Skip to content
2000
Volume 32, Issue 27
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Currently, malignant tumors increasingly affect young people, which has caused a catastrophic financial burden on people worldwide. lncRNA has gained considerable attention because of its importance in the early diagnosis and treatment of tumors. In addition, since terminal differentiation-induced ncRNA (abbreviated as TINCR) was reported in a Nature article, it has received focus on targeted therapy of tumors, especially in digestive system malignant tumors. This review aims to reveal and summarize its important molecular mechanisms in human malignancies. In this review, relevant research works involving the relationship between TINCR and human malignancies are gathered through systematic retrieval of PubMed. TINCR is expressed bidirectionally in human malignancies. TINCR functions primarily as a ceRNA in human malignancies, and it also functions at the transcriptional level. Moreover, lncRNA TINCR has the potential to become a novel biomolecular marker of human malignancies.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673290217240513093711
2024-05-22
2025-10-25
Loading full text...

Full text loading...

References

  1. BellR.B. GoughM. CrittendenM. YoungK. Moving beyond the T cell synapse for combination neoadjuvant immunotherapy in head and neck cancer.J. Clin. Invest.202213218e16273310.1172/JCI16273336106641
    [Google Scholar]
  2. AfrinH. BaiG.R. KumarR. AhmadS.S. AgarwalS.K. NurunnabiM. Oral delivery of RNAi for cancer therapy.Cancer Metastasis Rev.202342369972410.1007/s10555‑023‑10099‑x36971908
    [Google Scholar]
  3. SharmaM. BakshiA.K. MittapellyN. GautamS. MarwahaD. RaiN. SinghN. TiwariP. AgarwalN. KumarA. MishraP.R. Recent updates on innovative approaches to overcome drug resistance for better outcomes in cancer.J. Control. Release2022346437010.1016/j.jconrel.2022.04.00735405165
    [Google Scholar]
  4. AhmadM. WeiswaldL.B. PoulainL. DenoyelleC. FiguiereM.M. Involvement of lncRNAs in cancer cells migration, invasion and metastasis: Cytoskeleton and ECM crosstalk.J. Exp. Clin. Cancer Res.202342117310.1186/s13046‑023‑02741‑x37464436
    [Google Scholar]
  5. WangK.C. ChangH.Y. Molecular mechanisms of long noncoding RNAs.Mol. Cell201143690491410.1016/j.molcel.2011.08.01821925379
    [Google Scholar]
  6. CanonA.C. EspinosaC.L. VillanuevaA.S. RochaB.E. GordilloG.J.A. GaleanaC.P. HernándezC.C. TrejoJ.F. HerreraL.A. The clinical utility of lncRNAs and their application as molecular biomarkers in breast cancer.Int. J. Mol. Sci.2023248742610.3390/ijms2408742637108589
    [Google Scholar]
  7. RamnarineV.R. KobelevM. GibbE.A. NouriM. LinD. WangY. ButtyanR. DavicioniE. ZoubeidiA. CollinsC.C. The evolution of long noncoding RNA acceptance in prostate cancer initiation, progression, and its clinical utility in disease management.Eur. Urol.201976554655910.1016/j.eururo.2019.07.04031445843
    [Google Scholar]
  8. HermanA.B. TsitsipatisD. GorospeM. Integrated lncRNA function upon genomic and epigenomic regulation.Mol. Cell202282122252226610.1016/j.molcel.2022.05.02735714586
    [Google Scholar]
  9. ChouJ. KallerM. JaeckelS. RokavecM. HermekingH. AP4 suppresses DNA damage, chromosomal instability and senescence via inducing MDC1/Mediator of DNA damage Checkpoint 1 and repressing MIR22HG/miR-22-3p.Mol. Cancer202221112010.1186/s12943‑022‑01581‑135624466
    [Google Scholar]
  10. KretzM. SiprashviliZ. ChuC. WebsterD.E. ZehnderA. QuK. LeeC.S. FlockhartR.J. GroffA.F. ChowJ. JohnstonD. KimG.E. SpitaleR.C. FlynnR.A. ZhengG.X.Y. AiyerS. RajA. RinnJ.L. ChangH.Y. KhavariP.A. Control of somatic tissue differentiation by the long non-coding RNA TINCR.Nature2013493743123123510.1038/nature1166123201690
    [Google Scholar]
  11. KaurJ. SrivastavaR. BorseV. Recent advances in point-of-care diagnostics for oral cancer.Biosens. Bioelectron.202117811299510.1016/j.bios.2021.11299533515983
    [Google Scholar]
  12. WarnakulasuriyaS. KerrA.R. Oral cancer screening: Past, present, and future.J. Dent. Res.2021100121313132010.1177/0022034521101479534036828
    [Google Scholar]
  13. MoravcováM. LibraA. DvořákováJ. VíškováA. MuthnýT. VelebnýV. KubalaL. Modulation of keratin 1, 10 and involucrin expression as part of the complex response of the human keratinocyte cell line HaCaT to ultraviolet radiation.Interdiscip. Toxicol.20136420320810.2478/intox‑2013‑003024678259
    [Google Scholar]
  14. HeikinheimoK. KurppaK.J. LaihoA. PeltonenS. BerdalA. BouattourA. RuhinB. CatónJ. ThesleffI. LeivoI. MorganP.R. Early dental epithelial transcription factors distinguish ameloblastoma from keratocystic odontogenic tumor.J. Dent. Res.201594110111110.1177/002203451455681525398365
    [Google Scholar]
  15. ChengX. YeungP.K.K. ZhongK. ZilunduP.L.M. ZhouL. ChungS.K. Astrocytic endothelin-1 overexpression promotes neural progenitor cells proliferation and differentiation into astrocytes via the Jak2/Stat3 pathway after stroke.J. Neuroinflammation201916122710.1186/s12974‑019‑1597‑y31733648
    [Google Scholar]
  16. AyeleM.T. MucheT.Z. TeklemariamB.A. BogaleA. AbebeC.E. Role of JAK2/STAT3 signaling pathway in the tumorigenesis, chemotherapy resistance, and treatment of solid tumors: A systemic review.J. Inflamm. Res.2022151349136410.2147/JIR.S35348935241923
    [Google Scholar]
  17. GongH. TaoY. XiaoS. LiX. FangK. WenJ. HeP. ZengM. LncRNA KIAA0087 suppresses the progression of osteosarcoma by mediating the SOCS1/JAK2/STAT3 signaling pathway.Exp. Mol. Med.202355483184310.1038/s12276‑023‑00972‑837009803
    [Google Scholar]
  18. ZhuangZ. HuangJ. WangW. WangC. YuP. HuJ. LiuH. YinH. HouJ. LiuX. Down-regulation of long non-coding RNA TINCR induces cell dedifferentiation and predicts progression in oral squamous cell carcinoma.Front. Oncol.20211062475210.3389/fonc.2020.62475233732637
    [Google Scholar]
  19. MorganE. SoerjomataramI. RumgayH. ColemanH.G. ThriftA.P. VignatJ. LaversanneM. FerlayJ. ArnoldM. The global landscape of esophageal squamous cell carcinoma and esophageal adenocarcinoma incidence and mortality in 2020 and projections to 2040: New estimates from GLOBOCAN 2020.Gastroenterology20221633649658.e210.1053/j.gastro.2022.05.05435671803
    [Google Scholar]
  20. ShahM.A. KennedyE.B. CatenacciD.V. DeightonD.C. GoodmanK.A. MalhotraN.K. WillettC. StilesB. SharmaP. TangL. WijnhovenB.P.L. HofstetterW.L. Treatment of locally advanced esophageal carcinoma: ASCO guideline.J. Clin. Oncol.202038232677269410.1200/JCO.20.0086632568633
    [Google Scholar]
  21. XueW. ZhengY. ShenZ. LiL. FanZ. WangW. ZhuZ. ZhaiY. ZhaoJ. KanQ. Involvement of long non-coding RNAs in the progression of esophageal cancer.Cancer Commun.202141537138810.1002/cac2.1214633605567
    [Google Scholar]
  22. XuY. QiuM. ChenY. WangJ. XiaW. MaoQ. YangL. LiM. JiangF. XuL. YinR. Long noncoding RNA, tissue differentiation-inducing nonprotein coding RNA is upregulated and promotes development of esophageal squamous cell carcinoma.Dis. Esophagus201629895095810.1111/dote.1243626833746
    [Google Scholar]
  23. LeeS. HongJ.H. KimJ.S. YoonJ.S. ChunS.H. HongS.A. KimE.J. KangK. Lee KangJ. KoY.H. AhnY.H. Cancer-associated fibroblasts activated by miR-196a promote the migration and invasion of lung cancer cells.Cancer Lett.20215089210310.1016/j.canlet.2021.03.02133775710
    [Google Scholar]
  24. ThriftA.P. SeragE.H.B. Burden of gastric cancer.Clin. Gastroenterol. Hepatol.202018353454210.1016/j.cgh.2019.07.04531362118
    [Google Scholar]
  25. SmythE.C. NilssonM. GrabschH.I. van GriekenN.C.T. LordickF. Gastric cancer.Lancet20203961025163564810.1016/S0140‑6736(20)31288‑532861308
    [Google Scholar]
  26. AjaniJ.A. D’AmicoT.A. BentremD.J. ChaoJ. CookeD. CorveraC. DasP. EnzingerP.C. EnzlerT. FantaP. FarjahF. GerdesH. GibsonM.K. HochwaldS. HofstetterW.L. IlsonD.H. KeswaniR.N. KimS. KleinbergL.R. KlempnerS.J. LacyJ. LyQ.P. MatkowskyjK.A. McNamaraM. MulcahyM.F. OutlawD. ParkH. PerryK.A. PimientoJ. PoultsidesG.A. ReznikS. RosesR.E. StrongV.E. SuS. WangH.L. WiesnerG. WillettC.G. YakoubD. YoonH. McMillianN. PluchinoL.A. Gastric cancer, version 2.2022, NCCN clinical practice guidelines in oncology.J. Natl. Compr. Canc. Netw.202220216719210.6004/jnccn.2022.000835130500
    [Google Scholar]
  27. XuT. LiuX. XiaR. YinL. KongR. ChenW. HuangM. ShuY. SP1-induced upregulation of the long noncoding RNA TINCR regulates cell proliferation and apoptosis by affecting KLF2 mRNA stability in gastric cancer.Oncogene201534455648566110.1038/onc.2015.1825728677
    [Google Scholar]
  28. VizcaínoC. MansillaS. PortugalJ. Sp1 transcription factor: A long-standing target in cancer chemotherapy.Pharmacol. Ther.201515211112410.1016/j.pharmthera.2015.05.00825960131
    [Google Scholar]
  29. BlackA.R. BlackJ.D. CliffordA.J. Sp1 and krüppel- like factor family of transcription factors in cell growth regulation and cancer.J. Cell. Physiol.2001188214316010.1002/jcp.111111424081
    [Google Scholar]
  30. LuY. QinH. JiangB. LuW. HaoJ. CaoW. DuL. ChenW. ZhaoX. GuoH. KLF2 inhibits cancer cell migration and invasion by regulating ferroptosis through GPX4 in clear cell renal cell carcinoma.Cancer Lett.202152211310.1016/j.canlet.2021.09.01434520818
    [Google Scholar]
  31. JingZ. LiuQ. HeX. JiaZ. XuZ. YangB. LiuP. NCAPD3 enhances Warburg effect through c-myc and E2F1 and promotes the occurrence and progression of colorectal cancer.J. Exp. Clin. Cancer Res.202241119810.1186/s13046‑022‑02412‑335689245
    [Google Scholar]
  32. ZhengX. HuangM. XingL. YangR. WangX. JiangR. ZhangL. ChenJ. The circRNA circSEPT9 mediated by E2F1 and EIF4A3 facilitates the carcinogenesis and development of triple-negative breast cancer.Mol. Cancer20201917310.1186/s12943‑020‑01183‑932264877
    [Google Scholar]
  33. XuJ. HuaX. YangR. JinH. LiJ. ZhuJ. TianZ. HuangM. JiangG. HuangH. HuangC. XIAP Interaction with E2F1 and Sp1 via its BIR2 and BIR3 domains specific activated MMP2 to promote bladder cancer invasion.Oncogenesis20198127110.1038/s41389‑019‑0181‑831811115
    [Google Scholar]
  34. CremonaM. VandenbergC.J. FarrellyA.M. MaddenS.F. MorganC. KalachandR. McAlpineJ.N. ToomeyS. HuntsmanD.G. GroganL. BreathnachO. MorrisP. CareyM.S. ScottC.L. HennessyB.T. BRCA mutations lead to XIAP overexpression and sensitise ovarian cancer to inhibitor of apoptosis (IAP) family inhibitors.Br. J. Cancer2022127348849910.1038/s41416‑022‑01823‑535501389
    [Google Scholar]
  35. XuT.P. WangY.F. XiongW.L. MaP. WangW.Y. ChenW.M. HuangM.D. XiaR. WangR. ZhangE.B. LiuY.W. DeW. ShuY.Q. E2F1 induces TINCR transcriptional activity and accelerates gastric cancer progression via activation of TINCR/STAU1/CDKN2B signaling axis.Cell Death Dis.201786e283710.1038/cddis.2017.20528569791
    [Google Scholar]
  36. ChenZ. LiuH. YangH. GaoY. ZhangG. HuJ. The long noncoding RNA, TINCR, functions as a competing endogenous RNA to regulate PDK1 expression by sponging miR-375 in gastric cancer.OncoTargets Ther.2017103353336210.2147/OTT.S13772628744139
    [Google Scholar]
  37. YouL. DouY. ZhangY. XiaoH. LvH. WeiG.H. XuD. SDC2 stabilization by USP14 promotes gastric cancer progression through co-option of PDK1.Int. J. Biol. Sci.202319113483349810.7150/ijbs.8433137496999
    [Google Scholar]
  38. MiaoZ. LiJ. WangY. ShiM. GuX. ZhangX. WeiF. TangX. ZhengL. XingY. Hsa_circ_0136666 stimulates gastric cancer progression and tumor immune escape by regulating the miR-375/PRKDC Axis and PD-L1 phosphorylation.Mol. Cancer202322120510.1186/s12943‑023‑01883‑y38093288
    [Google Scholar]
  39. ShiJ. GuoC. LiY. MaJ. The long noncoding RNA TINCR promotes self-renewal of human liver cancer stem cells through autophagy activation.Cell Death Dis.2022131196110.1038/s41419‑022‑05424‑136385098
    [Google Scholar]
  40. SongM. Global epidemiology and prevention of colorectal cancer.Lancet Gastroenterol. Hepatol.20227758859010.1016/S2468‑1253(22)00089‑935397797
    [Google Scholar]
  41. QuR. MaY. ZhangZ. FuW. Increasing burden of colorectal cancer in China.Lancet Gastroenterol. Hepatol.20227870010.1016/S2468‑1253(22)00156‑X35809603
    [Google Scholar]
  42. DekkerE. TanisP.J. VleugelsJ.L.A. KasiP.M. WallaceM.B. Colorectal cancer.Lancet2019394102071467148010.1016/S0140‑6736(19)32319‑031631858
    [Google Scholar]
  43. SharmaR. KangevariA.M. RabuA.R. AbidiH. GharbiehA.E. AcunaJ.M. AdhikariS. AdvaniS.M. AfzalM.S. MeybodiA.M. AhinkorahB.O. AhmadS. AhmadiA. AhmadiS. AhmedH. AhmedL.A. AhmedM.B. Al HamadH. AlahdabF. AlaneziF.M. AlanziT.M. AlhalaiqaF.A.N. AlimohamadiY. AlipourV. AljunidS.M. AlkhayyatM. AlmustanyirS. Al-RaddadiR.M. AlvandS. Alvis-GuzmanN. AminiS. AncuceanuR. AnoushiravaniA. AnoushirvaniA.A. MoghaddamA.A. ArablooJ. AryannejadA. JafarabadiA.M. AthariS.S. AusloosF. AusloosM. AwedewA.F. AwokeM.A. AyanaT.M. AzadnajafabadS. AzamiH. KhyavyA.M. JafariA.A. BadiyeA.D. BagheriehS. BahadoryS. BaigA.A. BakerJ.L. BanachM. BarrowA. BerhieA.Y. BesharatS. BhagatD.S. BhagavathulaA.S. BhalaN. BhattacharyyaK. BhojarajaV.S. BibiS. BijaniA. BiondiA. BjørgeT. BodichaB.B.A. BraithwaiteD. BrennerH. CalinaD. CaoC. CaoY. CarrerasG. CarvalhoF. CerinE. ChakinalaR.C. ChoW.C.S. ChuD-T. CondeJ. CostaV.M. Cruz-MartinsN. DadrasO. DaiX. DandonaL. DandonaR. DanielewiczA. DemekeF.M. DemissieG.D. DesaiR. DhamnetiyaD. DianatinasabM. DiazD. DidehdarM. DoaeiS. DoanL.P. DodangehM. EghbalianF. EjetaD.D. EkholuenetaleM. EkundayoT.C. El SayedI. ElhadiM. EnyewD.B. EyayuT. EzzeddiniR. FakhradiyevI.R. FarooqueU. FarrokhpourH. FarzadfarF. FatehizadehA. FattahiH. FattahiN. FereidoonnezhadM. FernandesE. FetensaG. FilipI. FischerF. ForoutanM. GaalP.A. GadM.M. GallusS. GargT. GetachewT. GhamariS-H. GhashghaeeA. GhithN. GholamalizadehM. Gholizadeh NavashenaqJ. GizawA.T. GlasbeyJ.C. GolechhaM. GoleijP. GonfaK.B. GoriniG. GuhaA. GuptaS. GuptaV.B. GuptaV.K. HaddadiR. Hafezi-NejadN. Haj-MirzaianA. HalwaniR. HaqueS. HaririS. HasaballahA.I. HassanipourS. HayS.I. HerteliuC. HollaR. HosseiniM-S. HosseinzadehM. HostiucM. HousehM. HuangJ. HumayunA. IavicoliI. IlesanmiO.S. IlicI.M. IlicM.D. IslamiF. IwagamiM. JahaniM.A. JakovljevicM. JavaheriT. JayawardenaR. JebaiR. JhaR.P. JooT. JosephN. JoukarF. JozwiakJ.J. KabirA. KalhorR. KamathA. KapoorN. KarayeI.M. KarimiA. KauppilaJ.H. KazemiA. KeykhaeiM. KhaderY.S. KhajuriaH. KhalilovR. KhanaliJ. KhayamzadehM. KhodadostM. KimH. KimM.S. KisaA. KisaS. KolahiA-A. KoohestaniH.R. KopecJ.A. KoteeswaranR. KoyanagiA. KrishnamoorthyY. KumarG.A. KumarM. KumarV. La VecchiaC. LamiF.H. LandiresI. LeddaC. LeeS. LeeW-C. LeeY.Y. LeongE. LiB. LimS.S. LoboS.W. LoureiroJ.A. LuneviciusR. MadadizadehF. MahmoodpoorA. MajeedA. MalekpourM-R. MalekzadehR. MalikA.A. Mansour-GhanaeiF. MantovaniL.G. MartorellM. MasoudiS. MathurP. MeenaJ.K. Mehrabi NasabE. MendozaW. MentisA-F.A. MestrovicT. Miao JonassonJ. MiazgowskiB. MiazgowskiT. MijenaG.F.W. MirmoeeniS. AttariM.E.M. MirzaeiH. MisraS. MohammadK.A. MohammadiE. MohammadiS. MohammadiS.M. HafshejaniM.A. MohammedS. MohammedT.A. MokaN. MokdadA.H. MokhtariZ. MolokhiaM. MomtazmaneshS. MonastaL. MoradiG. MoradzadehR. MoragaP. Morgado-da-CostaJ. MubarikS. MulitaF. NaghaviM. NaimzadaM.D. NamH.S. NattoZ.S. NayakB.P. NazariJ. MojaradN.E. NegoiI. NguyenC.T. NguyenS.H. NoorN.M. NooriM. NooriS.M.A. SamudioN.V. NzoputamC.I. OanceaB. OdukoyaO.O. OguntadeA.S. Okati-AliabadH. OlagunjuA.T. OlagunjuT.O. OngS. OstroffS.M. MonederoP.A. PakzadR. PanaA. PandeyA. KanP.F. PatelU.K. PaudelU. PereiraR.B. PerumalsamyN. PestellR.G. PirachaZ.Z. PollokR.C.G. PourshamsA. PourtaheriN. PrashantA. RabieeM. RabieeN. RadfarA. RafieiS. RahmanM. RahmaniA.M. RahmanianV. RajaiN. RajeshA. DorohR.V. RamezanzadehK. RanabhatK. RashediS. RashidiA. RashidiM. RashidiM-M. RastegarM. RawafD.L. RawafS. RawassizadehR. RazeghiniaM.S. RenzahoA.M.N. RezaeiN. RezaeiN. RezaeiS. RezaeianM. Rezazadeh-KhademS. RoshandelG. AyadS.M.M. ArdestaniS.B. SaddikB. SadeghiH. SaeedU. SahebazzamaniM. SahebkarA. Salek FarrokhiA. SalimiA. SalimzadehH. SamadiP. SamaeiM. SamyA.M. SanabriaJ. MilicevicS.M.M. SaqibM.A.N. SarveazadA. SathianB. SatpathyM. SchneiderI.J.C. ŠekerijaM. SepanlouS.G. SeylaniA. ShaF. ShafieeS.M. ShaghaghiZ. ShahabiS. ShakerE. SharifianM. Sharifi-RadJ. SheikhbahaeiS. ShettyJ.K. ShirkoohiR. ShobeiriP. MalleshappaS.S.K. SilvaD.A.S. JulianS.G. SinghA.D. SinghJ.A. SirajM.S. SivandzadehG.R. SkryabinV.Y. SkryabinaA.A. SoceaB. SolmiM. ZangbarS.M.S. SongS. SzerencsésV. SzócskaM. SeisdedosT.R. TabibianE. TaheriM. TaheriAbkenarY. TaherkhaniA. TalaatI.M. TanK-K. TbakhiA. TesfayeB. TiyuriA. TollosaD.N. TouvierM. TranB.X. TusaB.S. UllahI. UllahS. VacanteM. Valadan TahbazS. VerouxM. VoB. VosT. WangC. WestermanR. WoldemariamM. JabbariY.S.H. YangL. YazdanpanahF. YuC. YuceD. YunusaI. ZadnikV. ZahirM. ZareI. ZhangZ-J. ZoladlM. Global, regional, and national burden of colorectal cancer and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019.Lancet Gastroenterol. Hepatol.20227762764710.1016/S2468‑1253(22)00044‑935397795
    [Google Scholar]
  44. ZhaoH. MingT. TangS. RenS. YangH. LiuM. TaoQ. XuH. Wnt signaling in colorectal cancer: Pathogenic role and therapeutic target.Mol. Cancer202221114410.1186/s12943‑022‑01616‑735836256
    [Google Scholar]
  45. ProssomaritiA. PiazziG. AlquatiC. RicciardielloL. Are Wnt/β-Catenin and PI3K/AKT/mTORC1 distinct pathways in colorectal cancer?Cell. Mol. Gastroenterol. Hepatol.202010349150610.1016/j.jcmgh.2020.04.00732334125
    [Google Scholar]
  46. LeeC.C. YuC.J. PandaS.S. ChenK.C. LiangK.H. HuangW.C. WangY.S. HoP.C. WuH.C. Epithelial cell adhesion molecule (EpCAM) regulates HGFR signaling to promote colon cancer progression and metastasis.J. Transl. Med.202321153010.1186/s12967‑023‑04390‑237543570
    [Google Scholar]
  47. LiangK.H. TsoH.C. HungS.H. KuanI.I. LaiJ.K. KeF.Y. ChuangY.T. LiuI.J. WangY.P. ChenR.H. WuH.C. Extracellular domain of EpCAM enhances tumor progression through EGFR signaling in colon cancer cells.Cancer Lett.201843316517510.1016/j.canlet.2018.06.04029981429
    [Google Scholar]
  48. RenZ. LiuJ. LiJ. YaoL. Decreased lncRNA, TINCR, promotes growth of colorectal carcinoma through upregulating microRNA-31.Aging20201214142191423110.18632/aging.10343632681722
    [Google Scholar]
  49. Hepatocellular carcinoma.Nat. Rev. Dis. Primers202171710.1038/s41572‑021‑00245‑633479233
    [Google Scholar]
  50. ParikhN.D. PillaiA. Recent advances in hepatocellular carcinoma treatment.Clin. Gastroenterol. Hepatol.202119102020202410.1016/j.cgh.2021.05.04534116048
    [Google Scholar]
  51. NagarajuG.P. DariyaB. KasaP. PeelaS. El-RayesB.F. Epigenetics in hepatocellular carcinoma.Semin. Cancer Biol.202286Pt 362263210.1016/j.semcancer.2021.07.01734324953
    [Google Scholar]
  52. AnwanwanD. SinghS.K. SinghS. SaikamV. SinghR. Challenges in liver cancer and possible treatment approaches.Biochim. Biophys. Acta Rev. Cancer20201873118831410.1016/j.bbcan.2019.18831431682895
    [Google Scholar]
  53. TianF. XuJ. XueF. GuanE. XuX. TINCR expression is associated with unfavorable prognosis in patients with hepatocellular carcinoma.Biosci. Rep.2017374BSR2017030110.1042/BSR2017030128546230
    [Google Scholar]
  54. ZhangM. WengW. ZhangQ. WuY. NiS. TanC. XuM. SunH. LiuC. WeiP. DuX. The lncRNA NEAT1 activates Wnt/β-catenin signaling and promotes colorectal cancer progression via interacting with DDX5.J. Hematol. Oncol.201811111310.1186/s13045‑018‑0656‑730185232
    [Google Scholar]
  55. NyamaoR.M. WuJ. YuL. XiaoX. ZhangF.M. Roles of DDX5 in the tumorigenesis, proliferation, differentiation, metastasis and pathway regulation of human malignancies.Biochim. Biophys. Acta Rev. Cancer201918711859810.1016/j.bbcan.2018.11.00330419318
    [Google Scholar]
  56. ZhangT. YangX. XuW. WangJ. WuD. HongZ. YuanS. ZengZ. JiaX. LuS. SafadiR. HanS. YangZ. NeckersL.M. LiangpunsakulS. ZhouW. LuY. Heat shock protein 90 promotes RNA helicase DDX5 accumulation and exacerbates hepatocellular carcinoma by inhibiting autophagy.Cancer Biol. Med.202118369370410.20892/j.issn.2095‑3941.2020.026233764710
    [Google Scholar]
  57. ZhaoH. XieZ. TangG. WeiS. ChenG. Knockdown of terminal differentiation induced ncRNA (TINCR) suppresses proliferation and invasion in hepatocellular carcinoma by targeting the miR-218-5p/DEAD-box helicase 5 (DDX5) axis.J. Cell. Physiol.2020235106990700210.1002/jcp.2959531994189
    [Google Scholar]
  58. BaekM. KimM. LimJ.S. MoralesL.D. HernandezJ. MummidiS. BlangeroW.S. JangI.S. TsinA.T. KimD.J. Epidermal-specific deletion of TC-PTP promotes UVB-induced epidermal cell survival through the regulation of Flk-1/JNK signaling.Cell Death Dis.20189773010.1038/s41419‑018‑0781‑929955047
    [Google Scholar]
  59. ZouS. TongQ. LiuB. HuangW. TianY. FuX. Targeting STAT3 in cancer immunotherapy.Mol. Cancer202019114510.1186/s12943‑020‑01258‑732972405
    [Google Scholar]
  60. TangC. FengW. BaoY. DuH. Long non-coding RNA TINCR promotes hepatocellular carcinoma proliferation and invasion via STAT3 signaling by direct interacting with T-cell protein tyrosine phosphatase (TCPTP).Bioengineered20211212119213110.1080/21655979.2021.193033634057016
    [Google Scholar]
  61. TangC. YuH. ZhengY. FengW. ShenJ. YangD-H. lncRNA TINCR regulates proliferation and invasion of hepatocellular carcinoma cells by regulating the miR-375/ATG7 axis.J. Oncol.2022202211110.1155/2022/813240336157234
    [Google Scholar]
  62. MeiJ. LinW. LiS. TangY. YeZ. LuL. WenY. KanA. ZouJ. YuC. WeiW. GuoR. Long noncoding RNA TINCR facilitates hepatocellular carcinoma progression and dampens chemosensitivity to oxaliplatin by regulating the miR-195-3p/ST6GAL1/NF-κB pathway.J. Exp. Clin. Cancer Res.2022411510.1186/s13046‑021‑02197‑x34980201
    [Google Scholar]
  63. LeeT.K.W. GuanX.Y. MaS. Cancer stem cells in hepatocellular carcinoma - from origin to clinical implications.Nat. Rev. Gastroenterol. Hepatol.2022191264410.1038/s41575‑021‑00508‑334504325
    [Google Scholar]
  64. ArnoldM. SinghD. LaversanneM. VignatJ. VaccarellaS. MeheusF. CustA.E. de VriesE. WhitemanD.C. BrayF. Global burden of cutaneous melanoma in 2020 and projections to 2040.JAMA Dermatol.2022158549550310.1001/jamadermatol.2022.016035353115
    [Google Scholar]
  65. MelixetianM. BossiD. MihailovichM. PunziS. BarozziI. MarocchiF. CuomoA. BonaldiT. TestaG. MarineJ.C. LeucciE. MinucciS. PelicciP.G. LanfranconeL. Long non-coding RNA TINCR suppresses metastatic melanoma dissemination by preventing ATF4 translation.EMBO Rep.2021223e5085210.15252/embr.20205085233586907
    [Google Scholar]
  66. HerzogS.K. FuquaS.A.W. ESR1 mutations and therapeutic resistance in metastatic breast cancer: Progress and remaining challenges.Br. J. Cancer2022126217418610.1038/s41416‑021‑01564‑x34621045
    [Google Scholar]
  67. WangQ. LiG. MaX. LiuL. LiuJ. YinY. LiH. ChenY. ZhangX. ZhangL. SunL. AiJ. XuS. LncRNA TINCR impairs the efficacy of immunotherapy against breast cancer by recruiting DNMT1 and downregulating MiR-199a-5p via the STAT1–TINCR-USP20-PD-L1 axis.Cell Death Dis.20231427610.1038/s41419‑023‑05609‑236725842
    [Google Scholar]
  68. WanW. AoX. ChenQ. YuY. AoL. XingW. GuoW. WuX. PuC. HuX. LiZ. YaoM. LuoD. XuX. METTL3/IGF2BP3 axis inhibits tumor immune surveillance by upregulating N6-methyladenosine modification of PD-L1 mRNA in breast cancer.Mol. Cancer20222116010.1186/s12943‑021‑01447‑y35197058
    [Google Scholar]
  69. WongK.K. DNMT1: A key drug target in triple-negative breast cancer.Semin. Cancer Biol.20217219821310.1016/j.semcancer.2020.05.01032461152
    [Google Scholar]
  70. LiW. ShenM. JiangY.Z. ZhangR. ZhengH. WeiY. ShaoZ.M. KangY. Deubiquitinase USP20 promotes breast cancer metastasis by stabilizing SNAI2.Genes Dev.20203419-201310131510.1101/gad.339804.12032943575
    [Google Scholar]
  71. YaoJ. GaoR. LuoM. LiD. GuoL. YuZ. XiongF. WeiC. WuB. XuZ. ZhangD. WangJ. WangL. Exosomal LINC00460/miR-503-5p/ANLN positive feedback loop aggravates pancreatic cancer progression through regulating T cell–mediated cytotoxicity and PD-1 checkpoint.Cancer Cell Int.202222139010.1186/s12935‑022‑02741‑536482354
    [Google Scholar]
  72. YangR. DuY. ZhangM. LiuY. FengH. LiuR. YangB. XiaoJ. HeP. NiuF. Multi-omics analysis reveals interferon-stimulated gene OAS1 as a prognostic and immunological biomarker in pan-cancer.Front. Immunol.202314124973110.3389/fimmu.2023.124973137928544
    [Google Scholar]
  73. TangL.L. ChenY.P. ChenC.B. ChenM.Y. ChenN.Y. ChenX.Z. DuX.J. FangW.F. FengM. GaoJ. HanF. HeX. HuC.S. HuD. HuG-Y. JiangH. JiangW. JinF. LangJ-Y. LiJ-G. LinS-J. LiuX. LiuQ-F. MaL. MaiH-Q. QinJ-Y. ShenL-F. SunY. WangP-G. WangR-S. WangR-Z. WangX-S. WangY. WuH. XiaY-F. XiaoS-W. YangK-Y. YiJ-L. ZhuX-D. MaJ. The chinese society of clinical oncology (CSCO) clinical guidelines for the diagnosis and treatment of nasopharyngeal carcinoma.Cancer Commun.202141111195122710.1002/cac2.12218
    [Google Scholar]
  74. LeeA.W.M. NgW.T. ChanJ.Y.W. CorryJ. MäkitieA. MendenhallW.M. RinaldoA. RodrigoJ.P. SabaN.F. StrojanP. SuárezC. VermorkenJ.B. YomS.S. FerlitoA. Management of locally recurrent nasopharyngeal carcinoma.Cancer Treat. Rev.20197910189010.1016/j.ctrv.2019.10189031470314
    [Google Scholar]
  75. XiangW. LvH. XingF. SunX. MaY. WuL. LvG. ZongQ. WangL. WuZ. FengQ. YangW. WangH. Inhibition of ACLY overcomes cancer immunotherapy resistance via polyunsaturated fatty acids peroxidation and cGAS-STING activation.Sci. Adv.2023949eadi246510.1126/sciadv.adi246538055816
    [Google Scholar]
  76. GuertinD.A. WellenK.E. Acetyl-CoA metabolism in cancer.Nat. Rev. Cancer202323315617210.1038/s41568‑022‑00543‑536658431
    [Google Scholar]
  77. Adorno-CruzV. HoffmannA.D. LiuX. DashzevegN.K. TaftafR. WrayB. KeriR.A. LiuH. ITGA2 promotes expression of ACLY and CCND1 in enhancing breast cancer stemness and metastasis.Genes Dis.20218449350810.1016/j.gendis.2020.01.01534179312
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673290217240513093711
Loading
/content/journals/cmc/10.2174/0109298673290217240513093711
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test