Skip to content
2000
Volume 32, Issue 29
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

In this manuscript, the resource distribution, pharmacological activity, pharmacokinetics of sinomenine and the structure, synthesis, biological activity and mechanism of sinomenine derivatives reported from 2000 to December 2023 were reviewed. The literature was retrieved through Web of Science, PubMed, Science Direct, SciFiner Scholar and other websites. Sinomenine belongs to isoquinoline alkaloids and was extracted from the Chinese herb root. In Asian countries such as China and Japan, it is commonly prescribed as a treatment for rheumatoid arthritis. In addition, sinomenine also has sedative, analgesic, anti-inflammatory, immunosuppressive, neuroprotective, anti-drug dependence, anti-tumor and other biological activities. Sinomenine limited its application prospects because of its large dosage, poor epidermal permeability and short half-life. To overcome these defects, new sinomenine derivatives have been synthesized. Based on the comprehensive analysis of relevant literature at home and abroad, this paper reviews the recent progress in the study of sinomenine's pharmacological effects and structural modifications. Future research on sinomenine will focus on improving its therapeutic effect, and developing new drug preparations and structural modifications. It is hoped that this review will help to better understand the research progress of sinomenine and provide constructive suggestions for further research of sinomenine.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673323738240830055548
2024-09-18
2025-09-11
Loading full text...

Full text loading...

References

  1. MillerL.H. SuX. Artemisinin: discovery from the Chinese herbal garden.Cell2011146685585810.1016/j.cell.2011.08.024 21907397
    [Google Scholar]
  2. DingY. DingC. YeN. LiuZ. WoldE.A. ChenH. WildC. ShenQ. ZhouJ. Discovery and development of natural product oridonin-inspired anticancer agents.Eur. J. Med. Chem.201612210211710.1016/j.ejmech.2016.06.015 27344488
    [Google Scholar]
  3. IshiwariN. An Alkaloid of sinomeium diversifolius.J. Chem. Soc. Abstr.19211201354
    [Google Scholar]
  4. ChuJ.H. YiloS. ChouY.L. The alkaloids of chinese drug, ching-feng Terngsinomenium acutum rehd. et wils.Acta Chimi. Sin.196403265-269
    [Google Scholar]
  5. LvD. ZhangL.M. LouH.B. ShenY. Chemical compounds from leaves and stems of Aconitum carmichaelii.Chem. Nat. Compd.20235961215121910.1007/s10600‑023‑04235‑w
    [Google Scholar]
  6. MaH. JinX. WangF. JiangJ. ChengL. HuS. ZhangG. XuH. Morphinan and isoquinoline alkaloids from the tuberous roots of Stephania cepharantha.Nat. Prod. Res.20231710.1080/14786419.2023.2275740 37943069
    [Google Scholar]
  7. HongY. SongZ.F. QinJ.X. LiY.W. FangX. LiangS. The basic chemical substances of total alkaloids of Menispermi Rhizoma and their anti-inflammatory activities.Nat. Prod. Res.2024381220442052 37493517
    [Google Scholar]
  8. HeD.H. LiuJ. FangD.M. WangX.L. LiL.M. Study on alkaloid constituents of Stephania tetrandra S. Moore.Yao Xue Xue Bao20215612321328
    [Google Scholar]
  9. DesgrouasC. TaudonN. BunS.S. BaghdikianB. BoryS. ParzyD. OllivierE. Ethnobotany, phytochemistry and pharmacology of Stephania rotunda Lour.J. Ethnopharmacol.2014154353756310.1016/j.jep.2014.04.024 24768769
    [Google Scholar]
  10. ZuoA.X. LiL. MaY.S. RaoG.X. Akaloids from roots of Stephania dentifolia.Zhongguo Zhongyao Zazhi2013384574577 23713286
    [Google Scholar]
  11. ZuoA.X. Zhang Ql; Li L; Ma YS; Rao GX. Studies on alkaloids of Stephania micrantha.Zhongguo Shiyan Fangjixue Zazhi2013196134137
    [Google Scholar]
  12. ZengL. YinWq. Study of phenolic compounds from Mappianthus iodoides.Zhonghua Zhongyiyao Zazhi2011264838840
    [Google Scholar]
  13. ZhangY. ZhangS. ZhangH.Y. ShenZ.W. QinG.W. Chemical constituents from Stephania dielsiana.Zhongguo Tianran Yaowu200973199202
    [Google Scholar]
  14. DingX. ChenC. YangS. The phenolic alkaloids of Stephania epigeae H. S. Lo.Nanjing Yixueyuan Xuebao1986628990
    [Google Scholar]
  15. MinZ.D. ZhengX.Z. Chemical constituents of Stephania dicentzinifeza H. S.Lo et M. Yang. Zhongcaoyao19841518
    [Google Scholar]
  16. MinZ.D. LiuX.S. SunW.J. Studies on the alkaloids from stephaniamicrantha H.S.Lo Et M. Yang Sp. Nov. Mss. Yao Xue Xue Bao198107557559
    [Google Scholar]
  17. WangY. FangY. HuangW. ZhouX. WangM. ZhongB. PengD. Effect of sinomenine on cytokine expression of macrophages and synoviocytes in adjuvant arthritis rats.J. Ethnopharmacol.2005981-2374310.1016/j.jep.2004.12.022 15763362
    [Google Scholar]
  18. HeX. WangJ. GuoZ. LiuQ. ChenT. WangX. CaoX. Requirement for ERK activation in sinomenine-induced apoptosis of macrophages.Immunol. Lett.2005981919610.1016/j.imlet.2004.10.027 15790513
    [Google Scholar]
  19. KokT.W. YueP.Y.K. MakN.K. FanT.P.D. LiuL. WongR.N.S. The anti-angiogenic effect of sinomenine.Angiogenesis20058131210.1007/s10456‑005‑2892‑z 16132613
    [Google Scholar]
  20. YamasakiH. Pharmacology of sinomenine, an anti-rheumatic alkaloid from Sinomenium acutum.Acta Med. Okayama1976301120 61710
    [Google Scholar]
  21. LiuL. BuchnerE. BeitzeD. Schmidt-WeberC.B. KaeverV. EmmrichF. KinneR.W. Amelioration of rat experimental arthritides by treatment with the alkaloid sinomenine.Int. J. Immunopharmacol.1996181052954310.1016/S0192‑0561(96)00025‑2 9080247
    [Google Scholar]
  22. LiQ. ZhouW. WangY. KouF. LyuC. WeiH. Metabolic mechanism and anti-inflammation effects of sinomenine and its major metabolites N-demethylsinomenine and sinomenine-N-oxide.Life Sci.202026111843310.1016/j.lfs.2020.118433 32950572
    [Google Scholar]
  23. YanL.C. BiE.G. LouY.T. WuX.D. LiuZ.D. ZhouJ. WangY. MaZ. LinG.M. SunS.H. BianC. ChenA.Z. YaoZ.J. SunB. Novel sinomenine derivative 1032 improves immune suppression in experimental autoimmune encephalomyelitis.Biochem. Biophys. Res. Commun.201039111093109810.1016/j.bbrc.2009.12.028 20004644
    [Google Scholar]
  24. ZengQ.Y. Transcriptome analysis of S. acutum and the discovery of related genes in the sinomenine biosynthesis pathway.MD Thesis, Hunan Agricultural University: ChangSha, June2021
    [Google Scholar]
  25. RenD.D. Research on a Novel Continuous Manufacturing Process of Sinomenine Hydrochloride Based on the Con-cept of Green Chemistry.MD Thesis, Zhejiang University: Zhe Jiang, May2023
    [Google Scholar]
  26. WenD.Y. Study on the extraction and separation process of sinomenine hydrochloride.MD Thesis, Dalian University of Tech-nology: DaLian, May2021
    [Google Scholar]
  27. JouyandehM. TavakoliO. SarkhanpourR. SajadiS.M. ZarrintajP. RabieeN. AkhavanO. LimaE.C. SaebM.R. Green products from herbal medicine wastes by subcritical water treatment.J. Hazard. Mater.2022424Pt A12729410.1016/j.jhazmat.2021.127294 34592595
    [Google Scholar]
  28. LiuB. JiangH. ShenB. ChangY. Supercritical fluid extraction of sinomenine from Sinomenium acutum (Thumb).Rehd et Wils. J. Chromatogr. A200510751-221321510.1016/j.chroma.2005.04.016 15974135
    [Google Scholar]
  29. LyuH.N. ZengK.W. CaoN.K. ZhaoM.B. JiangY. TuP.F. Alkaloids from the stems and rhizomes of Sinomenium acutum from the Qinling Mountains, China.Phytochemistry201815624124910.1016/j.phytochem.2018.09.009 30340118
    [Google Scholar]
  30. OuY. SuM. LingY. WeiQ. PanF. LiJ. LiJ.X. ZhuQ. Anti-allodynic effects of N-demethylsinomenine, an active metabolite of sinomenine, in a mouse model of postoperative pain.Eur. J. Pharmacol.201882310510910.1016/j.ejphar.2018.01.044 29408089
    [Google Scholar]
  31. ZhangS. LiuY. XingF. CheC.M. Direct preparation of unprotected aminimides (R3N+-NH−) from natural aliphatic tertiary alkaloids (R3N) by [Mn(TDCPP)Cl]-catalysed N-amination reaction.Chem. Commun. (Camb.)202056649102910510.1039/D0CC02934C 32644058
    [Google Scholar]
  32. LeeJ.Y. KimK.J. KimJ. ChoiS.U. KimS.H. RyuS.Y. Anti-osteoclastogenic effects of isoquinoline alkaloids from the rhizome extract of Sinomenium acutum.Arch. Pharm. Res.201639571372010.1007/s12272‑016‑0734‑8 26992921
    [Google Scholar]
  33. YuK. SunY. XueL. HeJ. LiF. YinM. LiZ. YanX. GuoJ. LiG. WangC. Compounds with NO inhibitory effect from the rattan stems of S. acutum, a kind of Chinese folk medicine for treating rheumatoid arthritis.Chem. Biodivers.2022196e20220033410.1002/cbdv.202200334 35561089
    [Google Scholar]
  34. ZengH.L. CaiY.X. XuS.S. WuS.F. LiY.L. ChenX.L. KongL.Y. LuoJ.G. New N-oxide alkaloids from the stems of Sinomenium acutum.Fitoterapia202316510540410.1016/j.fitote.2022.105404 36572115
    [Google Scholar]
  35. WangX.L. LiuB.R. WangJ.R. ChenC.K. QinG.W. LeeS.S. Two new morphinane alkaloids from S. acutum.J. Asian Nat. Prod. Res.201113652352810.1080/10286020.2011.574617 21623515
    [Google Scholar]
  36. LiY.H. LiH.M. LiY. HeJ. DengX. PengL.Y. GaoL.H. ZhaoQ.S. LiR.T. WuX.D. New alkaloids sinomacutines A–E, and cephalonine-2-O-β-d-glucopyranoside from rhizomes of Sinomenium acutum.Tetrahedron201470468893889910.1016/j.tet.2014.09.088
    [Google Scholar]
  37. ChengJ.J. TsaiT.H. LinL.C. New alkaloids and cytotoxic principles from Sinomenium acutum.Planta Med.201278171873187710.1055/s‑0032‑1327785 23059629
    [Google Scholar]
  38. AbdolahadM. JanmalekiM. MohajerzadehS. AkhavanO. AbbasiS. Polyphenols attached graphene nanosheets for high efficiency NIR mediated photodestruction of cancer cells.Mater. Sci. Eng. C20133331498150510.1016/j.msec.2012.12.052 23827601
    [Google Scholar]
  39. HuangS.W. QiaoJ.W. SunX. GaoP.Y. LiL.Z. LiuQ.B. SunB. WuD.L. SongS.J. Secoiridoids and lignans from the leaves of Diospyros kaki Thunb. with antioxidant and neuroprotective activities.J. Funct. Foods20162418319510.1016/j.jff.2016.03.025
    [Google Scholar]
  40. KimM.H. JangJ.H. OhM.H. HeoJ.H. LeeM.W. The comparison of DPPH-scavenging capacity and anti-inflammatory effects of phenolic compounds isolated from the stems of Stewartia koreana Nakai.Nat. Prod. Res.201428171409141210.1080/14786419.2014.905560 24749670
    [Google Scholar]
  41. YangK. YangT. LiX. ZhouR. MiaoR. GuanY. TengY. ZhanG. GuoZ. A new monoterpene alkaloid from the stems of Rauvolfia vomitoria.Rec. Nat. Prod.20232232240
    [Google Scholar]
  42. FrankelE.N. Oily Press Lipid Library Services, Lipid Oxidation.Antioxidants2012209258
    [Google Scholar]
  43. AkhavanO. KalaeeM. AlaviZ.S. GhiasiS.M.A. EsfandiarA. Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide.Carbon20125083015302510.1016/j.carbon.2012.02.087
    [Google Scholar]
  44. LiX.J. YueP.Y.K. HaW.Y. WongD.Y.L. TinM.M.Y. WangP.X. WongR.N.S. LiuL. Effect of sinomenine on gene expression of the IL-1β-activated human synovial sarcoma.Life Sci.200679766567310.1016/j.lfs.2006.02.014 16566946
    [Google Scholar]
  45. TangJ. ZhangR. XuX.Q. WenC.W. JinY.S. WuQ.Y. ChenH.S. Synthesis, characterization, and NF-κB pathway inhibition of 1-halogenated sinomenine derivatives.Chem. Nat. Compd.20134861031103410.1007/s10600‑013‑0457‑8
    [Google Scholar]
  46. ZhuQ. SunY. ZhuJ. FangT. ZhangW. LiJ.X. Antinociceptive effects of sinomenine in a rat model of neuropathic pain.Sci. Rep.201441727010.1038/srep07270 25434829
    [Google Scholar]
  47. SunY. YaoY. DingC. A combination of Sinomenine and Methotrexate reduces joint damage of collagen induced arthritis in rats by modulating osteoclast-related cytokines.Int. Immunopharmacol.201418113514110.1016/j.intimp.2013.11.014 24287449
    [Google Scholar]
  48. JiangC. TongY.L. ZhangD. LiuL.Z. WangJ.F. Sinomenine prevents the development of cardiomyopathy in diabetic rats by inhibiting inflammatory responses and blocking activation of NF-κB.Gen. Physiol. Biophys.2017361657410.4149/gpb_2016033 27901470
    [Google Scholar]
  49. ShiH. ZhengK. SuZ. SuH. ZhongM. HeX. ZhouC. ChenH. XiongQ. ZhangY. Sinomenine enhances microglia M2 polarization and attenuates inflammatory injury in intracerebral hemorrhage.J. Neuroimmunol.2016299283410.1016/j.jneuroim.2016.08.010 27725118
    [Google Scholar]
  50. QianX. ZhaoZ. ShangW. XuZ. ZhangB. CaiH. Serum proteomic analysis of the anti arthritic effects of sinomenine on rats with collagen induced arthritis.Mol. Med. Rep.2018181495810.3892/mmr.2018.8959 29749546
    [Google Scholar]
  51. ZhouH. WongY.F. WangJ. CaiX. LiuL. Sinomenine ameliorates arthritis via MMPs, TIMPs, and cytokines in rats.Biochem. Biophys. Res. Commun.2008376235235710.1016/j.bbrc.2008.08.153 18782565
    [Google Scholar]
  52. ZhuR.L. ZhiY.K. YiL. LuoJ.F. LiJ. BaiS.S. LiuL. WangP.X. ZhouH. DongY. Sinomenine regulates CD14/TLR4, JAK2/STAT3 pathway and calcium signal via α7nAChR to inhibit inflammation in LPS-stimulated macrophages.Immunopharmacol. Immunotoxicol.201941117217710.1080/08923973.2019.1568451 30896303
    [Google Scholar]
  53. LiuS. ChenQ. LiuJ. YangX. ZhangY. HuangF. Sinomenine protects against E. coli-induced acute lung injury in mice through Nrf2-NF-κB pathway.Biomed. Pharmacother.201810769670210.1016/j.biopha.2018.08.048 30138891
    [Google Scholar]
  54. BingjieG. YanyingZ. ChengY. HuijiuanW. XiaofanY. SongW. XiaohuiJ. Sinomenine reduces iNOS expression via inhibiting the T-bet IFN-γ pathway in experimental autoimmune encephalomyelitis in rats.J. Biomed. Res.201226644845510.7555/JBR.26.20110114 23554784
    [Google Scholar]
  55. GaoL. ZhongB. WangY. Mechanism underlying antitumor effects of sinomenine.Chin. J. Integr. Med.2019251187387810.1007/s11655‑019‑3151‑2 30826933
    [Google Scholar]
  56. XuF. LiQ. WangZ. CaoX. RETRACTED: Sinomenine inhibits proliferation, migration, invasion and promotes apoptosis of prostate cancer cells by regulation of miR-23a.Biomed. Pharmacother.201911210859210.1016/j.biopha.2019.01.053 30784907
    [Google Scholar]
  57. BaiS. WenW. HouX. WuJ. YiL. ZhiY. LvY. TanX. LiuL. WangP. ZhouH. DongY. Inhibitory effect of sinomenine on lung cancer cells via negative regulation of α7 nicotinic acetylcholine receptor.J. Leukoc. Biol.2021109484385210.1002/JLB.6MA0720‑344RRR 32726882
    [Google Scholar]
  58. LiX. WangK. RenY. ZhangL. TangX-J. ZhangH-M. ZhaoC-Q. LiuP-J. ZhangJ-M. HeJ-J. MAPK signaling mediates sinomenine hydrochloride-induced human breast cancer cell death via both reactive oxygen species-dependent and -independent pathways: an in vitro and in vivo study.Cell Death Dis.201457e135610.1038/cddis.2014.321 25077542
    [Google Scholar]
  59. HeX. MaimaitiM. JiaoY. MengX. LiH. Sinomenine Induces G1-Phase Cell Cycle Arrest and Apoptosis in Malignant Glioma Cells via Downregulation of Sirtuin 1 and Induction of p53 Acetylation.Technol. Cancer Res. Treat.201817153303461877030510.1177/1533034618770305 29756546
    [Google Scholar]
  60. SunZ. ZhengL. LiuX. XingW. LiuX. Sinomenine inhibits the growth of melanoma by enhancement of autophagy via PI3K/AKT/mTOR inhibition.Drug Des. Devel. Ther.2018122413242110.2147/DDDT.S155798 30122899
    [Google Scholar]
  61. LiuY. LiuC. TanT. LiS. TangS. ChenX. Sinomenine sensitizes human gastric cancer cells to cisplatin through negative regulation of PI3K/AKT/Wnt signaling pathway.Anticancer Drugs2019301098399010.1097/CAD.0000000000000834 31609766
    [Google Scholar]
  62. FuS. JinL. GongT. PanS. ZhengS. ZhangX. YangT. SunY. WangY. GuoJ. HuiB. ZhangX. Effect of sinomenine hydrochloride on radiosensitivity of esophageal squamous cell carcinoma cells.Oncol. Rep.20183941601160810.3892/or.2018.6228 29393484
    [Google Scholar]
  63. ZhangJ.X. YangZ.R. WuD.D. SongJ. GuoX.F. WangJ. DongW.G. Suppressive effect of sinomenine combined with 5-fluorouracil on colon carcinoma cell growth.Asian Pac. J. Cancer Prev.201415166737674310.7314/APJCP.2014.15.16.6737 25169518
    [Google Scholar]
  64. YangH. YinP. ShiZ. MaY. ZhaoC. ZhengJ. ChenT. Sinomenine, a COX-2 inhibitor, induces cell cycle arrest and inhibits growth of human colon carcinoma cells in vitro and in vivo.Oncol. Lett.201611141141810.3892/ol.2015.3838 26870226
    [Google Scholar]
  65. GaoG. LiangX. MaW. Sinomenine restrains breast cancer cells proliferation, migration and invasion via modulation of miR-29/PDCD-4 axis.Artif. Cells Nanomed. Biotechnol.20194713839384610.1080/21691401.2019.1666861 31556312
    [Google Scholar]
  66. LvY. LiC. LiS. HaoZ. Sinomenine inhibits proliferation of SGC-7901 gastric adenocarcinoma cells via suppression of cyclooxygenase-2 expression.Oncol. Lett.20112474174510.3892/ol.2011.305 22848259
    [Google Scholar]
  67. YangW. FengQ. LiM. SuJ. WangP. WangX. YinY. WangX. ZhaoM. Sinomenine suppresses development of hepatocellular carcinoma cells via inhibiting MARCH1 and AMPK/STAT3 signaling pathway.Front. Mol. Biosci.2021868426210.3389/fmolb.2021.684262 34179090
    [Google Scholar]
  68. GaoT. HaoJ. Wiesenfeld-HallinZ. WangD.Q. XuX.J. Analgesic effect of sinomenine in rodents after inflammation and nerve injury.Eur. J. Pharmacol.20137211-351110.1016/j.ejphar.2013.09.062 24120369
    [Google Scholar]
  69. LeeJ.Y. YoonS.Y. WonJ. KimH.B. KangY. OhS.B. Sinomenine produces peripheral analgesic effects via inhibition of voltage-gated sodium currents.Neuroscience2017358283610.1016/j.neuroscience.2017.06.024 28663089
    [Google Scholar]
  70. ChenY. LiJ. ZhangJ. ZhaoT. ZouL. TangY. ZhangX. WuY. Sinomenine inhibits B7-H1 and B7-DC expression on human renal tubular epithelial cells.Int. Immunopharmacol.2005591446145710.1016/j.intimp.2005.03.015 15953571
    [Google Scholar]
  71. ShuL. YinW. ZhangJ. TangB. KangY.X. DingF. HuaZ.C. Sinomenine inhibits primary CD4+ T-cell proliferation via apoptosis.Cell Biol. Int.200731878478910.1016/j.cellbi.2007.01.035 17383204
    [Google Scholar]
  72. FuY.F. LiL. FangP. SongJ. SunX.H. MengT.H. TaoH.Q. Sinomenine’s protective role and mechanism in stress load-induced heart failure.J. Pharm. Pharmacol.202072220921710.1111/jphp.13181 31736093
    [Google Scholar]
  73. WangW. YangX. ChenQ. GuoM. LiuS. LiuJ. WangJ. HuangF. Sinomenine attenuates septic-associated lung injury through the Nrf2-Keap1 and autophagy.J. Pharm. Pharmacol.202072225927010.1111/jphp.13202 31729764
    [Google Scholar]
  74. FangM. LiJ. ZhuD. LuoC. LiC. ZhuC. FanM. YungK.K.L. MoZ. Effect of Sinomenine on the Morphine-dependence and Related Neural Mechanisms in Mice.Neurochem. Res.201742123587359610.1007/s11064‑017‑2407‑5 29116553
    [Google Scholar]
  75. LinY. LiH. PengJ. LiC. ZhuC. ZhouY. ChenZ. LiJ. LuoC. MoZ. Decrease of morphine-CPP by sinomenine via mediation of tyrosine hydroxylase, NMDA receptor subunit 2B and opioid receptor in the zebrafish brain.Pak. J. Pharm. Sci.202134516591665 34802999
    [Google Scholar]
  76. OuJ. ZhouY. LiC. ChenZ. LiH. FangM. ZhuC. HuoC. YungK.K.L. LiJ. LuoC. MoZ. Sinomenine protects against morphine dependence through the NMDAR1/CAMKII/CREB Pathway: a possible role of astrocyte-derived exosomes.Molecules201823923702371
    [Google Scholar]
  77. FanH. ShuQ. GuanX. ZhaoJ. YanJ. LiX. LiuJ. JiaZ. ShiJ. LiJ. Sinomenine Protects PC12 Neuronal Cells against H2O2-induced Cytotoxicity and Oxidative Stress via a ROS-dependent Up-regulation of Endogenous Antioxidant System.Cell. Mol. Neurobiol.20173781387139810.1007/s10571‑017‑0469‑1 28160099
    [Google Scholar]
  78. SinghD. AgrawalA. SingalC.M.S. PandeyH.S. SethP. SharmaS.K. Sinomenine inhibits amyloid beta-induced astrocyte activation and protects neurons against indirect toxicity.Mol. Brain20201313010.1186/s13041‑020‑00569‑6 32127013
    [Google Scholar]
  79. ShuklaS.M. SharmaS.K. Sinomenine inhibits microglial activation by Aβ and confers neuroprotection.J. Neuroinflammation20118111710.1186/1742‑2094‑8‑117 21917137
    [Google Scholar]
  80. RamaziS. Fahanik-BabaeiJ. Mohamadi-ZarchS.M. Tashakori-MiyanroudiM. NourabadiD. Nazari-SerenjehM. RoghaniM. BaluchnejadmojaradT. Neuroprotective and anticonvulsant effects of sinomenine in kainate rat model of temporal lobe epilepsy: Involvement of oxidative stress, inflammation and pyroptosis.J. Chem. Neuroanat.202010810180010.1016/j.jchemneu.2020.101800 32430101
    [Google Scholar]
  81. ChenJ. GuoP. HanM. ChenK. QinJ. YangF. Cognitive protection of sinomenine in type 2 diabetes mellitus through regulating the EGF/Nrf2/HO-1 signaling, the microbiota-gut-brain axis, and hippocampal neuron ferroptosis.Phytother. Res.20233783323334110.1002/ptr.7807 37036428
    [Google Scholar]
  82. YangH. WangJ. ChenX. JiangC. HeK. LiB. HuY. Effects of sinomenine in LPS-associated diseases are related to inhibition of LBP, Mac-1, and L-selectin levels.J. Vet. Pharmacol. Ther.201942673273710.1111/jvp.12807 31490576
    [Google Scholar]
  83. GaoZ. LinY. ZhangP. ChengQ. YeL. WuF. ChenY. FuM. ChengC. GaoY. Sinomenine ameliorates intervertebral disc degeneration via inhibition of apoptosis and autophagy in vitro and in vivo.Am. J. Transl. Res.201911959565966 31632563
    [Google Scholar]
  84. LiuS. XuS. WangZ. GuoY. PanW. ShenZ. Anti-depressant-like effect of sinomenine on chronic unpredictable mild stress-induced depression in a mouse model.Med. Sci. Monit.2018247646765310.12659/MSM.908422 30362468
    [Google Scholar]
  85. LiY. WangL. ZhangJ. XuB. ZhanH. Integrated multi-omics and bioinformatic methods to reveal the mechanisms of sinomenine against diabetic nephropathy.BMC Complement. Med. Ther.202323128710.1186/s12906‑023‑04119‑0 37580684
    [Google Scholar]
  86. SongS. ShenX. TangY. WangZ. GuoW. DingG. WangQ. FuZ. Sinomenine pretreatment attenuates cold ischemia/reperfusion injury in rats: The role of heme oxygenase-1.Int. Immunopharmacol.201010667968410.1016/j.intimp.2010.03.011 20353835
    [Google Scholar]
  87. YumS.J. JeongH.G. KimS.M. Anti-biofilm effects of sinomenine against Staphylococcus aureus.Food Sci. Biotechnol.2023321839010.1007/s10068‑022‑01174‑0 36606087
    [Google Scholar]
  88. KangM.J. ChoJ.Y. ShimB.H. KimD.K. LeeJ. Bioavailability enhancing activities of natural compounds from medicinal plants.J. Med. Plants Res.200931312041211
    [Google Scholar]
  89. OkabeK. HayashiK. SawaY. Synthesis of sinomenine and isosinomenine from sinomeninone.Chem. Pharm. Bull. (Tokyo)19681681611161510.1248/cpb.16.1611
    [Google Scholar]
  90. GotoK. ShishidoH. Sinomenine and disinomenine. XXVIII. Hofmann decomposition of dihydrosinomenine.Bull. Chem. Soc. Jpn.19316922923310.1246/bcsj.6.229
    [Google Scholar]
  91. BrossiA. MinamikawaJ. IijimaI. Studies in the (+)-morphinan series. VI. Dimers of natural (-)- and unnatural (+)-sinomenine.Heterocycles1978101798410.3987/S‑1978‑01‑0079
    [Google Scholar]
  92. TaiZ. HopkinsS.J. Sinomenine: antiarthritic antiinflammatory.Drugs Future1998231454910.1358/dof.1998.023.01.439562
    [Google Scholar]
  93. TengP. LiuH.L. ZhangL. FengL.L. HuaiY. DengZ.S. SunY. XuQ. LiJ.X. Synthesis and biological evaluation of novel sinomenine derivatives as anti-inflammatory agents.Eur. J. Med. Chem.201250637410.1016/j.ejmech.2012.01.036 22325804
    [Google Scholar]
  94. ChenH. ZhangW. YangN. ChenC. ZhangM. Chitosan-based surface molecularly imprinted polymer microspheres for sustained release of sinomenine hydrochloride in aqueous media.Appl. Biochem. Biotechnol.2018185237038410.1007/s12010‑017‑2658‑2 29152695
    [Google Scholar]
  95. Fernández-GarcíaR. LalatsaA. StattsL. Bolás-FernándezF. BallesterosM.P. SerranoD.R. Transferosomes as nanocarriers for drugs across the skin: Quality by design from lab to industrial scale.Int. J. Pharm.202057311881710.1016/j.ijpharm.2019.118817 31678520
    [Google Scholar]
  96. ChuX. WangX. TianC. LiuL. XiaM. JiangJ. GuiS. Dual drug-loaded cubic liquid crystal gels for transdermal delivery: inner structure and percutaneous mechanism evaluations.Drug Dev. Ind. Pharm.201945121879188810.1080/03639045.2019.1672716 31672067
    [Google Scholar]
  97. SongH. WenJ. LiH. MengY. ZhangY. ZhangN. ZhengW. Enhanced transdermal permeability and drug deposition of rheumatoid arthritis via sinomenine hydrochloride-loaded antioxidant surface transethosome.Int. J. Nanomedicine2019143177318810.2147/IJN.S188842 31118630
    [Google Scholar]
  98. LiangX. ChenY. WuL. MaharjanA. RegmiB. ZhangJ. GuiS. In situ hexagonal liquid crystal for intra-articular delivery of sinomenine hydrochloride.Biomed. Pharmacother.201911710899310.1016/j.biopha.2019.108993 31228805
    [Google Scholar]
  99. TerlikowskaK.M. DobrzyckaB. TerlikowskiS.J. Modifications of nanobubble therapy for cancer treatment.Int. J. Mol. Sci.20242513729210.3390/ijms25137292 39000401
    [Google Scholar]
  100. JannesariM. AkhavanO. Madaah HosseiniH.R. BakhshiB. Oxygen-Rich Graphene/ZnO2-Ag nanoframeworks with pH-switchable catalase/peroxidase activity as O2 nanobubble-self generator for bacterial inactivation.J. Colloid Interface Sci.202363723725010.1016/j.jcis.2023.01.079 36701869
    [Google Scholar]
  101. YinL. QinF.H. ZhouY. QiX. Enhancing percutaneous permeability of sinomenine hydrochloride using dual-frequency sonophoresis.J. Drug Deliv. Sci. Technol.201636626710.1016/j.jddst.2016.09.009
    [Google Scholar]
  102. LiuZ.Q. ChanK. ZhouH. JiangZ.H. WongY.F. XuH.X. LiuL. The pharmacokinetics and tissue distribution of sinomenine in rats and its protein binding ability in vitro.Life Sci.200577253197320910.1016/j.lfs.2005.05.054 16019035
    [Google Scholar]
  103. ChenW. ZhouY. KangJ. LiQ. FengX. Study on pharmacokinetics and absolute bioavailability of sinomenine in beagle dogs.Zhongguo Zhongyao Zazhi2009344468471 19459314
    [Google Scholar]
  104. HuangH. ZhangE.B. YiO.Y. WuH. DengG. HuangY.M. LiuW.L. YanJ.Y. CaiX. Sex-related differences in safety profiles, pharmacokinetics and tissue distribution of sinomenine hydrochloride in rats.Arch. Toxicol.202296123245325510.1007/s00204‑022‑03368‑1 36040703
    [Google Scholar]
  105. LongL. WuP. ChenX. ZhangZ. ChenY. LiY. JinY. ChenJ. WangF. HPLC and LC-MS analysis of sinomenine and its application in pharmacokinetic studies in rats.Acta Pharmacol. Sin.201031111508151410.1038/aps.2010.122 20871622
    [Google Scholar]
  106. LuZ. ChenW. ViljoenA. HammanJ.H. Effect of sinomenine on the in vitro intestinal epithelial transport of selected compounds.Phytother. Res.201024221121810.1002/ptr.2914 19585475
    [Google Scholar]
  107. ZhengS. HeZ.M. ZongY. ShiK. ChenW.J. DuR. Excretion kinetics of sinomenine hydrochloride in acute gout rats.Zhongchengyao2021431232753279
    [Google Scholar]
  108. ZhangY.S. HanJ.Y. IqbalO. LiangA.H. Research advances and prospects on mechanism of sinomenin on histamine release and the binding to histamine receptors.Int. J. Mol. Sci.20182017010.3390/ijms20010070 30586944
    [Google Scholar]
  109. ChenN. XieR. ChenJ. ZhongY. ZhangX. GuiQ. GuoC. YangH. Proposal for the classification of sinomenine alkaloids.Fitoterapia202417210571310.1016/j.fitote.2023.105713 37949304
    [Google Scholar]
  110. DengZ.S. LiJ.X. TengP. LiP. SunX.R. Biocatalyzed cross-coupling of sinomenine and guaiacol by Antrodiella semisupina.Org. Lett.20081061119112210.1021/ol800024u 18284247
    [Google Scholar]
  111. DengZ.S. ZhaoD. HuY. LiJ.X. ZouK. WangJ.Z. Biocatalyzed cross-coupling of sinomenine and 1,2-dihydroxybenzene by Coriolus unicolor.Chin. Chem. Lett.201223332132410.1016/j.cclet.2012.01.004
    [Google Scholar]
  112. TengP. LiuH.L. DengZ.S. ShiZ.B. HeY.M. FengL.L. XuQ. LiJ.X. Synthesis and biological evaluation of unique stereodimers of sinomenine analogues as potential inhibitors of NO production.Bioorg. Med. Chem.201119103096310410.1016/j.bmc.2011.04.006 21530276
    [Google Scholar]
  113. LuoJ. ZengH.Y. LiY. YinS.F. Synthesis of 1-substituted aminomethyl-7,8-didehydro-4-hydroxy-3,7-dimethoxy-17-methyl morphinan-6-one.Youji Huaxue200705648652
    [Google Scholar]
  114. JinJ. TengP. LiuH.L. WuJ. LiuY.M. XuQ. LiJ.X. Microfluidics assisted synthesis and bioevaluation of sinomenine derivatives as antiinflammatory agents.Eur. J. Med. Chem.20136228028810.1016/j.ejmech.2012.12.051 23357309
    [Google Scholar]
  115. AryaJ. HenryS. KalluriH. McAllisterD.V. PewinW.P. PrausnitzM.R. Tolerability, usability and acceptability of dissolving microneedle patch administration in human subjects.Biomaterials20171281710.1016/j.biomaterials.2017.02.040 28285193
    [Google Scholar]
  116. WuX. ChenY. GuiS. WuX. ChenL. CaoY. YinD. MaP. Sinomenine hydrochloride-loaded dissolving microneedles enhanced its absorption in rabbits.Pharm. Dev. Technol.2016217787793 26122959
    [Google Scholar]
  117. ShuZ. CaoY. TaoY. LiangX. WangF. LiZ. LiZ. GuiS. Polyvinylpyrrolidone microneedles for localized delivery of sinomenine hydrochloride: preparation, release behavior of in vitro & in vivo, and penetration mechanism.Drug Deliv.202027164265110.1080/10717544.2020.1754524 32329377
    [Google Scholar]
  118. ZhengX. LuoD. GaoH. JiangN. DingA. Highly regioselective synthesis of C-4 (ring A) sinomenine ether derivatives.J. Chem. Res.201236631531710.3184/174751912X13344045135875
    [Google Scholar]
  119. ChaiX. GuanZ. YuS. ZhaoQ. HuH. ZouY. TaoX. WuQ. Design, synthesis and molecular docking studies of sinomenine derivatives.Bioorg. Med. Chem. Lett.201222185849585210.1016/j.bmcl.2012.07.087 22892114
    [Google Scholar]
  120. PanH. LuT. WuX. GuC. TaoN. ZhangB. WangA. ChenG. ZhangK. ChengJ. JinJ. Design and synthesis of sinomenine isoxazole derivatives via 1,3-dipolar cycloaddition reaction.Nat. Prod. Res.202135142360236410.1080/14786419.2019.1677649 31621417
    [Google Scholar]
  121. ZhouY.R. ZhaoY. BaoB.H. LiJ.X. SND-117, a sinomenine bivalent alleviates type II collagen-induced arthritis in mice.Int. Immunopharmacol.201526242343110.1016/j.intimp.2015.04.006 25887268
    [Google Scholar]
  122. WeiC.J. XuF. ShiM.J. HuJ.W. WangJ.J. ZhenB. WangX. JiT.F. WangJ.H. DuG.H. Synthesis and antitumor activities of sinomenine derivatives on rings A and C.J. Asian Nat. Prod. Res.201820327729110.1080/10286020.2017.1386659 29090602
    [Google Scholar]
  123. ZhangZ. WangH. YuanJ. LiX. FangN. LinM. HouQ. JiT. Design, synthesis, and pharmacological evaluation of sinomenine derivatives on rings A and C: Novel compounds screening for aplastic anemia targeting on cytotoxic T lymphocyte.Eur. J. Med. Chem.202122511379110.1016/j.ejmech.2021.113791 34450495
    [Google Scholar]
  124. WangD. ZhangR. JiangC. RazaA. TangJ. OuyangZ. SuZ. XuH. Synthesis and anti-inflammatory effect of sinomenine 4-hydroxy esters.Chem. Nat. Compd.201854113113610.1007/s10600‑018‑2275‑5
    [Google Scholar]
  125. NiP. LiuY.Q. ManJ.Y. LiW. XueS.S. LuT.H. SuZ.L. ZhouC.L. C16, a novel sinomenine derivatives, promoted macrophage reprogramming toward M2-like phenotype and protected mice from endotoxemia.Int. J. Immunopathol. Pharmacol.2021352058738421102678610.1177/20587384211026786 34190613
    [Google Scholar]
  126. GaoX. SunB. HouY. LiuL. SunJ. XuF. LiD. HuaH. Anti-breast cancer sinomenine derivatives via mechanisms of apoptosis induction and metastasis reduction.J. Enzyme Inhib. Med. Chem.20223711870188310.1080/14756366.2022.2096020 35801430
    [Google Scholar]
  127. CaiJ. HosmaneN.S. TakagakiM. ZhuY. Synthesis, molecular docking, and in vitro boron neutron capture therapy assay of carboranyl sinomenine.Molecules20202520469710.3390/molecules25204697 33066470
    [Google Scholar]
  128. ZhangT. OuyangX. GouS. ZhangY. YanN. ChangL. LiB. ZhangF. LiuH. NiJ. Novel synovial targeting peptide-sinomenine conjugates as a potential strategy for the treatment of rheumatoid arthritis.Int. J. Pharm.202261712162810.1016/j.ijpharm.2022.121628 35245636
    [Google Scholar]
  129. TangQ. LuoJ. ZhuQ. LiY. YinS. Synthesis and anti-inflammatory activities investigation of sinomenine derivatives on ring C.Nat. Prod. Res.200620111015102310.1080/14786410600921417 17050184
    [Google Scholar]
  130. WangM. MaL. LouY. BianC. ZhouT. ZhouH. LiaoH. MaZ. YinD. ChenA. WangS. YangZ. SunB. YaoZ. Sinomenine derivatives with embedment of nitrogen-containing heterocycles exhibiting potent TNF-αinhibitory activity.Sci. China Chem.201255122537254710.1007/s11426‑012‑4588‑8
    [Google Scholar]
  131. LouY.T. ZhouH.B. ZouJ. YanL.C. BiE.G. SunB. YaoZ.J. Modification of poorly bioactive sinomenine into more potent immunosuppressive agents by embedding of drug-like fragments.Tetrahedron Lett.201051348548810.1016/j.tetlet.2009.11.019
    [Google Scholar]
  132. YeX.R. YanK.X. WuK.M. FengX.Z. HuangY.M. QiuP. Synthesis and anti-inflammatory analgesic activities of sinomenine derivatives.Yao Xue Xue Bao2004393180183 15171651
    [Google Scholar]
  133. IijimaI. MinamikawaJ. JacobsonA.E. JacobsonA.E. RiceK.C. Studies in the (+)-morphinan series. 4. A markedly improved synthesis of (+)-morphine.J. Org. Chem.19784371462146310.1021/jo00401a038
    [Google Scholar]
  134. ZhouT. HouJ. WangM. MaL. WuL. WangS. SunB. YaoZ.J. Regio-controlled synthesis of unsymmetrical pyrazine-fused sinomenine derivatives and discriminate substitution effects on TNF-α inhibitory activity.Tetrahedron201470355475548210.1016/j.tet.2014.06.112
    [Google Scholar]
  135. WuX. XuR. FangX. ZhangK. JinJ. Design and synthesis of N-Tetrazole and N-Oxadiazole heterocyclic derivatives of sinomenine.Youji Huaxue20234372506251810.6023/cjoc202211009
    [Google Scholar]
  136. ZhaoZ.J. ZhaoC. XiaoJ. WangJ.C. Transdermal permeation and anti-inflammation activities of novel sinomenine derivatives.Molecules201621111520152110.3390/molecules21111520
    [Google Scholar]
  137. LouY.T. MaL.Y. WangM. YinD. ZhouT.T. ChenA.Z. MaZ. BianC. WangS. YangZ.Y. SunB. YaoZ.J. Regio- and stereoselective C10 β-H functionalization of sinomenine: an access to more potent immunomodulating derivatives.Tetrahedron20126892172217810.1016/j.tet.2012.01.009
    [Google Scholar]
  138. ZhaoZ. XiaoJ. WangJ. DongW. PengZ. AnD. Anti-inflammatory effects of novel sinomenine derivatives.Int. Immunopharmacol.201529235436010.1016/j.intimp.2015.10.030 26525983
    [Google Scholar]
  139. LiS. GaoM. NianX. ZhangL. LiJ. CuiD. ZhangC. ZhaoC. Design, Synthesis, biological evaluation and silico prediction of novel sinomenine derivatives.Molecules20212611346610.3390/molecules26113466 34200341
    [Google Scholar]
  140. ZhuZ. ZhouH. ChenF. DengJ. YinL. HeB. HuQ. WangT. Sinomenine derivatives: Synthesis, antitumor activity, and apoptotic induction in MCF-7 cells via IL-6/PI3K/Akt/NF-κB signaling pathway.ChemMedChem20221714e20220023410.1002/cmdc.202200234 35612514
    [Google Scholar]
  141. PanH. LuT. WuX. JiangC. GuC. ZhangK. JinJ. Synthesis of C-ring hydrogenated sinomenine cinnamate derivatives via Heck reactions.J. Chem. Res.20194311-1246947310.1177/1747519819868201
    [Google Scholar]
  142. LiY. BuQ. PanY. LiJ. HuangL. Synthesis of (+)-C-normorphinan analogs starting from Sinomenine.Youji Huaxue2009292259264
    [Google Scholar]
  143. LuT. DongL. PanH. WuX. ChenX. GuC. TaoN. WangA. ZhangK. JinJ. Design and synthesis of C-ring quinoxaline-substituted sinomenine 1,2,3-triazole derivatives via click reactions.J. Chem. Res.20204411-1269970410.1177/1747519820919853
    [Google Scholar]
  144. JoyeauR. PlanchonM. AbessoloJ. AissaK. BanceC. BuissonD. Combinatorial approach to the selection of active microorganisms in biotransformation: Application to sinomenine.J. Mol. Catal., B Enzym.201385-86657010.1016/j.molcatb.2012.08.003
    [Google Scholar]
  145. GarciaA. DrownB.S. HergenrotherP.J. Access to a structurally complex compound collection via ring distortion of the alkaloid sinomenine.Org. Lett.201618194852485510.1021/acs.orglett.6b02333 27650404
    [Google Scholar]
  146. CsutoráasC. BeréAnyi, S.; Makleit, S. A new and efficient one-pot synthesis of apomorphine and its ring-A halogenated derivatives.Synth. Commun.199626122251225610.1080/00397919608004535
    [Google Scholar]
  147. HeL. ZhangY.H. GuanH.Y. ZhangJ.X. SunQ.Y. HaoX.J. Cepharatines A-D, hasubanan-type alkaloids from Stephania cepharantha.J. Nat. Prod.201174218118410.1021/np1005696 21214233
    [Google Scholar]
  148. HuangX. ShenQ.K. GuoH.Y. LiX. QuanZ.S. Pharmacological overview of hederagenin and its derivatives.RSC Med. Chem.202314101858188410.1039/D3MD00296A 37859723
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673323738240830055548
Loading
/content/journals/cmc/10.2174/0109298673323738240830055548
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test