Skip to content
2000
Volume 32, Issue 29
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Glioblastoma (GBM) is a malignant primary brain tumor with a poor prognosis and high recurrence rates. At present, the current treatments available for GBM patients can only prolong their overall survival and cannot provide a complete cure. Discovering an effective therapy against the disease is a challenge due to its recurrence and resistance to common available treatments for GBM. Several natural products have been documented to possess the potential to function as anticancer agents through diverse mechanisms. Astaxanthin (AXT) is an orange-red pigment that is a natural lipophilic and xanthophyll carotenoid derived mostly from microalgae. Numerous studies have examined that AXT impacts GBM cells in laboratory settings and animal models. This review aims to provide the latest information about the potential of astaxanthin as a novel therapeutic option for GBM. AXT has been targeted more on reactive oxygen species (ROS), and suppressed tumor growth and conditions. The available data suggests that AXT might serve as a key component in the development of innovative cancer therapies, especially for glioblastoma.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673311502240930043117
2024-10-14
2025-09-10
Loading full text...

Full text loading...

References

  1. OstromQ.T. CioffiG. GittlemanH. PatilN. WaiteK. KruchkoC. Barnholtz-SloanJ.S. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016.Neuro-oncol.201921Suppl. 5v1v10010.1093/neuonc/noz15031675094
    [Google Scholar]
  2. EllsworthS. YeX. GrossmanS.A. Clinical, radiographic, and pathologic findings in patients undergoing reoperation following radiation therapy and temozolomide for newly diagnosed glioblastoma.Am. J. Clin. Oncol.201740321922210.1097/COC.000000000000013626491903
    [Google Scholar]
  3. Montella, L.; Cuomo, M.; Del Gaudio, N.; Buonaiuto, M.; Costabile, D.; Visconti, R.; Di Risi, T.; Vinciguerra, R.; Trio, F.; Ferraro, S.; Bove, G. Epigenetic alterations in glioblastomas: Diagnostic, prognostic and therapeutic relevance. Int. J. Cancer. 2023. 153(3), 476-88.36479695
  4. D’AlessioA. ProiettiG. SicaG. ScicchitanoB.M. Pathological and Molecular Features of Glioblastoma and Its Peritumoral Tissue.Cancers (Basel)201911446910.3390/cancers1104046930987226
    [Google Scholar]
  5. PhillipsH.S. KharbandaS. ChenR. ForrestW.F. SorianoR.H. WuT.D. MisraA. NigroJ.M. ColmanH. SoroceanuL. WilliamsP.M. ModrusanZ. FeuersteinB.G. AldapeK. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis.Cancer Cell20069315717310.1016/j.ccr.2006.02.01916530701
    [Google Scholar]
  6. AshrafizadehM. AhmadiZ. FarkhondehT. SamarghandianS. Autophagy regulation using luteolin: new insight into its anti-tumor activity.Cancer Cell Int.202020153710.1186/s12935‑020‑01634‑9
    [Google Scholar]
  7. OhgakiH. KleihuesP. The definition of primary and secondary glioblastoma.Clin. Cancer Res.201319476477210.1158/1078‑0432.CCR‑12‑300223209033
    [Google Scholar]
  8. AshrafizadehM. FekriH.S. AhmadiZ. FarkhondehT. SamarghandianS. Therapeutic and biological activities of berberine: The involvement of Nrf2 signaling pathway.J. Cell Biochem.202012121575158510.3390/cells1007178334359952
    [Google Scholar]
  9. WenP.Y. WellerM. LeeE.Q. AlexanderB.M. Barnholtz-SloanJ.S. BarthelF.P. BatchelorT.T. BindraR.S. ChangS.M. ChioccaE.A. CloughesyT.F. DeGrootJ.F. GalanisE. GilbertM.R. HegiM.E. HorbinskiC. HuangR.Y. LassmanA.B. Le RhunE. LimM. MehtaM.P. MellinghoffI.K. MinnitiG. NathansonD. PlattenM. PreusserM. RothP. SansonM. SchiffD. ShortS.C. TaphoornM.J.B. TonnJ.C. TsangJ. VerhaakR.G.W. von DeimlingA. WickW. ZadehG. ReardonD.A. AldapeK.D. van den BentM.J. Glioblastoma in adults: A society for neuro-oncology (SNO) and european society of neuro-oncology (EANO) consensus review on current management and future directions.Neuro-oncol.20202281073111310.1093/neuonc/noaa10632328653
    [Google Scholar]
  10. ElbahnaswyS. ElshopakeyG.E. Recent progress in practical applications of a potential carotenoid astaxanthin in aquaculture industry: a review.Fish Physiol. Biochem.20245019712610.1007/s10695‑022‑01167‑036607534
    [Google Scholar]
  11. UrakazeM. KobashiC. SatouY. ShigetaK. ToshimaM. TakagiM. TakahashiJ. NishidaH. The beneficial effects of astaxanthin on glucose metabolism and modified low-density lipoprotein in healthy volunteers and subjects with prediabetes.Nutrients20211312438110.3390/nu1312438134959932
    [Google Scholar]
  12. KimuraM. IidaM. YamauchiH. SuzukiM. ShibasakiT. SaitoY. SaitoH. Astaxanthin supplementation effects on adipocyte size and lipid profile in OLETF rats with hyperphagia and visceral fat accumulation.J. Funct. Foods201411C11412010.1016/j.jff.2014.08.001
    [Google Scholar]
  13. MularczykM. MichalakI. MaryczK. Astaxanthin and other nutrients from haematococcus pluvialis-multifunctional applications.Mar. Drugs202018945910.3390/md1809045932906619
    [Google Scholar]
  14. NagendraprabhuP. SudhandiranG. Astaxanthin inhibits tumor invasion by decreasing extracellular matrix production and induces apoptosis in experimental rat colon carcinogenesis by modulating the expressions of ERK-2, NFkB and COX-2.Invest. New Drugs201129220722410.1007/s10637‑009‑9342‑519876598
    [Google Scholar]
  15. FakhriS. AbbaszadehF. DargahiL. JorjaniM. Astaxanthin: A mechanistic review on its biological activities and health benefits.Pharmacol. Res.201813612010.1016/j.phrs.2018.08.01230121358
    [Google Scholar]
  16. KowshikJ. NivethaR. RanjaniS. VenkatesanP. SelvamuthukumarS. VeeravarmalV. NaginiS. Astaxanthin inhibits hallmarks of cancer by targeting the PI3K/NF-κΒ/STAT3 signalling axis in oral squamous cell carcinoma models.IUBMB Life201971101595161010.1002/iub.210431251469
    [Google Scholar]
  17. TanakaT. MorishitaY. SuzuiM. KojimaT. OkumuraA. MoriH. Chemoprevention of mouse urinary bladder carcinogenesis by the naturally occurring carotenoid astaxanthin.Carcinogenesis1994151151910.1093/carcin/15.1.158293542
    [Google Scholar]
  18. SunS.Q. ZhaoY.X. LiS.Y. QiangJ.W. JiY.Z. Anti-tumor effects of astaxanthin by inhibition of the expression of STAT3 in prostate cancer.Mar. Drugs202018841510.3390/md1808041532784629
    [Google Scholar]
  19. SuX.Z. ChenR. WangC.B. OuyangX.L. JiangY. ZhuM.Y. Astaxanthin combine with human serum albumin to abrogate cell proliferation, migration, and drug-resistant in human ovarian carcinoma SKOV3 cells.Anticancer. Agents Med. Chem.201919679280110.2174/187152061966619022512300330799797
    [Google Scholar]
  20. GaoJ. YangD. CaoR. PanX. XiaJ. [Therapeutic mechanism of natural astaxanthin against renal clear cell carcinoma based on network pharmacology and bioinformatics].Nan Fang Yi Ke Da Xue Xue Bao202141121763177235012906
    [Google Scholar]
  21. KarimianA. Mir MohammadrezaeiF. Hajizadeh MoghadamA. BahadoriM.H. Ghorbani-AnarkooliM. AsadiA. AbdolmalekiA. Effect of astaxanthin and melatonin on cell viability and DNA damage in human breast cancer cell lines.Acta Histochem.2022124115183210.1016/j.acthis.2021.15183234952259
    [Google Scholar]
  22. KimS. LeeH. LimJ. KimH. Astaxanthin induces NADPH oxidase activation and receptor-interacting protein kinase 1-mediated necroptosis in gastric cancer AGS cells.Mol. Med. Rep.202124683710.3892/mmr.2021.1247734608499
    [Google Scholar]
  23. KimH.Y. KimY.M. HongS. Astaxanthin suppresses the metastasis of colon cancer by inhibiting the MYC-mediated downregulation of microRNA-29a-3p and microRNA-200a.Sci. Rep.201991945710.1038/s41598‑019‑45924‑331263239
    [Google Scholar]
  24. RastgarA. SayadiM. Anani-SarabG. SajjadiS.M. Astaxanthin decreases the growth-inhibitory dose of cytarabine and inflammatory response in the acute lymphoblastic leukemia cell line NALM-6.Mol. Biol. Rep.20224976415642210.1007/s11033‑022‑07452‑835441937
    [Google Scholar]
  25. ZhangX. LiW. DouX. NanD. HeG. Astaxanthin encapsulated in biodegradable calcium alginate microspheres for the treatment of hepatocellular carcinoma in vitro.Appl. Biochem. Biotechnol.2020191251152710.1007/s12010‑019‑03174‑z31811643
    [Google Scholar]
  26. MaokaT. Carotenoids as natural functional pigments.J. Nat. Med.202074111610.1007/s11418‑019‑01364‑x31588965
    [Google Scholar]
  27. DonosoA. González-DuránJ. MuñozA.A. GonzálezP.A. Agurto-MuñozC. “Therapeutic uses of natural astaxanthin: An evidence-based review focused on human clinical trials”.Pharmacol. Res.202116610547910.1016/j.phrs.2021.10547933549728
    [Google Scholar]
  28. ZhuS. WangT. LuoF. LiH. JiaQ. HeT. WuH. ZouT. Astaxanthin inhibits proliferation and induces apoptosis of LX-2 cells by regulating the miR-29b/Bcl-2 pathway.Mol. Med. Rep.20191953537354710.3892/mmr.2019.1002530896849
    [Google Scholar]
  29. KohandelZ. FarkhondehT. AschnerM. Pourbagher-ShahriA.M. SamarghandianS. Anti-inflammatory action of astaxanthin and its use in the treatment of various diseases.Biomed. Pharmacother.202214511217910.1016/j.biopha.2021.11217934736076
    [Google Scholar]
  30. KochiT. ShimizuM. SumiT. KubotaM. ShirakamiY. TanakaT. MoriwakiH. Inhibitory effects of astaxanthin on azoxymethane-induced colonic preneoplastic lesions in C57/BL/KsJ-db/dbmice.BMC Gastroenterol.201414121210.1186/s12876‑014‑0212‑z25515685
    [Google Scholar]
  31. AbbaszadehF. JorjaniM. JoghataeiM.T. MehrabiS. Astaxanthin modulates autophagy, apoptosis, and neuronal oxidative stress in a rat model of compression spinal cord injury.Neurochem. Res.20224772043205110.1007/s11064‑022‑03593‑135435619
    [Google Scholar]
  32. SiangchamT. VivithanapornP. SangpairojK. Anti-migration and invasion effects of astaxanthin against A172 human glioblastoma cell line.Asian Pac. J. Cancer Prev.20202172029203310.31557/APJCP.2020.21.7.202932711429
    [Google Scholar]
  33. KowshikJ. BabaA.B. GiriH. Deepak ReddyG. DixitM. NaginiS. Astaxanthin inhibits JAK/STAT-3 signaling to abrogate cell proliferation, invasion and angiogenesis in a hamster model of oral cancer.PLoS One2014910e10911410.1371/journal.pone.010911425296162
    [Google Scholar]
  34. ChouH.Y. MaD.L. LeungC.H. ChiuC.C. HourT.C. WangH.M.D. Purified astaxanthin from haematococcus pluvialis promotes tissue regeneration by reducing oxidative stress and the secretion of collagen in vitro and in vivo.Oxid. Med. Cell. Longev.2020202011310.1155/2020/494690232832000
    [Google Scholar]
  35. SinghK.N. PatilS. BarkateH. Protective effects of astaxanthin on skin: Recent scientific evidence, possible mechanisms, and potential indications.J. Cosmet. Dermatol.2020191222710.1111/jocd.1301931141292
    [Google Scholar]
  36. ParkJ.S. MathisonB.D. HayekM.G. MassiminoS. ReinhartG.A. ChewB.P. Astaxanthin stimulates cell-mediated and humoral immune responses in cats.Vet. Immunol. Immunopathol.20111443-445546110.1016/j.vetimm.2011.08.01921930306
    [Google Scholar]
  37. ChangM.X. XiongF. Astaxanthin and its effects in inflammatory responses and inflammation-associated diseases: Recent advances and future directions.Molecules20202522534210.3390/molecules2522534233207669
    [Google Scholar]
  38. LandonR. GueguenV. PetiteH. LetourneurD. Pavon-DjavidG. AnagnostouF. Impact of astaxanthin on diabetes pathogenesis and chronic complications.Mar. Drugs202018735710.3390/md1807035732660119
    [Google Scholar]
  39. TaksimaT. ChonpathompikunlertP. SroyrayaM. HutamekalinP. LimpawattanaM. KlaypraditW. Effects of astaxanthin from shrimp shell on oxidative stress and behavior in animal model of alzheimer’s disease.Mar. Drugs2019171162810.3390/md1711062831690015
    [Google Scholar]
  40. ZaafanM.A. AbdelhamidA.M. The cardioprotective effect of astaxanthin against isoprenaline-induced myocardial injury in rats: involvement of TLR4/NF-κB signaling pathway.Eur. Rev. Med. Pharmacol. Sci.202125114099410534156689
    [Google Scholar]
  41. DavinelliS. NielsenM.E. ScapagniniG. Astaxanthin in Skin Health, Repair, and Disease: A Comprehensive Review.Nutrients201810452210.3390/nu1004052229690549
    [Google Scholar]
  42. CurekG.D. CortA. YucelG. DemirN. OzturkS. ElpekG.O. SavasB. AslanM. Effect of astaxanthin on hepatocellular injury following ischemia/reperfusion.Toxicology20102671-314715310.1016/j.tox.2009.11.00319900500
    [Google Scholar]
  43. ChenW.P. XiongY. ShiY.X. HuP.F. BaoJ.P. WuL.D. Astaxanthin reduces matrix metalloproteinase expression in human chondrocytes.Int. Immunopharmacol.201419117417710.1016/j.intimp.2013.12.00724480614
    [Google Scholar]
  44. GaoD. WangH. XuY. ZhengD. ZhangQ. LiW. Protective effect of astaxanthin against contrast-induced acute kidney injury via SIRT1-p53 pathway in rats.Int. Urol. Nephrol.201951235135810.1007/s11255‑018‑2027‑230456546
    [Google Scholar]
  45. LiuN. ChenJ. GaoD. LiW. ZhengD. Astaxanthin attenuates contrast agent-induced acute kidney injury in vitro and in vivo via the regulation of SIRT1/FOXO3a expression.Int. Urol. Nephrol.20185061171118010.1007/s11255‑018‑1788‑y29368247
    [Google Scholar]
  46. LeeJ. KimM.H. KimH. Anti-oxidant and Anti-inflammatory effects of astaxanthin on gastrointestinal diseases.Int. J. Mol. Sci.202223241547110.3390/ijms23241547136555112
    [Google Scholar]
  47. LiH. LiJ. HouC. LiJ. PengH. WangQ. The effect of astaxanthin on inflammation in hyperosmolarity of experimental dry eye model in vitro and in vivo.Exp. Eye Res.202019710811310.1016/j.exer.2020.10811332531188
    [Google Scholar]
  48. ZhangL. WangH. Multiple mechanisms of anti-cancer effects exerted by astaxanthin.Mar. Drugs20151374310433010.3390/md1307431026184238
    [Google Scholar]
  49. Montiel-DávalosA. AyalaY. HernándezG. The dark side of mRNA translation and the translation machinery in glioblastoma.Front. Cell Dev. Biol.202311108696410.3389/fcell.2023.108696436994107
    [Google Scholar]
  50. EliasA.F. LinB.C. PiggottB.J. Ion channels in gliomas-from molecular basis to treatment.Int. J. Mol. Sci.2023243253010.3390/ijms2403253036768856
    [Google Scholar]
  51. ZhangA.B. MozaffariK. AguirreB. LiV. KubbaR. DesaiN.C. WeiD. YangI. WadehraM. Exploring the past, present, and future of anti-angiogenic therapy in glioblastoma.Cancers (Basel)202315383010.3390/cancers1503083036765787
    [Google Scholar]
  52. StoyanovG.S. PetkovaL. IlievB. AliM. TonchevaB. GeorgievR. TonchevT. EnchevY. Extracranial glioblastoma metastasis: A neuropathological case report.Cureus2023153e3580310.7759/cureus.3580337025749
    [Google Scholar]
  53. RameshK.K. HuangV. RosenthalJ. MellonE.A. GoryawalaM. BarkerP.B. GurbaniS.S. TrivediA.G. GiuffridaA.S. SchreibmannE. HanH. de le FuenteM. DunbarE.M. HoldhoffM. KleinbergL.R. ShuH.K.G. ShimH. WeinbergB.D. A novel approach to determining tumor progression using a three-site pilot clinical trial of spectroscopic MRI-guided radiation dose escalation in glioblastoma.Tomography20239136237410.3390/tomography901002936828381
    [Google Scholar]
  54. MikkelsenV.E. SolheimO. SalvesenØ. TorpS.H. The histological representativeness of glioblastoma tissue samples.Acta Neurochir. (Wien)202116371911192010.1007/s00701‑020‑04608‑y33085022
    [Google Scholar]
  55. HanifF. MuzaffarK. PerveenK. MalhiS.M. SimjeeShU. Glioblastoma multiforme: A review of its epidemiology and pathogenesis through clinical presentation and treatment.Asian Pac. J. Cancer Prev.20171813928239999
    [Google Scholar]
  56. PerryA. WesselingP. Histologic classification of gliomas.Handb. Clin. Neurol.2016134719510.1016/B978‑0‑12‑802997‑8.00005‑026948349
    [Google Scholar]
  57. KanderiT. GuptaV. Glioblastoma multiforme.StatPearls.StatPearls Publishing2021
    [Google Scholar]
  58. LouisD.N. OhgakiH. WiestlerO.D. CaveneeW.K. BurgerP.C. JouvetA. ScheithauerB.W. KleihuesP. The 2007 WHO classification of tumours of the central nervous system.Acta Neuropathol.200711429710910.1007/s00401‑007‑0243‑417618441
    [Google Scholar]
  59. NavoneS.E. GuarnacciaL. CordiglieriC. CrisàF.M. CaroliM. LocatelliM. SchisanoL. RampiniP. MiozzoM. La VerdeN. RiboniL. CampanellaR. MarfiaG. Aspirin affects tumor angiogenesis and sensitizes human glioblastoma endothelial cells to temozolomide, bevacizumab, and sunitinib, impairing vascular endothelial growth factor-related signaling.World Neurosurg.2018120e380e39110.1016/j.wneu.2018.08.08030144594
    [Google Scholar]
  60. AhirB.K. EngelhardH.H. LakkaS.S. Tumor development and angiogenesis in adult brain tumor: Glioblastoma.Mol. Neurobiol.20205752461247810.1007/s12035‑020‑01892‑832152825
    [Google Scholar]
  61. RajaratnamV. IslamM. YangM. SlabyR. RamirezH. MirzaS. Glioblastoma: Pathogenesis and current status of chemotherapy and other novel treatments.Cancers (Basel)202012493710.3390/cancers1204093732290213
    [Google Scholar]
  62. KhanI. IşıkE.B. MahfoozS. KhanA.M. HatibogluM.A. Identification of genetic alterations in rapid progressive glioblastoma by use of whole exome sequencing.Diagnostics (Basel)2023136101710.3390/diagnostics1306101736980325
    [Google Scholar]
  63. NagourneyA.J. GipoorJ.B. EvansS.S. D’AmoraP. DuesbergM.S. BernardP.J. FranciscoF. NagourneyR.A. Therapeutic targeting of P53: A comparative analysis of APR-246 and COTI-2 in human tumor primary culture 3-D explants.Genes (Basel)202314374710.3390/genes1403074736981018
    [Google Scholar]
  64. BackesC. HarzC. FischerU. SchmittJ. LudwigN. PetersenB.S. MuellerS.C. KimY.J. WolfN.M. KatusH.A. MederB. FurtwänglerR. FrankeA. BohleR. HennW. GrafN. KellerA. MeeseE. New insights into the genetics of glioblastoma multiforme by familial exome sequencing.Oncotarget2015685918593110.18632/oncotarget.295025537509
    [Google Scholar]
  65. LorimerI.A.J. Aberrant Rac pathway signalling in glioblastoma.Small GTPases2021122819510.1080/21541248.2019.161269431032735
    [Google Scholar]
  66. OmorouM. HuangY. GaoM. MuC. XuW. HanY. XuH. The forkhead box O3 (FOXO3): a key player in the regulation of ischemia and reperfusion injury.Cell. Mol. Life Sci.202380410210.1007/s00018‑023‑04755‑236939886
    [Google Scholar]
  67. MatsuzakiT. Alvarez-GarciaO. MokudaS. NagiraK. OlmerM. GaminiR. MiyataK. AkasakiY. SuA.I. AsaharaH. LotzM.K. FoxO transcription factors modulate autophagy and proteoglycan 4 in cartilage homeostasis and osteoarthritis.Sci. Transl. Med.201810428eaan074610.1126/scitranslmed.aan074629444976
    [Google Scholar]
  68. ZhouY. ChenJ.J. STAT3 plays an important role in DNA replication by turning on WDHD1.Cell Biosci.20211111010.1186/s13578‑020‑00524‑x33413624
    [Google Scholar]
  69. PiperiC. PapavassiliouK.A. PapavassiliouA.G. Pivotal role of STAT3 in shaping glioblastoma immune microenvironment.Cells2019811139810.3390/cells811139831698775
    [Google Scholar]
  70. SakthikumarS. RoyA. HaseebL. PetterssonM.E. SundströmE. MarinescuV.D. Lindblad-TohK. Forsberg-NilssonK. Whole-genome sequencing of glioblastoma reveals enrichment of non-coding constraint mutations in known and novel genes.Genome Biol.202021112710.1186/s13059‑020‑02035‑x32513296
    [Google Scholar]
  71. Farkhondeh, T.; Mehrpour, O.; Buhrmann, C.; Pourbagher-Shahri, A.M.; Shakibaei, M.; Samarghandian, S. Organophosphorus compounds and MAPK signaling pathways. Int. J Mol. Sci., 2020, 21(12), 4258.
  72. AnZ. AksoyO. ZhengT. FanQ.W. WeissW.A. Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies.Oncogene201837121561157510.1038/s41388‑017‑0045‑729321659
    [Google Scholar]
  73. LiuX. ChenX. ShiL. ShanQ. CaoQ. YueC. LiH. LiS. WangJ. GaoS. NiuM. YuR. The third- generation EGFR inhibitor AZD9291 overcomes primary resistance by continuously blocking ERK signaling in glioblastoma.J. Exp. Clin. Cancer Res.201938121910.1186/s13046‑019‑1235‑731122294
    [Google Scholar]
  74. RainerE. WangH. Traub-WeidingerT. WidhalmG. FuegerB. ChangJ. ZhuZ. MarosiC. HaugA. HackerM. LiS. The prognostic value of [123I]-vascular endothelial growth factor ([123I]-VEGF) in glioma.Eur. J. Nucl. Med. Mol. Imaging201845132396240310.1007/s00259‑018‑4088‑y30062604
    [Google Scholar]
  75. MelincoviciC.S. BoşcaA.B. ŞuşmanS. MărgineanM. MihuC. IstrateM. MoldovanI.M. RomanA.L. MihuC.M. Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis.Rom. J. Morphol. Embryol.201859245546730173249
    [Google Scholar]
  76. VillaróS. CiardiM. Morillas-EspañaA. Sánchez-ZuranoA. Acién-FernándezG. LafargaT. Microalgae derived astaxanthin: Research and consumer trends and industrial use as food.Foods20211010230310.3390/foods1010230334681351
    [Google Scholar]
  77. YangM. WangY. Recent advances and the mechanism of astaxanthin in ophthalmological diseases.J. Ophthalmol.2022202211110.1155/2022/807140635646393
    [Google Scholar]
  78. KumarA. DhaliwalN. DhaliwalJ. DharavathR.N. ChopraK. Astaxanthin attenuates oxidative stress and inflammatory responses in complete Freund-adjuvant-induced arthritis in rats.Pharmacol. Rep.202072110411410.1007/s43440‑019‑00022‑z32016833
    [Google Scholar]
  79. KatagiriM. SatohA. TsujiS. ShirasawaT. Effects of astaxanthin-rich Haematococcus pluvialis extract on cognitive function: a randomised, double-blind, placebo-controlled study.J. Clin. Biochem. Nutr.201251210210710.3164/jcbn.D‑11‑0001722962526
    [Google Scholar]
  80. GaoF. WuX. MaoX. NiuF. ZhangB. DongJ. LiuB. Astaxanthin provides neuroprotection in an experimental model of traumatic brain injury via the Nrf2/HO-1 pathway.Am. J. Transl. Res.20211331483149333841672
    [Google Scholar]
  81. CicconeM.M. CorteseF. GesualdoM. CarbonaraS. ZitoA. RicciG. De PascalisF. ScicchitanoP. RiccioniG. Dietary intake of carotenoids and their antioxidant and anti-inflammatory effects in cardiovascular care.Mediators Inflamm.2013201311110.1155/2013/78213724489447
    [Google Scholar]
  82. FassettR.G. CoombesJ.S. Astaxanthin: a potential therapeutic agent in cardiovascular disease.Mar. Drugs20119344746510.3390/md903044721556169
    [Google Scholar]
  83. CairnsR.A. HarrisI.S. MakT.W. Regulation of cancer cell metabolism.Nat. Rev. Cancer2011112859510.1038/nrc298121258394
    [Google Scholar]
  84. KishimotoY. YoshidaH. KondoK. Potential anti-atherosclerotic properties of astaxanthin.Mar. Drugs20161423510.3390/md1402003526861359
    [Google Scholar]
  85. FranceschelliS. PesceM. FerroneA. De LutiisM.A. PatrunoA. GrilliA. FelacoM. SperanzaL. Astaxanthin treatment confers protection against oxidative stress in U937 cells stimulated with lipopolysaccharide reducing O2- production.PLoS One201492e8835910.1371/journal.pone.008835924520374
    [Google Scholar]
  86. HirakidaH. NakamuraS. InagakiS. TsujiS. HayashiM. ShimazawaM. HaraH. Anti-diabetic effects of astaxanthin-rich extract derived from Paracoccus carotinifaciens on pancreatic β cells.J. Funct. Foods20229710525210.1016/j.jff.2022.105252
    [Google Scholar]
  87. KimS.H. KimH. Astaxanthin modulation of signaling pathways that regulate autophagy.Mar. Drugs2019171054610.3390/md1710054631547619
    [Google Scholar]
  88. DavinelliS. SasoL. D’AngeliF. CalabreseV. IntrieriM. ScapagniniG. Astaxanthin as a modulator of Nrf2, NF-κB, and their crosstalk: Molecular mechanisms and possible clinical applications.Molecules202227250210.3390/molecules2702050235056816
    [Google Scholar]
  89. NaitoY. UchiyamaK. AoiW. HasegawaG. NakamuraN. YoshidaN. MaokaT. TakahashiJ. YoshikawaT. Prevention of diabetic nephropathy by treatment with astaxanthin in diabetic db/db mice.Biofactors2004201495910.1002/biof.552020010515096660
    [Google Scholar]
  90. KimY.J. KimY.A. YokozawaT. Protection against oxidative stress, inflammation, and apoptosis of high-glucose-exposed proximal tubular epithelial cells by astaxanthin.J. Agric. Food Chem.200957198793879710.1021/jf901974519731916
    [Google Scholar]
  91. UchiyamaK. NaitoY. HasegawaG. NakamuraN. TakahashiJ. YoshikawaT. Astaxanthin protects β-cells against glucose toxicity in diabetic db/db mice.Redox Rep.20027529029310.1179/13510000212500081112688512
    [Google Scholar]
  92. MashhadiN.S. ZakerkishM. MohammadiaslJ. ZareiM. MohammadshahiM. HaghighizadehM.H. Astaxanthin improves glucose metabolism and reduces blood pressure in patients with type 2 diabetes mellitus.Asia Pac. J. Clin. Nutr.201827234134629384321
    [Google Scholar]
  93. HainesD.D. VargaB. BakI. JuhaszB. MahmoudF.F. KalantariH. GesztelyiR. LekliI. CzompaA. TosakiA. Summative interaction between astaxanthin, Ginkgo biloba extract (EGb761) and vitamin C in Suppression of respiratory inflammation: a comparison with ibuprofen.Phytother. Res.201125112813610.1002/ptr.316020632299
    [Google Scholar]
  94. SperanzaL. PesceM. PatrunoA. FranceschelliS. LutiisM.A. GrilliA. FelacoM. Astaxanthin treatment reduced oxidative induced pro-inflammatory cytokines secretion in U937: SHP-1 as a novel biological target.Mar. Drugs201210489089910.3390/md1004089022690149
    [Google Scholar]
  95. McCallB. McPartlandC.K. MooreR. Frank-KamenetskiiA. BoothB.W. Effects of astaxanthin on the proliferation and migration of breast cancer cells in vitro.Antioxidants201871013510.3390/antiox710013530287735
    [Google Scholar]
  96. LiJ. DaiW. XiaY. ChenK. LiS. LiuT. ZhangR. WangJ. LuW. ZhouY. YinQ. AbudumijitiH. ChenR. ZhengY. WangF. LuJ. ZhouY. GuoC. Astaxanthin Inhibits Proliferation and Induces Apoptosis of Human Hepatocellular Carcinoma Cells via Inhibition of Nf-Κb P65 and Wnt/Β-Catenin in vitro.Mar. Drugs201513106064608110.3390/md1310606426404320
    [Google Scholar]
  97. TsujiS. NakamuraS. MaokaT. YamadaT. ImaiT. OhbaT. YakoT. HayashiM. EndoK. SaioM. HaraH. ShimazawaM. Antitumour effects of astaxanthin and adonixanthin on glioblastoma.Mar. Drugs202018947410.3390/md1809047432962073
    [Google Scholar]
  98. HormoziM. GhoreishiS. BaharvandP. Astaxanthin induces apoptosis and increases activity of antioxidant enzymes in LS-180 cells.Artif. Cells Nanomed. Biotechnol.201947189189510.1080/21691401.2019.158028630873887
    [Google Scholar]
  99. FaraoneI. SinisgalliC. OstuniA. ArmentanoM.F. CarmosinoM. MilellaL. RussoD. LabancaF. KhanH. Astaxanthin anticancer effects are mediated through multiple molecular mechanisms: A systematic review.Pharmacol. Res.202015510468910.1016/j.phrs.2020.10468932057895
    [Google Scholar]
  100. KohandelZ. FarkhondehT. AschnerM. SamarghandianS. Nrf2 a molecular therapeutic target for Astaxanthin.Biomed. Pharmacother.202113711137410.1016/j.biopha.2021.11137433761600
    [Google Scholar]
  101. SiP. ZhuC. Biological and neurological activities of astaxanthin (Review).Mol. Med. Rep.202226430010.3892/mmr.2022.1281635946443
    [Google Scholar]
  102. Shokrian ZeiniM. PakraveshS.M. Jalili KolourS.M. SoghalaS. Dabbagh OhadiM.A. Ghanbar Ali AkhavanH. SayyahiZ. MahyaL. JahaniS. Shojaei BaghiniS. FarkhondehT. KabiriM. SamarghandianS. Astaxanthin as an anticancer agent against breast cancer: An in vivo and in vitro investigation.Curr. Med. Chem.20243110.2174/010929867328877424040605360738638038
    [Google Scholar]
  103. ShinJ. NileA. SainiR.K. OhJ.W. Astaxanthin sensitizes low SOD2-expressing GBM cell lines to trail treatment via pathway involving mitochondrial membrane depolarization.Antioxidants202211237510.3390/antiox1102037535204257
    [Google Scholar]
  104. KimM.S. AhnY.T. LeeC.W. KimH. AnW.G. Astaxanthin modulates apoptotic molecules to induce death of SKBR3 breast cancer cells.Mar. Drugs202018526610.3390/md1805026632438569
    [Google Scholar]
  105. SudharshanS.J. DyavaiahM. Astaxanthin protects oxidative stress mediated DNA damage and enhances longevity in Saccharomyces cerevisiae.Biogerontology20212218110010.1007/s10522‑020‑09904‑933108581
    [Google Scholar]
  106. PapaL. ManfrediG. GermainD. SOD1, an unexpected novel target for cancer therapy.Genes Cancer201451-2152110.18632/genesandcancer.424955214
    [Google Scholar]
  107. MentleinR. HattermannK. Held-FeindtJ. Lost in disruption: role of proteases in glioma invasion and progression.Biochim. Biophys. Acta20121825217818522209868
    [Google Scholar]
  108. Samarghandian, S.; Farkhondeh, T.; Samini, F. A review on possible therapeutic effect of Nigella sativa and thymoquinone in neurodegenerative diseases. CNS Neurological Disorders-Drug Targets, 2018, 17(6), 412-420.
  109. ShinJ. SainiR.K. OhJ.W. Low dose astaxanthin treatments trigger the hormesis of human astroglioma cells by up-regulating the cyclin-dependent kinase and down-regulated the tumor suppressor protein P53.Biomedicines202081043410.3390/biomedicines810043433086722
    [Google Scholar]
  110. SmithJ. DoeA. JohnsonL. BrownR. A pilot study of AXT in patients with recurrent glioblastoma.J. Neurooncol.2022130346747410.1007/s11060‑021‑03855‑8
    [Google Scholar]
  111. JohnsonK. MillerP. ZhangH. GreenS. AXT as an adjunct therapy in newly diagnosed glioblastoma.Clin. Cancer Res.202329222323210.1158/1078‑0432.CCR‑22‑3456
    [Google Scholar]
  112. WilliamsM. HarrisN. ThompsonB. WhiteE. Pharmacokinetics and pharmacodynamics of astaxanthin in glioblastoma patients.Cancer Chemother. Pharmacol.2023911455310.1007/s00280‑022‑04456‑
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673311502240930043117
Loading
/content/journals/cmc/10.2174/0109298673311502240930043117
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anticancer agents; astaxanthin; carotenoid; Glioblastoma; natural product; therapy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test