Skip to content
2000
Volume 32, Issue 27
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Pressure ulcers (PUs) are caused by continuous pressure or friction on the skin that damages tissue, especially over bony prominences. A critical factor in the development and progression of PUs is poor nutritional status, which often involves deficiencies in essential nutrients such as proteins, vitamins (A, C, D, E, K, and the B complex), and trace elements (including zinc, selenium, copper, iron, and manganese). These micronutrients are vital for effective wound healing, as they play significant roles in cellular repair, immune function, and tissue regeneration. Laboratory tests for serum albumin, prealbumin, transferrin, retinol-binding protein, and anthropometric measures like height, weight, and body mass index (BMI) are used to evaluate a patient's nutritional status. Screening tools such as the Mini Nutritional Assessment (MNA), Malnutrition Universal Screening Tool (MUST), LPZ questionnaire, and Subjective Global Assessment (SGA) are commonly employed. Emerging evidence from various studies, including , , and clinical trials, underscores the importance of personalized nutritional interventions in managing PUs. Unlike generic dietary plans, tailored nutrition that addresses the specific needs of individuals shows greater potential in promoting wound healing and improving clinical outcomes. This synthesis of existing research highlights the critical influence of micronutrients on the healing process of PUs. It suggests that a personalized approach to nutrition, which takes into account individual patient requirements and deficiencies, is likely to be more effective than a one-size-fits-all strategy in the management of these complex wounds.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673322825241018174928
2024-11-04
2025-10-25
Loading full text...

Full text loading...

References

  1. MervisJ.S. PhillipsT.J. Pressure ulcers: Pathophysiology, epidemiology, risk factors, and presentation.J. Am. Acad. Dermatol.201981488189010.1016/j.jaad.2018.12.06930664905
    [Google Scholar]
  2. KottnerJ. CuddiganJ. CarvilleK. BalzerK. BerlowitzD. LawS. LitchfordM. MitchellP. MooreZ. PittmanJ. Sigaudo-RousselD. YeeC.Y. HaeslerE. Prevention and treatment of pressure ulcers/injuries: The protocol for the second update of the International Clinical Practice Guideline 2019.J. Tissue Viability2019282515810.1016/j.jtv.2019.01.00130658878
    [Google Scholar]
  3. GouldL.J. AlderdenJ. AslamR. BarbulA. BogieK.M. El MasryM. GravesL.Y. White-ChuE.F. AhmedA. BoancaK. BrashJ. BrooksK.R. CockronW. KennerlyS.M. LivingstonA.K. PageJ. StephensC. WestV. YapT.L. WHS guidelines for the treatment of pressure ulcers—2023 update.Wound Repair Regen.202432163310.1111/wrr.1313037970711
    [Google Scholar]
  4. KottnerJ. CuddiganJ. CarvilleK. BalzerK. BerlowitzD. LawS. LitchfordM. MitchellP. MooreZ. PittmanJ. Sigaudo-RousselD. YeeC.Y. HaeslerE. Pressure ulcer/injury classification today: An international perspective.J. Tissue Viability202029319720310.1016/j.jtv.2020.04.00332414554
    [Google Scholar]
  5. ChungM.L. WiddelM. KirchhoffJ. SellinJ. JelaliM. GeiserF. MückeM. ConradR. Risk factors for pressure injuries in adult patients: A narrative synthesis.Int. J. Environ. Res. Public Health202219276110.3390/ijerph1902076135055583
    [Google Scholar]
  6. Lima SerranoM. González MéndezM.I. Carrasco CebolleroF.M. Lima RodríguezJ.S. Risk factors for pressure ulcer development in Intensive Care Units: A systematic review.Med. Intensiva (Engl Ed)201741633934610.1016/j.medine.2017.04.006
    [Google Scholar]
  7. ManleyS. MitchellA. The impact of nutrition on pressure ulcer healing.Br. J. Nurs.20223112S26S3010.12968/bjon.2022.31.12.S2635736848
    [Google Scholar]
  8. HornS.D. BenderS.A. FergusonM.L. SmoutR.J. BergstromN. TalerG. CookA.S. SharkeyS.S. VossA.C. The national pressure ulcer long-term care study: Pressure ulcer development in long-term care residents.J. Am. Geriatr. Soc.200452335936710.1111/j.1532‑5415.2004.52106.x14962149
    [Google Scholar]
  9. IizakaS. OkuwaM. SugamaJ. SanadaH. The impact of malnutrition and nutrition-related factors on the development and severity of pressure ulcers in older patients receiving home care.Clin. Nutr.2010291475310.1016/j.clnu.2009.05.01819564062
    [Google Scholar]
  10. MahmoodpoorA. ShadvarK. SaghaleiniS. DehghanK. OstadiZ. OstadiZ. Pressure ulcer and nutrition.Indian J. Crit. Care Med.201822428328910.4103/ijccm.IJCCM_277_1729743767
    [Google Scholar]
  11. SerpaL.F. SantosV.L.C.G. Validity of the Braden Nutrition Subscale in predicting pressure ulcer development.J. Wound Ostomy Continence Nurs.201441543644310.1097/WON.000000000000005925188800
    [Google Scholar]
  12. ZhetmekovaZ. KassymL. KussainovaA. AkhmetovaA. EverinkI. OrazalinaA. ZhanaspayevaG. BotabayevaA. KozhakhmetovaD. OlzhayevaR. SemenovaY. The prevalence and risk factors of pressure ulcers among residents of long-term care institutions: a case study of Kazakhstan.Sci. Rep.2024141710510.1038/s41598‑024‑57721‑838531944
    [Google Scholar]
  13. KesarwaniA. NagpalP.S. ChhabraH.S. Experimental animal modelling for pressure injury: A systematic review.J. Clin. Orthop. Trauma20211727327910.1016/j.jcot.2021.04.00133987077
    [Google Scholar]
  14. LiQ. KatoS. MatsuokaD. TanakaH. MiwaN. Hydrogen water intake via tube-feeding for patients with pressure ulcer and its reconstructive effects on normal human skin cells in vitro.Med. Gas Res.2013312010.1186/2045‑9912‑3‑2024020833
    [Google Scholar]
  15. ArkiliçC.F. TaguchiA. SharmaN. RatnarajJ. SesslerD.I. ReadT.E. FleshmanJ.W. KurzA. Supplemental perioperative fluid administration increases tissue oxygen pressure.Surgery20031331495510.1067/msy.2003.8012563237
    [Google Scholar]
  16. StottsN.A. HopfH.W. The link between tissue oxygen and hydration in nursing home residents with pressure ulcers: preliminary data.J. Wound Ostomy Continence Nurs.200330418419010.1097/00152192‑200307000‑0000512851593
    [Google Scholar]
  17. StottsN.A. HopfH.W. Kayser-JonesJ. ChertowG.M. CooperB.A. WuH.S. Increased fluid intake does not augment capacity to lay down new collagen in nursing home residents at risk for pressure ulcers: A randomized, controlled clinical trial.Wound Repair Regen.200917678078810.1111/j.1524‑475X.2009.00539.x19821962
    [Google Scholar]
  18. HofmannE. FinkJ. PignetA.L. SchwarzA. SchellneggerM. NischwitzS.P. Holzer-GeisslerJ.C.J. KamolzL.P. KotzbeckP. Human in vitro skin models for wound healing and wound healing disorders.Biomedicines2023114105610.3390/biomedicines1104105637189674
    [Google Scholar]
  19. FreedmanB.R. HwangC. TalbotS. HiblerB. MatooriS. MooneyD.J. Breakthrough treatments for accelerated wound healing.Sci. Adv.2023920eade700710.1126/sciadv.ade700737196080
    [Google Scholar]
  20. SharmaA. SharmaD. ZhaoF. Updates on recent clinical assessment of commercial chronic wound care products.Adv. Healthc. Mater.20231225230055610.1002/adhm.20230055637306401
    [Google Scholar]
  21. GrigattiA. GefenA. The biomechanical efficacy of a hydrogel-based dressing in preventing facial medical device-related pressure ulcers.Int. Wound J.20221951051106310.1111/iwj.1370134623741
    [Google Scholar]
  22. GrigattiA. GefenA. What makes a hydrogel-based dressing advantageous for the prevention of medical device-related pressure ulcers.Int. Wound J.202219351553010.1111/iwj.1365034245120
    [Google Scholar]
  23. RomanelliM. Unique combination of hyaluronic acid and amino acids in the management of patients with a range of moderate-to-severe chronic wounds: Evidence from international clinical trials.Int. Wound J.202421Suppl 14810.1111/iwj.14617
    [Google Scholar]
  24. LiP. WuG. Roles of dietary glycine, proline, and hydroxyproline in collagen synthesis and animal growth.Amino Acids2018501293810.1007/s00726‑017‑2490‑628929384
    [Google Scholar]
  25. Arribas-LópezE. ZandN. OjoO. SnowdenM.J. KochharT. The effect of amino acids on wound healing: A systematic review and meta-analysis on arginine and glutamine.Nutrients2021138249810.3390/nu1308249834444657
    [Google Scholar]
  26. FujiwaraT. KanazawaS. IchiboriR. TanigawaT. MagomeT. ShingakiK. MiyataS. TohyamaM. HosokawaK. L-arginine stimulates fibroblast proliferation through the GPRC6A-ERK1/2 and PI3K/Akt pathway.PLoS One201493e9216810.1371/journal.pone.009216824651445
    [Google Scholar]
  27. ShiH.P. EfronD.T. MostD. TantryU.S. BarbulA. Supplemental dietary arginine enhances wound healing in normal but not inducible nitric oxide synthase knockout mice.Surgery2000128237437810.1067/msy.2000.10737210923019
    [Google Scholar]
  28. SkorjanecS. KokotA. DrmicD. RadicB. SeverM. KlicekR. KolencD. ZenkoA. Lovric BencicM. Belosic HalleZ. SitumA. Zivanovic PosilovicG. MasnecS. SuranJ. AralicaG. SeiwerthS. SikiricP. Duodenocutaneous fistula in rats as a model for “wound healing-therapy” in ulcer healing: the effect of pentadecapeptide BPC 157, L-nitro-arginine methyl ester and L-arginine.J. Physiol. Pharmacol.201566458159026348082
    [Google Scholar]
  29. GoswamiS. KandhareA. ZanwarA.A. HegdeM.V. BodhankarS.L. ShindeS. DeshmukhS. KharatR. Oral l-glutamine administration attenuated cutaneous wound healing in Wistar rats.Int. Wound J.201613111612410.1111/iwj.1224624690128
    [Google Scholar]
  30. WangZ. ZhaoF. XuC. ZhangQ. RenH. HuangX. HeC. MaJ. WangZ. Metabolic reprogramming in skin wound healing.Burns Trauma202412tkad04710.1093/burnst/tkad04738179472
    [Google Scholar]
  31. BrewerS. DesnevesK. PearceL. MillsK. DunnL. BrownD. CroweT. Effect of an arginine-containing nutritional supplement on pressure ulcer healing in community spinal patients.J. Wound Care201019731131610.12968/jowc.2010.19.7.4890520616774
    [Google Scholar]
  32. LeighB. DesnevesK. RaffertyJ. PearceL. KingS. WoodwardM.C. BrownD. MartinR. CroweT.C. The effect of different doses of an arginine-containing supplement on the healing of pressure ulcers.J. Wound Care201221315015610.12968/jowc.2012.21.3.15022399084
    [Google Scholar]
  33. OguraY. YukiN. SukeganeA. NishiT. MiyakeY. SatoH. MiyamotoC. MiharaC. Treatment of pressure ulcers in patients with declining renal function using arginine, glutamine and ß-hydroxy-ß-methylbutyrate.J. Wound Care2015241047848210.12968/jowc.2015.24.10.47826488739
    [Google Scholar]
  34. ClarkR.K. StampasA. KerrK.W. NelsonJ.L. SuloS. Leon-NoveloL. NganE. PandyaD. Evaluating the impact of using a wound-specific oral nutritional supplement to support wound healing in a rehabilitation setting.Int. Wound J.202320114515410.1111/iwj.1384935684975
    [Google Scholar]
  35. WongA. ChewA. WangC.M. OngL. ZhangS.H. YoungS. The use of a specialised amino acid mixture for pressure ulcers: A placebo-controlled trial.J. Wound Care2014235259269, 262-264, 266-26910.12968/jowc.2014.23.5.25924810310
    [Google Scholar]
  36. MiuD.K.Y. LoK.M. LamE.K.Y. LamP.S. The use of an oral mixture of arginine, glutamine and β-hydroxy-β-methylbutyrate (Hmb) for the treatment of high grade pressure ulcers: A randomized study.Aging Medicine and Healthcare2021123828910.33879/AMH.123.2020.04012
    [Google Scholar]
  37. KisilI. GimelfarbY. Long-term supplementation with a combination of beta-hydroxy-beta-methylbutyrate, arginine, and glutamine for pressure ulcer in sedentary older adults: A retrospective matched case-control study.J. Yeungnam. Med. Sci.202340436437210.12701/jyms.2022.00899.
    [Google Scholar]
  38. CsapoR. GumpenbergerM. WessnerB. Skeletal muscle extracellular matrix – what do we know about its composition, regulation, and physiological roles? A narrative review. Front. Physiol.20201125310.3389/fphys.2020.0025332265741
    [Google Scholar]
  39. AnthonyD. RafterL. ReynoldsT. AljezawiM. An evaluation of serum albumin and the sub-scores of the Waterlow score in pressure ulcer risk assessment.J. Tissue Viability2011203899910.1016/j.jtv.2011.04.00121665474
    [Google Scholar]
  40. BoykoT.V. LongakerM.T. YangG.P. Review of the current management of pressure ulcers.Adv. Wound Care (New Rochelle)201872576710.1089/wound.2016.069729392094
    [Google Scholar]
  41. LiaoJ. Protein and cellular engineering with unnatural amino acids.Biotechnol. Prog.2007231283110.1021/bp060369d17269666
    [Google Scholar]
  42. WangT. ZhangW. Understanding protein functions in the biological context.Protein Pept. Lett.202330644945810.2174/092986653066623050721263837151077
    [Google Scholar]
  43. OttenJ.J. HellwigJ.P. MeyersL.D. Food and nutrition board, institute of medicine.Dietary reference intakes: The essential guide to nutrient requirements.Washington, DCThe National Academies Press2006350355
    [Google Scholar]
  44. QinZ. WangY. ZhaoW. ZhangY. TianY. SunS. LiX. Pressure ulcer healing promoted by adequate protein intake in rats.Exper. Ther. Med.201815541734178
    [Google Scholar]
  45. Mathus-VliegenE.M. Old age, malnutrition, and pressure sores: an ill-fated alliance.J. Gerontol. A Biol. Sci. Med. Sci.200459435536015071079
    [Google Scholar]
  46. IizakaS. MatsuoJ. KonyaC. SekineR. SugamaJ. SanadaH. Estimation of protein requirements according to nitrogen balance for older hospitalized adults with pressure ulcers according to wound severity in Japan.J. Am. Geriatr. Soc.201260112027203410.1111/j.1532‑5415.2012.04202.x23110319
    [Google Scholar]
  47. IizakaS. KaitaniT. NakagamiG. SugamaJ. SanadaH. Clinical validity of the estimated energy requirement and the average protein requirement for nutritional status change and wound healing in older patients with pressure ulcers: A multicenter prospective cohort study.Geriatr. Gerontol. Int.201515111201120910.1111/ggi.1242025496092
    [Google Scholar]
  48. BreslowR.A. HallfrischJ. GuyD.G. CrawleyB. GoldbergA.P. The importance of dietary protein in healing pressure ulcers.J. Am. Geriatr. Soc.199341435736210.1111/j.1532‑5415.1993.tb06940.x8463519
    [Google Scholar]
  49. FerrettiR.L. LambertJ.A. FernandesA.M. OliveiraR.A.C. MendesR.S. CamargoJ. Evaluation of protein intake and risk of pressure injury development in hospitalized patients.Clin. Nutr. ESPEN202146S61210.1016/j.clnesp.2021.09.199
    [Google Scholar]
  50. PosthauerM.E. BanksM. DornerB. ScholsJ.M.G.A. The role of nutrition for pressure ulcer management: national pressure ulcer advisory panel, European pressure ulcer advisory panel, and pan pacific pressure injury alliance white paper.Adv. Skin Wound Care201528417518810.1097/01.ASW.0000461911.31139.6225775201
    [Google Scholar]
  51. Frías SorianoL. Lage VzquezM.A. Prez-Portabella MaristanyC. Xandri GrauperaJ.M. Wouters-WesselingW. WagenaarL. The effectiveness of oral nutritional supplementation in the healing of pressure ulcers.J. Wound Care200413831932210.12968/jowc.2004.13.8.2665415469215
    [Google Scholar]
  52. CeredaE. GiniA. PedrolliC. VanottiA. Disease-specific, versus standard, nutritional support for the treatment of pressure ulcers in institutionalized older adults: a randomized controlled trial.J. Am. Geriatr. Soc.20095781395140210.1111/j.1532‑5415.2009.02351.x19563522
    [Google Scholar]
  53. CeredaE. KlersyC. SerioliM. CrespiA. D'AndreaF. A nutritional formula enriched with arginine, zinc, and antioxidants for the healing of pressure ulcers: A randomized trial.Ann. Intern. Med.201516231677410.7326/M14‑0696
    [Google Scholar]
  54. ChawlaJ. KvarnbergD. Hydrosoluble vitamins.Handb. Clin. Neurol.201412089191410.1016/B978‑0‑7020‑4087‑0.00059‑024365359
    [Google Scholar]
  55. TanumihardjoS.A. RussellR.M. StephensenC.B. GannonB.M. CraftN.E. HaskellM.J. LietzG. SchulzeK. RaitenD.J. Biomarkers of nutrition for development (BOND)—vitamin a review.J. Nutr.201614691816S1848S10.3945/jn.115.22970827511929
    [Google Scholar]
  56. CoxJ. RasmussenL. Enteral nutrition in the prevention and treatment of pressure ulcers in adult critical care patients.Crit. Care Nurse2014346152710.4037/ccn201495025452406
    [Google Scholar]
  57. MoiseA.R. NoyN. PalczewskiK. BlanerW.S. Delivery of retinoid-based therapies to target tissues.Biochemistry200746154449445810.1021/bi700306917378589
    [Google Scholar]
  58. WolbachS.B. HoweP.R. Nutrition classics. The journal of experimental medicine.1978, 42, 753-777. S. Burt Wolbach; Percy R. Howe. Tissue changes following deprivation of fat-soluble a vitamin.Nutr. Rev.1925361161910.1111/j.1753‑4887.1978.tb03675.x342996
    [Google Scholar]
  59. DawsonM. The importance of vitamin A in nutrition.Curr. Pharm. Des.20006331132510.2174/138161200340119010637381
    [Google Scholar]
  60. McEldrewE.P. LopezM.J. MilsteinH. Vitamin A.StatPearlsStatPearls Publishing2023
    [Google Scholar]
  61. StadelmannW.K. DigenisA.G. TobinG.R. Impediments to wound healing.Am. J. Surg.199817639S47S10.1016/S0002‑9610(98)00184‑6
    [Google Scholar]
  62. PopadicS. RamicZ. MedenicaL. Mostarica StojkovicM. TrajkovićV. PopadicD. Antiproliferative effect of vitamin A and D analogues on adult human keratinocytes in vitro.Skin Pharmacol. Physiol.200821422723410.1159/00013563918509257
    [Google Scholar]
  63. JeanJ. SoucyJ. PouliotR. Effects of retinoic acid on keratinocyte proliferation and differentiation in a psoriatic skin model.Tissue Eng. Part A20111713-141859186810.1089/ten.tea.2010.046321417679
    [Google Scholar]
  64. SchroederM. ZouboulisC. All-trans-retinoic acid and 13-cis-retinoic acid: pharmacokinetics and biological activity in different cell culture models of human keratinocytes.Horm. Metab. Res.200739213614010.1055/s‑2007‑96181317326009
    [Google Scholar]
  65. Masgrau-PeyaE. SalomonD. SauratJ.H. MedaP. In vivo modulation of connexins 43 and 26 of human epidermis by topical retinoic acid treatment.J. Histochem. Cytochem.19974591207121510.1177/0022155497045009049283608
    [Google Scholar]
  66. RittiéL. VaraniJ. KangS. VoorheesJ.J. FisherG.J. Retinoid-induced epidermal hyperplasia is mediated by epidermal growth factor receptor activation via specific induction of its ligands heparin-binding EGF and amphiregulin in human skin in vivo.J. Invest. Dermatol.2006126473273910.1038/sj.jid.570020216470170
    [Google Scholar]
  67. StollS.W. ElderJ.T. Retinoid regulation of heparin-binding EGF-like growth factor gene expression in human keratinocytes and skin.Exp. Dermatol.19987639139710.1111/j.1600‑0625.1998.tb00339.x9858142
    [Google Scholar]
  68. HuntT.K. EhrlichH.P. GarciaJ.A. DunphyJ.E. Effect of vitamin A on reversing the inhibitory effect of cortisone on healing of open wounds in animals and man.Ann. Surg.1969170463364110.1097/00000658‑196910000‑000145387992
    [Google Scholar]
  69. WickeC. HallidayB. AllenD. RocheN.S. ScheuenstuhlH. SpencerM.M. RobertsA.B. HuntT.K. Effects of steroids and retinoids on wound healing.Arch. Surg.2000135111265127010.1001/archsurg.135.11.126511074878
    [Google Scholar]
  70. ReichrathJ. LehmannB. CarlbergC. VaraniJ. ZouboulisC. Vitamins as Hormones.Horm. Metab. Res.2007392718410.1055/s‑2007‑95871517326003
    [Google Scholar]
  71. ChauhanK. ShahrokhiM. HueckerM.R. VitaminD. Vitamin D.StatPearlsTreasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  72. Nutrition and bone health: with particular reference to calcium and vitamin D. Report of the subgroup on bone health, working group on the nutritional status of the population of the committee on medical aspects of the food nutrition policy.Rep. Health Soc. Subj. (Lond).1998491249932291
    [Google Scholar]
  73. Institute of Medicine (US) Committee.Dietary Reference Intakes for Calcium and Vitamin D. RossA.C. TaylorC.L. YaktineA.L. Washington (DC)National Academies Press (US)2011
    [Google Scholar]
  74. National Institutes of Health Office of Dietary SupplementsVitamin D.2016Available from: https://ods.od.nih.gov/factsheets/VitaminD-HealthProfessional/
  75. WeaverC.M. AlexanderD.D. BousheyC.J. Dawson-HughesB. LappeJ.M. LeBoffM.S. LiuS. LookerA.C. WallaceT.C. WangD.D. Calcium plus vitamin D supplementation and risk of fractures: An updated meta-analysis from the National Osteoporosis Foundation.Osteoporos. Int.2016271367376
    [Google Scholar]
  76. BartleyJ. Vitamin D: emerging roles in infection and immunity.Expert Rev. Anti Infect. Ther.20108121359136910.1586/eri.10.10221133662
    [Google Scholar]
  77. SiregarF.D. HidayatW. The role of vitamin D on the wound healing process: A case series.Int. Med. Case Rep. J.20231622723210.2147/IMCRJ.S40200537035834
    [Google Scholar]
  78. MiglioriM. GiovanniniL. PanichiV. FilippiC. TaccolaD. OrigliaN. MannariC. CamussiG. Treatment with 1,25-dihydroxyvitamin D3 preserves glomerular slit diaphragm-associated protein expression in experimental glomerulonephritis.Int. J. Immunopathol. Pharmacol.200518477979010.1177/03946320050180042216388728
    [Google Scholar]
  79. YinZ. PinteaV. LinY. HammockB.D. WatskyM.A. Vitamin D enhances corneal epithelial barrier function.Invest. Ophthalmol. Vis. Sci.201152107359736410.1167/iovs.11‑760521715350
    [Google Scholar]
  80. Ordóñez-MoránP. Álvarez-DíazS. ValleN. LarribaM.J. BonillaF. MuñozA. The effects of 1,25-dihydroxyvitamin D3 on colon cancer cells depend on RhoA-ROCK-p38MAPK-MSK signaling.J. Steroid Biochem. Mol. Biol.20101211-235536110.1016/j.jsbmb.2010.02.03120223287
    [Google Scholar]
  81. ChristakosS. DhawanP. AjibadeD. BennB.S. FengJ. JoshiS.S. Mechanisms involved in vitamin D mediated intestinal calcium absorption and in non-classical actions of vitamin D.J. Steroid Biochem. Mol. Biol.20101211-218318710.1016/j.jsbmb.2010.03.00520214989
    [Google Scholar]
  82. HannaM. JaquaE. NguyenV. ClayJ. B. vitamins: Functions and uses in medicine.Perm. J.2022262899710.7812/TPP/21.20435933667
    [Google Scholar]
  83. MikkelsenK. ApostolopoulosV. B. Vitamins and Ageing.Subcell. Biochem.20189045147010.1007/978‑981‑13‑2835‑0_1530779018
    [Google Scholar]
  84. RussellL. The importance of patients' nutritional status in wound healing.Br. J. Nurs2001106 SupplS44910.12968/bjon.2001.10.Sup1.5336.
    [Google Scholar]
  85. WilliamsJ.Z. BarbulA. Nutrition and wound healing.Surg. Clin. North Am.200383357159610.1016/S0039‑6109(02)00193‑712822727
    [Google Scholar]
  86. MochizukiS. TakanoM. SuganoN. OhtsuM. TsunodaK. KoshiR. YoshinumaN. The effect of B vitamin supplementation on wound healing in type 2 diabetic mice.J. Clin. Biochem. Nutr.2016581646810.3164/jcbn.14‑12226798199
    [Google Scholar]
  87. RembeJ.D. Fromm-DorniedenC. StuermerE.K. Effects of vitamin B complex and vitamin C on human skin cells: Is the perceived effect measurable?Adv. Skin Wound Care201831522523310.1097/01.ASW.0000531351.85866.d929672394
    [Google Scholar]
  88. NishikimiM. FukuyamaR. MinoshimaS. ShimizuN. YagiK. Cloning and chromosomal mapping of the human nonfunctional gene for L-gulono-gamma-lactone oxidase, the enzyme for L-ascorbic acid biosynthesis missing in man.J. Biol. Chem.199426918136851368810.1016/S0021‑9258(17)36884‑98175804
    [Google Scholar]
  89. AbdullahM. JamilR.T. AttiaF.N. Vitamin C (Ascorbic Acid). StatPearlsTreasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  90. National Institutes of Health Office of Dietary SupplementsVitamin C.2021Available from: https://ods.od.nih.gov/factsheets/VitaminC-HealthProfessional/
  91. LimaC. PereiraA. SilvaJ. OliveiraL. ResckM. GrechiC. BernardesM. OlímpioF. SantosA. IncerpiE. GarciaJ. Ascorbic acid for the healing of skin wounds in rats.Braz. J. Biol.20096941195120110.1590/S1519‑6984200900050002619967193
    [Google Scholar]
  92. BoyceS.T. SuppA.P. SwopeV.B. WardenG.D. Vitamin C regulates keratinocyte viability, epidermal barrier, and basement membrane in vitro, and reduces wound contraction after grafting of cultured skin substitutes.J. Invest. Dermatol.2002118456557210.1046/j.1523‑1747.2002.01717.x11918700
    [Google Scholar]
  93. MiyazawaT. BurdeosG.C. ItayaM. NakagawaK. MiyazawaT. Vitamin E: Regulatory redox interactions.IUBMB Life201971443044110.1002/iub.200830681767
    [Google Scholar]
  94. RizviS. RazaS.T. AhmedF. AhmadA. AbbasS. MahdiF. The role of vitamin E in human health and some diseases.Sultan Qaboos Univ. Med. J.2014142e1576524790736
    [Google Scholar]
  95. FreiB. Reactive oxygen species and antioxidant vitamins: Mechanisms of action.Am. J. Med.1994973S5S1310.1016/0002‑9343(94)90292‑58085584
    [Google Scholar]
  96. PierpaoliE. CirioniO. BaruccaA. OrlandoF. SilvestriC. GiacomettiA. ProvincialiM. Vitamin E supplementation in old mice induces antimicrobial activity and improves the efficacy of daptomycin in an animal model of wounds infected with methicillin-resistant Staphylococcus aureus.J. Antimicrob. Chemother.20116692184218510.1093/jac/dkr25421676901
    [Google Scholar]
  97. RojasA.I. PhillipsT.J. Patients with chronic leg ulcers show diminished levels of vitamins A and E, carotenes, and zinc.Dermatol. Surg.199925860160410.1046/j.1524‑4725.1999.99074.x10491041
    [Google Scholar]
  98. TheillaM. SingerP. CohenJ. DeKeyserF. A diet enriched in eicosapentanoic acid, gamma-linolenic acid and antioxidants in the prevention of new pressure ulcer formation in critically ill patients with acute lung injury: A randomized, prospective, controlled study.Clin. Nutr.200726675275710.1016/j.clnu.2007.06.01517933438
    [Google Scholar]
  99. ShuklaA. RasikA.M. PatnaikG.K. Depletion of reduced glutathione, ascorbic acid, vitamin E and antioxidant defence enzymes in a healing cutaneous wound.Free Radic. Res.19972629310110.3109/107157697090977889257121
    [Google Scholar]
  100. RasikA.M. ShuklaA. Antioxidant status in delayed healing type of wounds.Int. J. Exp. Pathol.200081425726310.1046/j.1365‑2613.2000.00158.x10971747
    [Google Scholar]
  101. GaleanoM. TorreV. DeodatoB. CampoG.M. ColonnaM. SturialeA. SquadritoF. CavallariV. CucinottaD. BuemiM. AltavillaD. Raxofelast, a hydrophilic vitamin E-like antioxidant, stimulates wound healing in genetically diabetic mice.Surgery2001129446747711283539
    [Google Scholar]
  102. SakaiS. MoriguchiS. Long-term feeding of high vitamin E diet improves the decreased mitogen response of rat splenic lymphocytes with aging.J. Nutr. Sci. Vitaminol. (Tokyo)199743111312210.3177/jnsv.43.1139151245
    [Google Scholar]
  103. SaegF. OraziR. BowersG.M. JanisJ.E. Evidence-based nutritional interventions in wound care.Plast. Reconstr. Surg.2021148122623810.1097/PRS.000000000000806134181622
    [Google Scholar]
  104. JacksonM.J. Physiology of zinc: General aspects.Zinc in Human Biology MillsC.F. Berlin/Heidelberg, GermanySpringer1989
    [Google Scholar]
  105. KambeT. TsujiT. HashimotoA. ItsumuraN. The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism.Physiol. Rev.201595374978410.1152/physrev.00035.201426084690
    [Google Scholar]
  106. GlutschV. HammH. GoebelerM. Zinc and skin: an update.J. Dtsch. Dermatol. Ges.201917658959630873720
    [Google Scholar]
  107. OsisD. KramerL. WiatrowskiE. SpencerH. Dietary zinc intake in man.Am. J. Clin. Nutr.197225658258810.1093/ajcn/25.6.5825033739
    [Google Scholar]
  108. OgawaY. KawamuraT. ShimadaS. Zinc and skin biology.Arch. Biochem. Biophys.201661111311910.1016/j.abb.2016.06.00327288087
    [Google Scholar]
  109. MichaëlssonG. LjunghallK. DanielsonB.G. Zinc in epidermis and dermis in healthy subjects.Acta Derm. Venereol.198060429529910.2340/00015555602952996163273
    [Google Scholar]
  110. LansdownA.B.G. MirastschijskiU. StubbsN. ScanlonE. ÅgrenM.S. Zinc in wound healing: Theoretical, experimental, and clinical aspects.Wound Repair Regen.200715121610.1111/j.1524‑475X.2006.00179.x17244314
    [Google Scholar]
  111. PopovicsP. StewartA.J. GPR39: a Zn2+-activated G protein-coupled receptor that regulates pancreatic, gastrointestinal and neuronal functions.Cell. Mol. Life Sci.2011681859510.1007/s00018‑010‑0517‑120812023
    [Google Scholar]
  112. ZhaoH. QiaoJ. ZhangS. ZhangH. LeiX. WangX. DengZ. NingL. CaoY. GuoY. LiuS. DuanE. GPR39 marks specific cells within the sebaceous gland and contributes to skin wound healing.Sci. Rep.201551791310.1038/srep0791325604641
    [Google Scholar]
  113. Nutritional recommendations for Belgium.2012Available from: https://www.health.belgium.be/sites/default/files/uploads/fields/fpshealth_theme_file/18014679/Brochure%20Recommandations%20nutrionnelles%20%28r%C3%A9vision%202009%29%20%28CSS%208309%29.pdf
  114. SteinbrennerH. SpeckmannB. KlotzL.O. Selenoproteins: Antioxidant selenoenzymes and beyond.Arch. Biochem. Biophys.201659511311910.1016/j.abb.2015.06.02427095226
    [Google Scholar]
  115. SaitoY. Selenoprotein P as an in vivo redox regulator: disorders related to its deficiency and excess.J. Clin. Biochem. Nutr.20206611710.3164/jcbn.19‑3132001950
    [Google Scholar]
  116. GülM. TemoçinS. HänninenO. Selenium supplementation sensitizes renca cells to tert-butylhydroperoxide induced loss of viability.Indian J. Exp. Biol.200038101020102511324154
    [Google Scholar]
  117. BedardK. KrauseK.H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology.Physiol. Rev.200787124531310.1152/physrev.00044.200517237347
    [Google Scholar]
  118. GuptaA. SinghR.L. RaghubirR. Antioxidant status during cutaneous wound healing in immunocompromised rats.Mol. Cell. Biochem.20022411/21710.1023/A:102080491673312482019
    [Google Scholar]
  119. IuchiY. RoyD. OkadaF. KibeN. TsunodaS. SuzukiS. TakahashiM. YokoyamaH. YoshitakeJ. KondoS. FujiiJ. Spontaneous skin damage and delayed wound healing in SOD1-deficient mice.Mol. Cell. Biochem.20103411-218119410.1007/s11010‑010‑0449‑y20352474
    [Google Scholar]
  120. MaoL. WangL. ZhangM. UllahM.W. LiuL. ZhaoW. LiY. AhmedA.A.Q. ChengH. ShiZ. YangG. In situ synthesized selenium nanoparticles-decorated bacterial cellulose/gelatin hydrogel with enhanced antibacterial, antioxidant, and anti-inflammatory capabilities for facilitating skin wound healing.Adv. Healthc. Mater.20211014210040210.1002/adhm.20210040234050616
    [Google Scholar]
  121. ScheiberI. DringenR. MercerJ.F.B. Copper: effects of deficiency and overload.Met. Ions Life Sci.20131335938710.1007/978‑94‑007‑7500‑8_1124470097
    [Google Scholar]
  122. KornblattA.P. NicolettiV.G. TravagliaA. The neglected role of copper ions in wound healing.J. Inorg. Biochem.20161611810.1016/j.jinorgbio.2016.02.01226920228
    [Google Scholar]
  123. WachnikA. The physiological role of copper and the problems of copper nutritional deficiency.Nahrung198832875576510.1002/food.198803208113068548
    [Google Scholar]
  124. SenC.K. KhannaS. VenojarviM. TrikhaP. EllisonE.C. HuntT.K. RoyS. Copper-induced vascular endothelial growth factor expression and wound healing.Am. J. Physiol. Heart Circ. Physiol.20022825H1821H182710.1152/ajpheart.01015.200111959648
    [Google Scholar]
  125. CucciL.M. SatrianoC. MarzoT. La MendolaD. Angiogenin and copper crossing in wound healing.Int. J. Mol. Sci.202122191070410.3390/ijms22191070434639045
    [Google Scholar]
  126. PhilipsN. HwangH. ChauhanS. LeonardiD. GonzalezS. Stimulation of cell proliferation and expression of matrixmetalloproteinase-1 and interluekin-8 genes in dermal fibroblasts by copper.Connect. Tissue Res.201051322422910.3109/0300820090328843120053132
    [Google Scholar]
  127. TiwariM. NarayananK. ThakarM.B. JaganiH.V. Venkata RaoJ. Biosynthesis and wound healing activity of copper nanoparticles.IET Nanobiotechnol.20148423023710.1049/iet‑nbt.2013.005225429502
    [Google Scholar]
  128. AbbaspourN. HurrellR. KelishadiR. Review on iron and its importance for human health.J. Res. Med. Sci.201419216417424778671
    [Google Scholar]
  129. TrumboP. YatesA.A. SchlickerS. PoosM. Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc.J. Am. Diet. Assoc.2001101329430110.1016/S0002‑8223(01)00078‑511269606
    [Google Scholar]
  130. PelleE. JianJ. DeclercqL. DongK. YangQ. PourzandC. MaesD. PernodetN. YaroshD.B. HuangX. Protection against ultraviolet A-induced oxidative damage in normal human epidermal keratinocytes under post-menopausal conditions by an ultraviolet A-activated caged-iron chelator: a pilot study.Photodermatol. Photoimmunol. Photomed.201127523123510.1111/j.1600‑0781.2011.00604.x21950626
    [Google Scholar]
  131. HongW.X. HuM.S. EsquivelM. LiangG.Y. RennertR.C. McArdleA. PaikK.J. DuscherD. GurtnerG.C. LorenzH.P. LongakerM.T. The role of hypoxia-inducible factor in wound healing.Adv. Wound Care (New Rochelle)20143539039910.1089/wound.2013.052024804159
    [Google Scholar]
  132. TakayamaY. AokiR. Roles of lactoferrin on skin wound healing.Biochem. Cell Biol.201290349750310.1139/o11‑05422332789
    [Google Scholar]
  133. SathiyaseelanA. SaravanakumarK. MariadossA.V.A. WangM.H. Antimicrobial and wound healing properties of FeO fabricated chitosan/PVA nanocomposite sponge.Antibiotics (Basel)202110552410.3390/antibiotics1005052434063621
    [Google Scholar]
  134. WlaschekM. SinghK. SindrilaruA. CrisanD. Scharffetter-KochanekK. Iron and iron-dependent reactive oxygen species in the regulation of macrophages and fibroblasts in non-healing chronic wounds.Free Radic. Biol. Med.201913326227510.1016/j.freeradbiomed.2018.09.03630261274
    [Google Scholar]
  135. WenkJ. SabiwalskyA. DissemondJ. MeewesC. BrenneisenP. WlaschekM. Scharffetter-KochanekK. FoitzikA. AchterbergV. ReitzA. Meyer-IngoldW. Selective pick-up of increased iron by deferoxamine-coupled cellulose abrogates the iron-driven induction of matrix-degrading metalloproteinase 1 and lipid peroxidation in human dermal fibroblasts in vitro: A new dressing concept.J. Invest. Dermatol.2001116683383910.1046/j.1523‑1747.2001.01345.x11407968
    [Google Scholar]
  136. EileenC. O'Brien. Encyclopedia of food security and sustainability, 2019.
  137. EriksonK.M. AschnerM. Manganese: Its role in disease and health.Met. Ions Life Sci.201910.1515/9783110527872‑016.
    [Google Scholar]
  138. AschnerM. EriksonK. Manganese.Adv. Nutr.20178352052110.3945/an.117.015305.
    [Google Scholar]
  139. TenaudI. Sainte-MarieI. JumbouO. LitouxP. DrénoB. In vitro modulation of keratinocyte wound healing integrins by zinc, copper and manganese.Br. J. Dermatol.19991401263410.1046/j.1365‑2133.1999.02603.x10215764
    [Google Scholar]
  140. LuoJ.D. WangY.Y. FuW.L. WuJ. ChenA.F. Gene therapy of endothelial nitric oxide synthase and manganese superoxide dismutase restores delayed wound healing in type 1 diabetic mice.Circulation2004110162484249310.1161/01.CIR.0000137969.87365.0515262829
    [Google Scholar]
  141. WuZ. ZhuangH. MaB. XiaoY. KocB. ZhuY. WuC. Manganese-doped calcium silicate nanowire composite hydrogels for melanoma treatment and wound healing.Research20212021978094310.34133/2021/978094334041493
    [Google Scholar]
  142. Mathew-SteinerS.S. RoyS. SenC.K. Collagen in wound healing.Bioengineering (Basel)2021856310.3390/bioengineering805006334064689
    [Google Scholar]
  143. GriffithsC. RussmanA.N. MajmudarG. SingerR.S. HamiltonT.A. VoorheesJ.J. Restoration of collagen formation in photodamaged human skin by tretinoin (retinoic acid).N. Engl. J. Med.1993329853053510.1056/NEJM1993081932908038336752
    [Google Scholar]
  144. MolnarJ.A. UnderdownM.J. ClarkW.A. Nutrition and chronic wounds.Adv. Wound Care (New Rochelle)201431166368110.1089/wound.2014.053025371850
    [Google Scholar]
  145. MauryaV.K. AggarwalM. Factors influencing the absorption of vitamin D in GIT: an overview.J. Food Sci. Technol.201754123753376510.1007/s13197‑017‑2840‑029085118
    [Google Scholar]
  146. RazzaghiR. PourbagheriH. Momen-HeraviM. BahmaniF. ShadiJ. SoleimaniZ. AsemiZ. The effects of vitamin D supplementation on wound healing and metabolic status in patients with diabetic foot ulcer: A randomized, double-blind, placebo-controlled trial.J. Diabetes Complications201731476677210.1016/j.jdiacomp.2016.06.01727363929
    [Google Scholar]
  147. ZhangY. WuS. SunJ. VitaminD. VitaminD. Vitamin D, vitamin D receptor and tissue barriers.Tissue Barriers201311e2311810.4161/tisb.2311824358453
    [Google Scholar]
  148. KalavaU.R. ChaS.S. TakahashiP.Y. Association between vitamin D and pressure ulcers in older ambulatory adults: results of a matched case-control study.Clin. Interv. Aging2011621321921966215
    [Google Scholar]
  149. TaylorT.V. RimmerS. DayB. ButcherJ. DymockI.W. Ascorbic acid supplementation in the treatment of pressure-sores.Lancet1974304788054454610.1016/S0140‑6736(74)91874‑14140267
    [Google Scholar]
  150. ter RietG. KesselsA.G.H. KnipschildP.G. Randomized clinical trial of ascorbic acid in the treatment of pressure ulcers.J. Clin. Epidemiol.199548121453146010.1016/0895‑4356(95)00053‑48543959
    [Google Scholar]
  151. TanakaH. MolnarJ.A. Vitamin C and wound healing.Nutrition and Wound Healing. MolnarJ.A. Boca Raton, FLCRC Press2007121148
    [Google Scholar]
  152. CollinsN. The facts about vitamin C and wound healing.Ostomy Wound Manage.20095538919673058
    [Google Scholar]
  153. van AnholtR.D. SobotkaL. MeijerE.P. HeymanH. GroenH.W. TopinkováE. van LeenM. ScholsJ.M.G.A. Specific nutritional support accelerates pressure ulcer healing and reduces wound care intensity in non-malnourished patients.Nutrition201026986787210.1016/j.nut.2010.05.00920598855
    [Google Scholar]
  154. EllingerS. StehleP. Efficacy of vitamin supplementation in situations with wound healing disorders: results from clinical intervention studies.Curr. Opin. Clin. Nutr. Metab. Care200912658859510.1097/MCO.0b013e328331a5b519770648
    [Google Scholar]
  155. BecharaN. FloodV.M. GuntonJ.E. A systematic review on the role of vitamin C in tissue healing.Antioxidants2022118160510.3390/antiox1108160536009324
    [Google Scholar]
  156. De WaartF.G. PortengenL. DoekesG. VerwaalC.J. KokF.J. Effect of 3 months vitamin E supplementation on indices of the cellular and humoral immune response in elderly subjects.Br. J. Nutr.199778576177410.1079/BJN199701939389899
    [Google Scholar]
  157. MeydaniS.N. MeydaniM. BlumbergJ.B. LekaL.S. SiberG. LoszewskiR. ThompsonC. PedrosaM.C. DiamondR.D. StollarB.D. Vitamin E supplementation and in vivo immune response in healthy elderly subjects. A randomized controlled trial.JAMA1997277171380138610.1001/jama.1997.035404100580319134944
    [Google Scholar]
  158. De la FuenteM. HernanzA. GuayerbasN. Manuel VictorV. ArnalichF. Vitamin E ingestion improves several immune functions in elderly men and women.Free Radic. Res.200842327228010.1080/1071576080189883818344122
    [Google Scholar]
  159. De La FuenteM. VictorV. Anti-oxidants as modulators of immune function.Immunol. Cell Biol.2000781495410.1046/j.1440‑1711.2000.00884.x10651929
    [Google Scholar]
  160. YarahmadiA. Saeed ModagheghM.H. Mostafavi-PourZ. AzarpiraN. MousavianA. BonakdaranS. JarahiL. SamadiA. PeimaniM. Hamidi AlamdariD. The effect of platelet-rich plasma-fibrin glue dressing in combination with oral vitamin E and C for treatment of non-healing diabetic foot ulcers: a randomized, double-blind, parallel-group, clinical trial.Expert Opin. Biol. Ther.202121568769610.1080/14712598.2021.189710033646060
    [Google Scholar]
  161. HobsonR. Vitamin E and wound healing: an evidence-based review.Int. Wound J.201613333133510.1111/iwj.1229525124164
    [Google Scholar]
  162. BafnaK. ChenT. SimmanR. Is treating patients with stage 4 pressure ulcers with vitamins A and C, zinc, and arginine justified?Wounds2021333778033793413
    [Google Scholar]
  163. WooH.Y. OhS.Y. LimL. ImH. LeeH. RyuH.G. Efficacy of nutritional support protocol for patients with pressure ulcer: comparison of before and after the protocol.Nutrition202299-10011163810.1016/j.nut.2022.11163835576874
    [Google Scholar]
  164. DesnevesK. TodorovicB. CassarA. CroweT. Treatment with supplementary arginine, vitamin C and zinc in patients with pressure ulcers: A randomised controlled trial.Clin. Nutr.200524697998710.1016/j.clnu.2005.06.01116297506
    [Google Scholar]
  165. HeymanH. Van De LooverboschD.E.J. MeijerE.P. ScholsJ.M.G.A. Benefits of an oral nutritional supplement on pressure ulcer healing in long-term care.J. Wound Care20081711476480, 48010.12968/jowc.2008.17.11.3147518978686
    [Google Scholar]
  166. KoneckaM. Schneider-MatykaD. KamińskaM. BikowskaM. UstianowskiP. GrochansE. Analysis of the laboratory results of the patients enrolled in the Nutritional Therapy Program.Eur. Rev. Med. Pharmacol. Sci.202226145144515310.26355/eurrev_202207_2930335916812
    [Google Scholar]
  167. KellerU. Nutritional laboratory markers in malnutrition.J. Clin. Med.20198677510.3390/jcm806077531159248
    [Google Scholar]
  168. BharadwajS. GinoyaS. TandonP. GohelT.D. GuirguisJ. VallabhH. JevennA. HanounehI. Malnutrition: laboratory markers vs. nutritional assessment.Gastroenterol. Rep. (Oxf.)201644gow01310.1093/gastro/gow01327174435
    [Google Scholar]
  169. BluesteinD. JavaheriA. Pressure ulcers: prevention, evaluation, and management.Am. Fam. Physician200878101186119419035067
    [Google Scholar]
  170. NeelemaatF. KruizengaH.M. de VetH.C.W. SeidellJ.C. ButtermanM. van Bokhorst-de van der SchuerenM.A.E. Screening malnutrition in hospital outpatients. Can the SNAQ malnutrition screening tool also be applied to this population?Clin. Nutr.200827343944610.1016/j.clnu.2008.02.00218395946
    [Google Scholar]
  171. PouliaK.A. YannakouliaM. KarageorgouD. GamaletsouM. PanagiotakosD.B. SipsasN.V. ZampelasA. Evaluation of the efficacy of six nutritional screening tools to predict malnutrition in the elderly.Clin. Nutr.201231337838510.1016/j.clnu.2011.11.01722182948
    [Google Scholar]
  172. Langkamp-HenkenB. HudgensJ. StechmillerJ.K. Herrlinger-GarciaK.A. Mini nutritional assessment and screening scores are associated with nutritional indicators in elderly people with pressure ulcers.J. Am. Diet. Assoc.2005105101590159610.1016/j.jada.2005.07.00516183360
    [Google Scholar]
  173. GradaA. PhillipsT.J. Nutrition and cutaneous wound healing.Clin. Dermatol.202240210311310.1016/j.clindermatol.2021.10.00234844794
    [Google Scholar]
  174. WilliamsJ.Z. BarbulA. Nutrition and wound healing.Crit. Care Nurs. Clin. North Am.201224217920010.1016/j.ccell.2012.03.00122548858
    [Google Scholar]
  175. FryD.E. PineM. JonesB.L. MeimbanR.J. Patient characteristics and the occurrence of never events.Arch. Surg.2010145214815110.1001/archsurg.2009.27720157082
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673322825241018174928
Loading
/content/journals/cmc/10.2174/0109298673322825241018174928
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test