes is induced by TNF-alpha- and NF-kappa B-dependent pathways.J. Immunol.200818163841384910.4049/jimmunol.181.6.384118768838
    [Google Scholar]
  46. FreitagK. SterczykN. WendlingerS. ObermayerB. SchulzJ. FarztdinovV. MüllederM. RalserM. HoutmanJ. FleckL. BraeuningC. SansevrinoR. HoffmannC. MilovanovicD. SigristS.J. ConradT. BeuleD. HeppnerF.L. JendrachM. Spermidine reduces neuroinflammation and soluble amyloid beta in an Alzheimer’s disease mouse model.J. Neuroinflammation202219117210.1186/s12974‑022‑02534‑735780157
    [Google Scholar]
  47. LvH.L. YuJ. PeiJ.F. WangH.Y. GuoZ.L. TIR-domain-containing adapter-inducing interferon-β contributes to TLR3/TLR4 triggered apoptosis and inflammation in nucleus pulposus cells.J. Biol. Regul. Homeost. Agents202034244545510.23812/20‑66‑A‑3532529819
    [Google Scholar]
  48. QinL. LinJ. XieX. CircRNA-9119 suppresses poly I:C induced inflammation in Leydig and Sertoli cells via TLR3 and RIG-I signal pathways.Mol. Med.20192512810.1186/s10020‑019‑0094‑131195953
    [Google Scholar]
  49. LaiR. GuM. JiangW. LinW. XuP. LiuZ. HuangH. AnH. WangX. Raf kinase inhibitor protein preferentially promotes TLR3-triggered signaling and inflammation.J. Immunol.2017198104086409510.4049/jimmunol.160167228411188
    [Google Scholar]
  50. KinsellaS. FichtnerM. WattersO. KönigH.G. PrehnJ.H.M. Increased A20-E3 ubiquitin ligase interactions in bid-deficient glia attenuate TLR3- and TLR4-induced inflammation.J. Neuroinflammation201815113010.1186/s12974‑018‑1143‑329720226
    [Google Scholar]
  51. WangQ. MillerD.J. BowmanE.R. NagarkarD.R. SchneiderD. ZhaoY. LinnM.J. GoldsmithA.M. BentleyJ.K. SajjanU.S. HershensonM.B. MDA5 and TLR3 initiate pro-inflammatory signaling pathways leading to rhinovirus-induced airways inflammation and hyperresponsiveness.PLoS Pathog.201175e100207010.1371/journal.ppat.100207021637773
    [Google Scholar]
  52. GiermanL.M. SilvaG.B. PervaizZ. RaknerJ.J. MundalS.B. ThaningA.J. NervikI. ElschotM. MathewS. ThomsenL.C.V. BjørgeL. IversenA.C. TLR3 expression by maternal and fetal cells at the maternal-fetal interface in normal and preeclamptic pregnancies.J. Leukoc. Biol.2021109117318310.1002/JLB.3MA0620‑728RR32573856
    [Google Scholar]
  53. BuntingR.A. DuffyK.E. LambR.J. San MateoL.R. SmalleyK. RaymondH. LiuX. PetleyT. FisherJ. BeckH. FlavellR.A. AlexopoulouL. WardC.K. Novel antagonist antibody to TLR3 blocks poly(I:C)-induced inflammation in vivo and in vitro.Cell. Immunol.2011267191610.1016/j.cellimm.2010.10.00821092943
    [Google Scholar]
  54. LiuZ. TianB. ChenH. WangP. BrasierA.R. ZhouJ. Discovery of potent and selective BRD4 inhibitors capable of blocking TLR3-induced acute airway inflammation.Eur. J. Med. Chem.201815145046110.1016/j.ejmech.2018.04.00629649741
    [Google Scholar]
  55. StowellN.C. SeidemanJ. RaymondH.A. SmalleyK.A. LambR.J. EgenolfD.D. BugelskiP.J. MurrayL.A. MarstersP.A. BuntingR.A. FlavellR.A. AlexopoulouL. San MateoL.R. GriswoldD.E. SariskyR.T. MbowM.L. DasA.M. Long-term activation of TLR3 by Poly(I:C) induces inflammation and impairs lung function in mice.Respir. Res.20091014310.1186/1465‑9921‑10‑4319486528
    [Google Scholar]
  56. FitzpatrickJ.M. MinogueE. CurhamL. TyrrellH. GaviganP. HindW. DownerE.J. MyD88-dependent and -independent signalling via TLR3 and TLR4 are differentially modulated by Δ9-tetrahydrocannabinol and cannabidiol in human macrophages.J. Neuroimmunol.202034357721710.1016/j.jneuroim.2020.57721732244040
    [Google Scholar]
  57. ZinngrebeJ. RieserE. TaraborrelliL. PeltzerN. HartwigT. RenH. KovácsI. EndresC. DraberP. DardingM. von KarstedtS. LemkeJ. DomeB. BergmannM. FergusonB.J. WalczakH. ­­LUBAC deficiency perturbs TLR3 signaling to cause immunodeficiency and autoinflammation.J. Exp. Med.2016213122671268910.1084/jem.2016004127810922
    [Google Scholar]
  58. PłóciennikowskaA. Hromada-JudyckaA. BorzęckaK. KwiatkowskaK. Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling.Cell. Mol. Life Sci.201572355758110.1007/s00018‑014‑1762‑525332099
    [Google Scholar]
  59. RogeroM. CalderP. Obesity, inflammation, Toll-Like receptor 4 and fatty acids.Nutrients201810443210.3390/nu1004043229601492
    [Google Scholar]
  60. SalehH.A. YousefM.H. AbdelnaserA. The anti-inflammatory properties of phytochemicals and their effects on epigenetic mechanisms involved in TLR4/NF-kappaB- mediated inflammation.Front. Immunol.20211260606910.3389/fimmu.2021.60606933868227
    [Google Scholar]
  61. VellosoL.A. FolliF. SaadM.J. TLR4 at the crossroads of nutrients, gut microbiota, and metabolic inflammation.Endocr. Rev.201536324527110.1210/er.2014‑110025811237
    [Google Scholar]
  62. CuestaC.M. PascualM. Pérez-MoragaR. Rodríguez-NavarroI. García-GarcíaF. Ureña-PeraltaJ.R. GuerriC. TLR4 deficiency affects the microbiome and reduces intestinal dysfunctions and inflammation in chronic alcohol-fed mice.Int. J. Mol. Sci.202122231283010.3390/ijms22231283034884634
    [Google Scholar]
  63. ZhangQ. WangF. XuS. CuiJ. LiK. ShiwenX. GuoM. Polystyrene microplastics induce myocardial inflammation and cell death via the TLR4/NF-κB pathway in carp.Fish Shellfish Immunol.202313510869010.1016/j.fsi.2023.10869036944415
    [Google Scholar]
  64. KarimyJ.K. ReevesB.C. KahleK.T. Targeting TLR4-dependent inflammation in post-hemorrhagic brain injury.Expert Opin. Ther. Targets202024652553310.1080/14728222.2020.175218232249624
    [Google Scholar]
  65. HongY. YuJ. SuY. MeiF. LiM. ZhaoK. ZhaoL. DengW. ChenC. WangW. High-fat diet aggravates acute pancreatitis via TLR4-mediated necroptosis and inflammation in rats.Oxid. Med. Cell. Longev.2020202011010.1155/2020/817271431998444
    [Google Scholar]
  66. LiJ. LiN. YanS. LiuM. SunB. LuY. ShaoY. Ursolic acid alleviates inflammation and against diabetes-induced nephropathy through TLR4-mediated inflammatory pathway.Mol. Med. Rep.20181854675468110.3892/mmr.2018.942930221655
    [Google Scholar]
  67. LiS. LiuR. XiaS. WeiG. IshfaqM. ZhangY. ZhangX. Protective role of curcumin on aflatoxin B1-induced TLR4/RIPK pathway mediated-necroptosis and inflammation in chicken liver.Ecotoxicol. Environ. Saf.202223311331910.1016/j.ecoenv.2022.11331935189522
    [Google Scholar]
  68. ZamoraR. ChavanS. ZanosT. SimmonsR.L. BilliarT.R. VodovotzY. Spatiotemporally specific roles of TLR4, TNF, and IL-17A in murine endotoxin-induced inflammation inferred from analysis of dynamic networks.Mol. Med.20212716510.1186/s10020‑021‑00333‑z34167455
    [Google Scholar]
  69. WangL. SongZ. ZouH. ChenH. HuY. LiX. LiuJ. CircRNA3616 knockdown attenuates inflammation and apoptosis in spinal cord injury by inhibiting TLR4/NF-κB activity via sponging miR-137.Mol. Cell. Biochem.2023478232934110.1007/s11010‑022‑04509‑x35913538
    [Google Scholar]
  70. Al-TaherA.Y. MorsyM.A. RifaaiR.A. ZenhomN.M. Abdel-GaberS.A. Paeonol attenuates methotrexate-induced cardiac toxicity in rats by inhibiting oxidative stress and suppressing TLR4-induced NF-κB inflammatory pathway.Mediators Inflamm.2020202011010.1155/2020/864102632104151
    [Google Scholar]
  71. AltavillaD. MariniH. SeminaraP. SquadritoG. MinutoliL. PassanitiM. BittoA. CalapaiG. CalòM. CaputiA.P. SquadritoF. Protective effects of antioxidant raxofelast in alcohol-induced liver disease in mice.Pharmacology200574161410.1159/00008293915627848
    [Google Scholar]
  72. KarpovaT. de OliveiraA.A. NaasH. PrivieroF. NunesK.P. Blockade of Toll-like receptor 4 (TLR4) reduces oxidative stress and restores phospho-ERK1/2 levels in Leydig cells exposed to high glucose.Life Sci.202024511736510.1016/j.lfs.2020.11736532001267
    [Google Scholar]
  73. WangZ. WangF. KongX. GaoX. GuY. ZhangJ. Oscillatory shear stress induces oxidative stress via TLR4 activation in rndothelial cells.Mediators Inflamm.2019201911310.1155/2019/716297631316302
    [Google Scholar]
  74. YangQ. YuX.J. SuQ. YiQ.Y. SongX.A. ShiX.L. LiH.B. QiJ. ZhuG.Q. KangY.M. Attenuates inflammatory cytokines and oxidative stress in the mechanism of the TLR4 signal pathway in salt-induced hypertension.Neurosci. Bull.202036438539510.1007/s12264‑019‑00435‑z31641986
    [Google Scholar]
  75. YoshizakiS. KijimaK. HaraM. SaitoT. TamaruT. TanakaM. KonnoD. NakashimaY. OkadaS. Tranexamic acid reduces heme cytotoxicity via the TLR4/TNF axis and ameliorates functional recovery after spinal cord injury.J. Neuroinflammation201916116010.1186/s12974‑019‑1536‑y31358003
    [Google Scholar]
  76. ZhangZ. ZhaoX. GaoM. XuL. QiY. WangJ. YinL. Dioscin alleviates myocardial infarction injury via regulating BMP4/NOX1-mediated oxidative stress and inflammation.Phytomedicine202210315422210.1016/j.phymed.2022.15422235675750
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673309995240829060533
Loading
/content/journals/cmc/10.2174/0109298673309995240829060533
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test