Skip to content
2000
Volume 32, Issue 31
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Cardiovascular Diseases (CVDs) are responsible for the highest number of deaths and disabilities globally. Although numerous therapeutic options exist for treating CVDs, most traditional strategies have proven ineffective in halting or significantly slowing disease progression, often leading to unfavorable side effects. Using nanocarriers represents an innovative strategy for treating CVD, enabling the personalized delivery of medications to precise locations within the cardiovascular system. Despite significant advancements in pharmacological treatments, challenges persist in effectively administering drugs to the CV system. Employing nanocarriers represents an innovative strategy for treating CVD, enabling the tailored administration of medications to precise locations within the cardiovascular system. Various studies have determined the future outlook of nanomedicines for clinical applications as nanocarrier design continues to improve, leading to enhanced drug delivery and treatment outcomes. The article focuses on the delivery systems of drugs that are effective strategies for treating cardiovascular diseases. This manuscript also seeks to explore new possibilities for how the emerging concept of nanotherapeutics could revolutionize our traditional diagnostic and treatment methods in the coming years.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673319981241021063524
2024-11-07
2025-10-25
Loading full text...

Full text loading...

References

  1. YangP. RenJ. YangL. Nanoparticles in the new era of cardiovascular therapeutics: Challenges and opportunities.Int. J. Mol. Sci.2023246520510.3390/ijms2406520536982284
    [Google Scholar]
  2. TsaoC.W. AdayA.W. AlmarzooqZ.I. AlonsoA. BeatonA.Z. BittencourtM.S. BoehmeA.K. BuxtonA.E. CarsonA.P. Commodore-MensahY. ElkindM.S.V. EvensonK.R. Eze-NliamC. FergusonJ.F. GenerosoG. HoJ.E. KalaniR. KhanS.S. KisselaB.M. KnutsonK.L. LevineD.A. LewisT.T. LiuJ. LoopM.S. MaJ. MussolinoM.E. NavaneethanS.D. PerakA.M. PoudelR. Rezk-HannaM. RothG.A. SchroederE.B. ShahS.H. ThackerE.L. VanWagnerL.B. ViraniS.S. VoecksJ.H. WangN.Y. YaffeK. MartinS.S. Heart disease and stroke statistics—2022 update: A report from the American heart association.Circulation20221458e153e63910.1161/CIR.000000000000105235078371
    [Google Scholar]
  3. RothG.A. MensahG.A. JohnsonC.O. AddoloratoG. AmmiratiE. BaddourL.M. BarengoN.C. BeatonA.Z. BenjaminE.J. BenzigerC.P. BonnyA. BrauerM. BrodmannM. CahillT.J. CarapetisJ. CatapanoA.L. ChughS.S. CooperL.T. CoreshJ. CriquiM. DeCleeneN. EagleK.A. Emmons-BellS. FeiginV.L. Fernández-SolàJ. FowkesG. GakidouE. GrundyS.M. HeF.J. HowardG. HuF. InkerL. KarthikeyanG. KassebaumN. KoroshetzW. LavieC. Lloyd-JonesD. LuH.S. MirijelloA. TemesgenA.M. MokdadA. MoranA.E. MuntnerP. NarulaJ. NealB. NtsekheM. Moraes de OliveiraG. OttoC. OwolabiM. PrattM. RajagopalanS. ReitsmaM. RibeiroA.L.P. RigottiN. RodgersA. SableC. ShakilS. Sliwa-HahnleK. StarkB. SundströmJ. TimpelP. TleyjehI.M. ValgimigliM. VosT. WheltonP.K. YacoubM. ZuhlkeL. MurrayC. FusterV. RothG.A. MensahG.A. JohnsonC.O. AddoloratoG. AmmiratiE. BaddourL.M. BarengoN.C. BeatonA. BenjaminE.J. BenzigerC.P. BonnyA. BrauerM. BrodmannM. CahillT.J. CarapetisJ.R. CatapanoA.L. ChughS. CooperL.T. CoreshJ. CriquiM.H. DeCleeneN.K. EagleK.A. Emmons-BellS. FeiginV.L. Fernández-SolaJ. FowkesF.G.R. GakidouE. GrundyS.M. HeF.J. HowardG. HuF. InkerL. KarthikeyanG. KassebaumN.J. KoroshetzW.J. LavieC. Lloyd-JonesD. LuH.S. MirijelloA. MisganawA.T. MokdadA.H. MoranA.E. MuntnerP. NarulaJ. NealB. NtsekheM. OliveiraG.M.M. OttoC.M. OwolabiM.O. PrattM. RajagopalanS. ReitsmaM.B. RibeiroA.L.P. RigottiN.A. RodgersA. SableC.A. ShakilS.S. SliwaK. StarkB.A. SundströmJ. TimpelP. TleyjehI.I. ValgimigliM. VosT. WheltonP.K. YacoubM. ZuhlkeL.J. Abbasi-KangevariM. AbdiA. AbediA. AboyansV. AbrhaW.A. Abu-GharbiehE. AbushoukA.I. AcharyaD. AdairT. AdebayoO.M. AdemiZ. AdvaniS.M. AfshariK. AfshinA. AgarwalG. AgasthiP. AhmadS. AhmadiS. AhmedM.B. AjiB. AkaluY. Akande-SholabiW. AkliluA. AkunnaC.J. AlahdabF. Al-EyadhyA. AlhabibK.F. AlifS.M. AlipourV. AljunidS.M. AllaF. Almasi-HashianiA. AlmustanyirS. Al-RaddadiR.M. AmegahA.K. AminiS. AminorroayaA. AmuH. AmugsiD.A. AncuceanuR. AnderliniD. AndreiT. AndreiC.L. Ansari-MoghaddamA. AntenehZ.A. AntonazzoI.C. AntonyB. AnwerR. AppiahL.T. ArablooJ. ÄrnlövJ. ArtantiK.D. AtaroZ. AusloosM. Avila-BurgosL. AwanA.T. AwokeM.A. AyeleH.T. AyzaM.A. AzariS. BD.B. BaheiraeiN. BaigA.A. BakhtiariA. BanachM. BanikP.C. BaptistaE.A. BarbozaM.A. BaruaL. BasuS. BediN. BéjotY. BennettD.A. BensenorI.M. BermanA.E. BezabihY.M. BhagavathulaA.S. BhaskarS. BhattacharyyaK. BijaniA. BikbovB. BirhanuM.M. BoloorA. BrantL.C. BrennerH. BrikoN.I. ButtZ.A. Caetano dos SantosF.L. CahillL.E. Cahuana-HurtadoL. CámeraL.A. Campos-NonatoI.R. Cantu-BritoC. CarJ. CarreroJ.J. CarvalhoF. Castañeda-OrjuelaC.A. Catalá-LópezF. CerinE. CharanJ. ChattuV.K. ChenS. ChinK.L. ChoiJ-Y.J. ChuD-T. ChungS-C. CirilloM. CoffeyS. ContiS. CostaV.M. CundiffD.K. DadrasO. DagnewB. DaiX. DamascenoA.A.M. DandonaL. DandonaR. DavletovK. De la Cruz-GóngoraV. De la HozF.P. De NeveJ-W. Denova-GutiérrezE. Derbew MollaM. DersehB.T. DesaiR. DeuschlG. DharmaratneS.D. DhimalM. DhunganaR.R. DianatinasabM. DiazD. DjalaliniaS. DokovaK. DouiriA. DuncanB.B. DuraesA.R. EaganA.W. EbtehajS. EftekhariA. EftekharzadehS. EkholuenetaleM. El NahasN. ElgendyI.Y. ElhadiM. El-JaafaryS.I. EsteghamatiS. EtissoA.E. EyawoO. FadhilI. FaraonE.J.A. FarisP.S. FarwatiM. FarzadfarF. FernandesE. Fernandez PrendesC. FerraraP. FilipI. FischerF. FloodD. FukumotoT. GadM.M. GaidhaneS. GanjiM. GargJ. GebreA.K. GebregiorgisB.G. GebregzabiherK.Z. GebremeskelG.G. GetacherL. ObsaA.G. GhajarA. GhashghaeeA. GhithN. GiampaoliS. GilaniS.A. GillP.S. GillumR.F. GlushkovaE.V. GnedovskayaE.V. GolechhaM. GonfaK.B. GoudarzianA.H. GoulartA.C. GuadamuzJ.S. GuhaA. GuoY. GuptaR. HachinskiV. Hafezi-NejadN. HaileT.G. HamadehR.R. HamidiS. HankeyG.J. HargonoA. HartonoR.K. HashemianM. HashiA. HassanS. HassenH.Y. HavmoellerR.J. HayS.I. HayatK. HeidariG. HerteliuC. HollaR. HosseiniM. HosseinzadehM. HostiucM. HostiucS. HousehM. HuangJ. HumayunA. IavicoliI. IbenemeC.U. IbitoyeS.E. IlesanmiO.S. IlicI.M. IlicM.D. IqbalU. IrvaniS.S.N. IslamS.M.S. IslamR.M. IsoH. IwagamiM. JainV. JavaheriT. JayapalS.K. JayaramS. JayawardenaR. JeemonP. JhaR.P. JonasJ.B. JonnagaddalaJ. JoukarF. JozwiakJ.J. JürissonM. KabirA. KahlonT. KalaniR. KalhorR. KamathA. KamelI. KandelH. KandelA. KarchA. KasaA.S. KatotoP.D.M.C. KayodeG.A. KhaderY.S. KhammarniaM. KhanM.S. KhanM.N. KhanM. KhanE.A. KhatabK. KibriaG.M.A. KimY.J. KimG.R. KimokotiR.W. KisaS. KisaA. KivimäkiM. KolteD. KoolivandA. KorshunovV.A. Koulmane LaxminarayanaS.L. KoyanagiA. KrishanK. KrishnamoorthyV. Kuate DefoB. Kucuk BicerB. KulkarniV. KumarG.A. KumarN. KurmiO.P. KusumaD. KwanG.F. La VecchiaC. LaceyB. LallukkaT. LanQ. LasradoS. LassiZ.S. LauriolaP. LawrenceW.R. LaxmaiahA. LeGrandK.E. LiM-C. LiB. LiS. LimS.S. LimL-L. LinH. LinZ. LinR-T. LiuX. LopezA.D. LorkowskiS. LotufoP.A. LugoA. MN.K. MadottoF. MahmoudiM. MajeedA. MalekzadehR. MalikA.A. MamunA.A. ManafiN. MansourniaM.A. MantovaniL.G. MartiniS. MathurM.R. MazzagliaG. MehataS. MehndirattaM.M. MeierT. MenezesR.G. MeretojaA. MestrovicT. MiazgowskiB. MiazgowskiT. MichalekI.M. MillerT.R. MirrakhimovE.M. MirzaeiH. MoazenB. MoghadaszadehM. MohammadY. MohammadD.K. MohammedS. MohammedM.A. MokhayeriY. MolokhiaM. MontasirA.A. MoradiG. MoradzadehR. MoragaP. MorawskaL. Moreno VelásquezI. MorzeJ. MubarikS. MuruetW. MusaK.I. NagarajanA.J. NaliniM. NangiaV. NaqviA.A. Narasimha SwamyS. NascimentoB.R. NayakV.C. NazariJ. NazarzadehM. NegoiR.I. Neupane KandelS. NguyenH.L.T. NixonM.R. NorrvingB. NoubiapJ.J. NoutheB.E. NowakC. OdukoyaO.O. OgboF.A. OlagunjuA.T. OrruH. OrtizA. OstroffS.M. PadubidriJ.R. PalladinoR. PanaA. Panda-JonasS. ParekhU. ParkE-C. ParviziM. Pashazadeh KanF. PatelU.K. PathakM. PaudelR. PepitoV.C.F. PerianayagamA. PericoN. PhamH.Q. PilgrimT. PiradovM.A. PishgarF. PodderV. PolibinR.V. PourshamsA. PribadiD.R.A. RabieeN. RabieeM. RadfarA. RafieiA. RahimF. Rahimi-MovagharV. Ur RahmanM.H. RahmanM.A. RahmaniA.M. RakovacI. RamP. RamalingamS. RanaJ. RanasingheP. RaoS.J. RathiP. RawalL. RawasiaW.F. RawassizadehR. RemuzziG. RenzahoA.M.N. RezapourA. RiahiS.M. Roberts-ThomsonR.L. RoeverL. RohloffP. RomoliM. RoshandelG. RwegereraG.M. SaadatagahS. Saber-AyadM.M. SabourS. SaccoS. SadeghiM. Saeedi MoghaddamS. SafariS. SahebkarA. SalehiS. SalimzadehH. SamaeiM. SamyA.M. SantosI.S. Santric-MilicevicM.M. SarrafzadeganN. SarveazadA. SathishT. SawhneyM. SaylanM. SchmidtM.I. SchutteA.E. SenthilkumaranS. SepanlouS.G. ShaF. ShahabiS. ShahidI. ShaikhM.A. ShamaliM. ShamsizadehM. ShawonM.S.R. SheikhA. ShigematsuM. ShinM-J. ShinJ.I. ShiriR. ShiueI. ShuvalK. SiabaniS. SiddiqiT.J. SilvaD.A.S. SinghJ.A. MtechA.S. SkryabinV.Y. SkryabinaA.A. SoheiliA. SpurlockE.E. StockfeltL. StorteckyS. StrangesS. Suliankatchi AbdulkaderR. TadbiriH. TadesseE.G. TadesseD.B. TajdiniM. TariqujjamanM. TeklehaimanotB.F. TemsahM-H. TesemaA.K. ThakurB. ThankappanK.R. ThaparR. ThriftA.G. TimalsinaB. TonelliM. TouvierM. Tovani-PaloneM.R. TripathiA. TripathyJ.P. TruelsenT.C. TsegayG.M. TsegayeG.W. TsilimparisN. TusaB.S. TyrovolasS. UmapathiK.K. UnimB. UnnikrishnanB. UsmanM.S. VaduganathanM. ValdezP.R. VasankariT.J. VelazquezD.Z. VenketasubramanianN. VuG.T. VujcicI.S. WaheedY. WangY. WangF. WeiJ. WeintraubR.G. WeldemariamA.H. WestermanR. WinklerA.S. WiysongeC.S. WolfeC.D.A. WubishetB.L. XuG. YadollahpourA. YamagishiK. YanL.L. YandrapalliS. YanoY. YatsuyaH. YeheyisT.Y. YeshawY. YilgwanC.S. YonemotoN. YuC. YusefzadehH. ZachariahG. ZamanS.B. ZamanM.S. ZamanianM. ZandR. ZandifarA. ZarghiA. ZastrozhinM.S. ZastrozhinaA. ZhangZ-J. ZhangY. ZhangW. ZhongC. ZouZ. ZunigaY.M.H. MurrayC.J.L. FusterV. Global burden of cardiovascular diseases and risk factors, 1990–2019.J. Am. Coll. Cardiol.202076252982302110.1016/j.jacc.2020.11.01033309175
    [Google Scholar]
  4. ZhuC. MaJ. JiZ. ShenJ. WangQ. Recent advances of cell membrane coated nanoparticles in treating cardiovascular disorders.Molecules20212611342810.3390/molecules2611342834198794
    [Google Scholar]
  5. RenJ. WuN.N. WangS. SowersJ.R. ZhangY. Obesity cardiomyopathy: Evidence, mechanisms, and therapeutic implications.Physiol. Rev.202110141745180710.1152/physrev.00030.202033949876
    [Google Scholar]
  6. MannersN. PriyaV. MehataA. RawatM. MohanS. MakeenH. AlbrattyM. AlbarratiA. MerayaA. MuthuM. Theranostic nanomedicines for the treatment of cardiovascular and related diseases: Current strategies and future perspectives.Pharmaceuticals202215444110.3390/ph1504044135455438
    [Google Scholar]
  7. KimM. SahuA. HwangY. KimG.B. NamG.H. KimI.S. Chan KwonI. TaeG. Targeted delivery of anti-inflammatory cytokine by nanocarrier reduces atherosclerosis in Apo E−/- mice.Biomaterials202022611955010.1016/j.biomaterials.2019.11955031645012
    [Google Scholar]
  8. de Castro LeãoM. Raffin PohlmannA. de Cristo Soares AlvesA. Helena Poliselli FarskyS. Klimuk UchiyamaM. ArakiK. SandriS. Stanisçuaski GuterresS. Alves CastroI. Docosahexaenoic acid nanoencapsulated with anti-PECAM-1 as co-therapy for atherosclerosis regression.Eur. J. Pharm. Biopharm.20211599910710.1016/j.ejpb.2020.12.01633358940
    [Google Scholar]
  9. MogB. AsaseC. ChaplinA. GaoH. RajagopalanS. MaiseyeuA. Nano-antagonist alleviates inflammation and allows for MRI of atherosclerosis.Nanotheranostics20193434235510.7150/ntno.3739131723548
    [Google Scholar]
  10. JiX. MengY. WangQ. TongT. LiuZ. LinJ. LiB. WeiY. YouX. LeiY. SongM. WangL. GuoY. QiuY. ChenZ. MaiB. XieS. WuJ. CaoN. Cysteine-based redox-responsive nanoparticles for fibroblast-targeted drug delivery in the treatment of myocardial infarction.ACS Nano20231765421543410.1021/acsnano.2c1004236929948
    [Google Scholar]
  11. OmidianH. BabanejadN. CubedduL.X. Nanosystems in cardiovascular medicine: Advancements, applications, and future perspectives.Pharmaceutics2023157193510.3390/pharmaceutics1507193537514121
    [Google Scholar]
  12. FloreaA. SiglJ.P. MorgenrothA. VoggA. SahnounS. WinzO.H. BuceriusJ. SchurgersL.J. MottaghyF.M. Sodium [18F]fluoride pet can efficiently monitor in vivo atherosclerotic plaque calcification progression and treatment.Cells202110227510.3390/cells1002027533573188
    [Google Scholar]
  13. NaghibS.M. ZareY. RheeK.Y. A facile and simple approach to synthesis and characterization of methacrylated graphene oxide nanostructured polyaniline nanocomposites.Nanotechnol. Rev.202091536010.1515/ntrev‑2020‑0005
    [Google Scholar]
  14. Gooneh-FarahaniS. Naimi-JamalM.R. NaghibS.M. Stimuli-responsive graphene-incorporated multifunctional chitosan for drug delivery applications: A review.Expert Opin. Drug Deliv.2019161799910.1080/17425247.2019.155625730514124
    [Google Scholar]
  15. SmithB.R. EdelmanE.R. Nanomedicines for cardiovascular disease.Nat. Cardiovasc. Res.20232435136710.1038/s44161‑023‑00232‑y39195953
    [Google Scholar]
  16. ChenJ. ZhaoQ. PengJ. YangX. YuD. ZhaoW. Antibacterial and mechanical properties of reduced graphene-silver nanoparticle nanocomposite modified glass ionomer cements.J. Dent.20209610333210.1016/j.jdent.2020.10333232283122
    [Google Scholar]
  17. ZhangJ. WangY. BaoC. LiuT. LiS. HuangJ. WanY. LiJ. Curcumin-loaded PEG-PDLLA nanoparticles for attenuating palmitate-induced oxidative stress and cardiomyocyte apoptosis through AMPK pathway.Int. J. Mol. Med.201944267268210.3892/ijmm.2019.422831173176
    [Google Scholar]
  18. LuoB. ZhangH. LiuX. RaoR. WuY. LiuW. Novel DiR and SPIO nanoparticles embedded PEG-PLGA nanobubbles as a multimodalimaging contrast agent.Biomed. Mater. Eng.201526s1Suppl. 1S911S91610.3233/BME‑15138426406092
    [Google Scholar]
  19. SunY. LuY. YinL. LiuZ. The roles of nanoparticles in stem cell-based therapy for cardiovascular disease.Front. Bioeng. Biotechnol.2020894710.3389/fbioe.2020.0094732923434
    [Google Scholar]
  20. HuangJ. WangD. HuangL.H. HuangH. Roles of reconstituted high-density lipoprotein nanoparticles in cardiovascular disease: A new paradigm for drug discovery.Int. J. Mol. Sci.202021373910.3390/ijms2103073931979310
    [Google Scholar]
  21. ModakM. FreyM.A. YiS. LiuY. ScottE.A. Employment of targeted nanoparticles for imaging of cellular processes in cardiovascular disease.Curr. Opin. Biotechnol.202066596810.1016/j.copbio.2020.06.00332682272
    [Google Scholar]
  22. SabirF. BaraniM. MukhtarM. RahdarA. CucchiariniM. ZafarM.N. BehlT. BungauS. Nanodiagnosis and nanotreatment of cardiovascular diseases: An overview.Chemosensors2021946710.3390/chemosensors9040067
    [Google Scholar]
  23. KhizarS. Introduction to stimuli-responsive materials and their biomedical applications.In Stimuli-Responsive Materials for Biomedical Applications.American Chemical Society202313010.1021/bk‑2023‑1436.ch001
    [Google Scholar]
  24. PawarV. MaskeP. KhanA. GhoshA. KeshariR. BhattM. SrivastavaR. Responsive nanostructure for targeted drug delivery.J. Nanotheranost.202341558510.3390/jnt4010004
    [Google Scholar]
  25. KangarshahiB.M. NaghibS.M. Nanogenosensors based on aptamers and peptides for bioelectrochemical cancer detection: An overview of recent advances in emerging materials and technologies.Dis. Appl. Sci.2024624710.1007/s42452‑024‑05681‑z
    [Google Scholar]
  26. NaghibS.M. AhmadiB. MozafariM.R. Stimuli-sensitive chitosan-based nanosystems-immobilized nucleic acids for gene therapy in breast cancer and hepatocellular carcinoma.Curr. Top. Med. Chem.202424171464148910.2174/011568026629317324050605443938752630
    [Google Scholar]
  27. GarshasbiH.R. NaghibS.M. Smart stimuli-responsive alginate nanogels for drug delivery systems and cancer therapy: A review.Curr. Pharm. Des.202329443546356210.2174/011381612828380623121107303138115614
    [Google Scholar]
  28. MatiniA. NaghibS.M. MozafariM.R. Quantum dots in cancer theranostics: A thorough review of recent advancements in bioimaging, tracking, and therapy across various cancer types.Curr. Pharm. Biotechnol.20252681120114210.2174/011389201029416324040715384238644717
    [Google Scholar]
  29. MercyD.J. HariniK. MadhumithaS. AnithaC. IswariyaJ. GirigoswamiK. GirigoswamiA. pH-responsive polymeric nanostructures for cancer theranostics.J. Meta. Mater. Miner.202333211510.55713/jmmm.v33i2.1609
    [Google Scholar]
  30. FelberA.E. DufresneM.H. LerouxJ.C. pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates.Adv. Drug Deliv. Rev.2012641197999210.1016/j.addr.2011.09.00621996056
    [Google Scholar]
  31. SchmaljohannD. Thermo- and pH-responsive polymers in drug delivery.Adv. Drug Deliv. Rev.200658151655167010.1016/j.addr.2006.09.02017125884
    [Google Scholar]
  32. López RuizA. RamirezA. McEnnisK. Single and multiple stimuli-responsive polymer particles for controlled drug delivery.Pharmaceutics202214242110.3390/pharmaceutics1402042135214153
    [Google Scholar]
  33. KamalyN. YameenB. WuJ. FarokhzadO.C. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release.Chem. Rev.201611642602266310.1021/acs.chemrev.5b0034626854975
    [Google Scholar]
  34. FangL. FangT. LiuX. NiY. LuC. XuZ. Precise stimulation of near-infrared light responsive shape-memory polymer composites using upconversion particles with photothermal capability.Compos. Sci. Technol.201715219019710.1016/j.compscitech.2017.09.021
    [Google Scholar]
  35. Alvarez-LorenzoC. ConcheiroA. From drug dosage forms to intelligent drug-delivery systems: a change of paradigm.Smart materials for drug delivery.The Royal Society of Chemistry201313210.1039/9781849736800‑00001
    [Google Scholar]
  36. LiuG. LovellJ.F. ZhangL. ZhangY. Stimulus-responsive nanomedicines for disease diagnosis and treatment.Int. J. Mol. Sci.20202117638010.3390/ijms2117638032887466
    [Google Scholar]
  37. DingX. HeidenP.A. Recent developments in molecularly imprinted nanoparticles by surface imprinting techniques.Macromol. Mater. Eng.2014299326828210.1002/mame.201300160
    [Google Scholar]
  38. IdilN. Chapter 10 - molecular imprinting-based sensing platforms for recognition of microorganisms.In molecular imprinting for nanosensors and other sensing applications DenizliA. Elsevier2021255281
    [Google Scholar]
  39. ZhangY. WangQ. ZhaoX. MaY. ZhangH. PanG. Molecularly imprinted nanomaterials with stimuli responsiveness for applications in biomedicine.Molecules202328391810.3390/molecules2803091836770595
    [Google Scholar]
  40. JaganathanS.K. SupriyantoE. MurugesanS. BalajiA. AsokanM.K. Biomaterials in cardiovascular research: applications and clinical implications.BioMed Res. Int.2014201411110.1155/2014/45946524895577
    [Google Scholar]
  41. RogerW. MichaelN. Chapter 14 cardiovascular biomaterials digital engineering library press.Standard handbook of biomedical engineering and designMcGraw-Hill2004111
    [Google Scholar]
  42. CurtisM.W. RussellB. Cardiac tissue engineering.J. Cardiovasc. Nurs.2009242879210.1097/01.JCN.0000343562.06614.4919125130
    [Google Scholar]
  43. NaseroleslamiM. NiriN.M. AkbarzadeI. SharifiM. AboutalebN. Simvastatin-loaded nano-niosomes confer cardioprotection against myocardial ischemia/reperfusion injury.Drug Deliv. Transl. Res.20221261423143210.1007/s13346‑021‑01019‑z34165730
    [Google Scholar]
  44. VarmaR.S. Greener and sustainable trends in synthesis of organics and nanomaterials.ACS Sustain. Chem.& Eng.20164115866587810.1021/acssuschemeng.6b0162332704457
    [Google Scholar]
  45. VarmaR.S. Biomass-derived renewable carbonaceous materials for sustainable chemical and environmental applications.ACS Sustain. Chem.& Eng.2019776458647010.1021/acssuschemeng.8b06550
    [Google Scholar]
  46. IravaniS. VarmaR.S. Advanced drug delivery micro- and nanosystems for cardiovascular diseases.Molecules20222718584310.3390/molecules2718584336144581
    [Google Scholar]
  47. PatelB. ManneR. PatelD.B. GorityalaS. PalaniappanA. KurakulaM. Chitosan as functional biomaterial for designing delivery systems in cardiac therapies.Gels20217425310.3390/gels704025334940314
    [Google Scholar]
  48. MohamedN.A. MareiI. CrovellaS. Abou-SalehH. Recent developments in nanomaterials-based drug delivery and upgrading treatment of cardiovascular diseases.Int. J. Mol. Sci.2022233140410.3390/ijms2303140435163328
    [Google Scholar]
  49. LvJ. LiuW. ShiG. ZhuF. HeX. ZhuZ. ChenH. Human cardiac extracellular matrix-chitosan-gelatin composite scaffold and its endothelialization.Exp. Ther. Med.20201921225123432010293
    [Google Scholar]
  50. KeX. LiM. WangX. LiangJ. WangX. WuS. LongM. HuC. An injectable chitosan/dextran/β-glycerophosphate hydrogel as cell delivery carrier for therapy of myocardial infarction.Carbohydr. Polym.202022911551610.1016/j.carbpol.2019.11551631826493
    [Google Scholar]
  51. ChenJ. ZhanY. WangY. HanD. TaoB. LuoZ. MaS. WangQ. LiX. FanL. LiC. DengH. CaoF. Chitosan/silk fibroin modified nanofibrous patches with mesenchymal stem cells prevent heart remodeling post-myocardial infarction in rats.Acta Biomater.20188015416810.1016/j.actbio.2018.09.01330218777
    [Google Scholar]
  52. DengB. ShenL. WuY. ShenY. DingX. LuS. JiaJ. QianJ. GeJ. Delivery of alginate-chitosan hydrogel promotes endogenous repair and preserves cardiac function in rats with myocardial infarction.J. Biomed. Mater. Res. A2015103390791810.1002/jbm.a.3523224827141
    [Google Scholar]
  53. HuangY. DingZ. Biomaterials for cardiovascular diseases.Biomedical Technology2024711410.1016/j.bmt.2024.05.001
    [Google Scholar]
  54. Jiménez-GómezC.P. CeciliaJ.A. Chitosan: A natural biopolymer with a wide and varied range of applications.Molecules20202517398110.3390/molecules2517398132882899
    [Google Scholar]
  55. HardyN. ViolaH.M. JohnstoneV.P.A. ClemonsT.D. Cserne SzappanosH. SinghR. SmithN.M. IyerK.S. HoolL.C. Nanoparticle-mediated dual delivery of an antioxidant and a peptide against the L-Type Ca2+ channel enables simultaneous reduction of cardiac ischemia-reperfusion injury.ACS Nano20159127928910.1021/nn506140425493575
    [Google Scholar]
  56. SinghS. Chapter 4 - Targeted nanotherapeutics for cardiovascular disorders.In: Impact of nanotechnologyPhDians2024107123
    [Google Scholar]
  57. ZhangJ. JiangX. WenX. XuQ. ZengH. ZhaoY. LiuM. WangZ. HuX. WangY. Bio-responsive smart polymers and biomedical applications.JPhys Mater.20192303200410.1088/2515‑7639/ab1af5
    [Google Scholar]
  58. AmaralA.J.R. PasparakisG. Stimuli responsive self-healing polymers: Gels, elastomers and membranes.Polym. Chem.20178426464648410.1039/C7PY01386H
    [Google Scholar]
  59. ChoiY.H. HanH.K. Nanomedicines: Current status and future perspectives in aspect of drug delivery and pharmacokinetics.J. Pharm. Investig.2018481436010.1007/s40005‑017‑0370‑430546919
    [Google Scholar]
  60. RöslerA. VandermeulenG.W.M. KlokH.A. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers.Adv. Drug Deliv. Rev.20015319510810.1016/S0169‑409X(01)00222‑811733119
    [Google Scholar]
  61. DavoodiP. LeeL.Y. XuQ. SunilV. SunY. SohS. WangC.H. Drug delivery systems for programmed and on-demand release.Adv. Drug Deliv. Rev.201813210413810.1016/j.addr.2018.07.00230415656
    [Google Scholar]
  62. AnselmoA.C. MitragotriS. An overview of clinical and commercial impact of drug delivery systems.J. Control. Release2014190152810.1016/j.jconrel.2014.03.05324747160
    [Google Scholar]
  63. WangJ. LiY. NieG. ZhaoY. Precise design of nanomedicines: Perspectives for cancer treatment.Natl. Sci. Rev.2019661107111010.1093/nsr/nwz01234691989
    [Google Scholar]
  64. VentolaC.L. Progress in nanomedicine: Approved and investigational nanodrugs.P&T2017421274275529234213
    [Google Scholar]
  65. StaterE.P. SonayA.Y. HartC. GrimmJ. The ancillary effects of nanoparticles and their implications for nanomedicine.Nat. Nanotechnol.202116111180119410.1038/s41565‑021‑01017‑934759355
    [Google Scholar]
  66. WuT. CuiC. HuangY. LiuY. FanC. HanX. YangY. XuZ. LiuB. FanG. LiuW. Coadministration of an adhesive conductive hydrogel patch and an injectable hydrogel to treat myocardial infarction.ACS Appl. Mater. Interfaces20201222039204810.1021/acsami.9b1790731859471
    [Google Scholar]
  67. WuT. LiuW. Functional hydrogels for the treatment of myocardial infarction.NPG Asia Mater.2022141910.1038/s41427‑021‑00330‑y
    [Google Scholar]
  68. ZhangY. ZhuD. WeiY. WuY. CuiW. LiuqinL. FanG. YangQ. WangZ. XuZ. KongD. ZengL. ZhaoQ. A collagen hydrogel loaded with HDAC7-derived peptide promotes the regeneration of infarcted myocardium with functional improvement in a rodent model.Acta Biomater.20198622323410.1016/j.actbio.2019.01.02230660010
    [Google Scholar]
  69. CarliniA.S. GaetaniR. BradenR.L. LuoC. ChristmanK.L. GianneschiN.C. Enzyme-responsive progelator cyclic peptides for minimally invasive delivery to the heart post-myocardial infarction.Nat. Commun.2019101173510.1038/s41467‑019‑09587‑y30988291
    [Google Scholar]
  70. PeñaB. LaughterM. JettS. RowlandT.J. TaylorM.R.G. MestroniL. ParkD. Injectable hydrogels for cardiac tissue engineering.Macromol. Biosci.2018186180007910.1002/mabi.20180007929733514
    [Google Scholar]
  71. PrajnamitraR.P. ChenH.C. LinC.J. ChenL.L. HsiehP.C.H. Nanotechnology approaches in tackling cardiovascular diseases.Molecules20192410201710.3390/molecules2410201731137787
    [Google Scholar]
  72. ZhangY. WuB.M. Current advances in stimuli-responsive hydrogels as smart drug delivery carriers.Gels202391083810.3390/gels910083837888411
    [Google Scholar]
  73. MauriE. GiannitelliS.M. TrombettaM. RainerA. Synthesis of nanogels: Current trends and future outlook.Gels2021723610.3390/gels702003633805279
    [Google Scholar]
  74. OishiM. NagasakiY. Stimuli-responsive smart nanogels for cancer diagnostics and therapy.Nanomedicine20105345146810.2217/nnm.10.1820394537
    [Google Scholar]
  75. PurcellB.P. BarlowS.C. PerreaultP.E. FreeburgL. DoviakH. JacobsJ. HoenesA. ZellarsK.N. KhakooA.Y. LeeT. BurdickJ.A. SpinaleF.G. Delivery of a matrix metalloproteinase-responsive hydrogel releasing TIMP-3 after myocardial infarction: effects on left ventricular remodeling.Am. J. Physiol. Heart Circ. Physiol.20183154H814H82510.1152/ajpheart.00076.201829979624
    [Google Scholar]
  76. CreemersE.E.J.M. CleutjensJ.P.M. SmitsJ.F.M. DaemenM.J.A.P. Matrix metalloproteinase inhibition after myocardial infarction: A new approach to prevent heart failure?Circ. Res.200189320121010.1161/hh1501.09439611485970
    [Google Scholar]
  77. AnH. DengX. WangF. XuP. WangN. Dendrimers as nanocarriers for the delivery of drugs obtained from natural products.Polymers20231510229210.3390/polym1510229237242865
    [Google Scholar]
  78. AbbasiE. AvalS.F. AkbarzadehA. MilaniM. NasrabadiH.T. JooS.W. HanifehpourY. Nejati-KoshkiK. Pashaei-AslR. Dendrimers: Synthesis, applications, and properties.Nanoscale Res. Lett.20149124710.1186/1556‑276X‑9‑24724994950
    [Google Scholar]
  79. GothwalA. KesharwaniP. GuptaU. KhanI. Iqbal Mohd AminM. BanerjeeS. IyerA. Dendrimers as an effective nanocarrier in cardiovascular disease.Curr. Pharm. Des.201521304519452610.2174/138161282066615082709434126311317
    [Google Scholar]
  80. YuM. JieX. XuL. ChenC. ShenW. CaoY. LianG. QiR. Recent advances in dendrimer research for cardiovascular diseases.Biomacromolecules20151692588259810.1021/acs.biomac.5b0097926310544
    [Google Scholar]
  81. BachaK. ChemottiC. MbakidiJ-P. DeleuM. BouquillonS. Dendrimers: Synthesis, encapsulation applications and specific interaction with the stratum corneum—a review.Macromol20233234337010.3390/macromol3020022
    [Google Scholar]
  82. BagleyA.F. HillS. RogersG.S. BhatiaS.N. Plasmonic photothermal heating of intraperitoneal tumors through the use of an implanted near-infrared source.ACS Nano2013798089809710.1021/nn403375723961973
    [Google Scholar]
  83. ShenM. YaoS. LiS. WuX. LiuS. YangQ. DuJ. WangJ. ZhengX. LiY. A ROS and shear stress dual-sensitive bionic system with cross-linked dendrimers for atherosclerosis therapy.Nanoscale20211347200132002710.1039/D1NR05355H34842887
    [Google Scholar]
  84. ModiH.R. WangQ. OlmsteadS.J. KhouryE.S. SahN. GuoY. GharibaniP. SharmaR. KannanR.M. KannanS. ThakorN.V. Systemic administration of dendrimer N-acetyl cysteine improves outcomes and survival following cardiac arrest.Bioeng. Transl. Med.202271e1025910.1002/btm2.1025935079634
    [Google Scholar]
  85. NamdariP. NegahdariB. EatemadiA. Synthesis, properties and biomedical applications of carbon-based quantum dots: An updated review.Biomed. Pharmacother.20178720922210.1016/j.biopha.2016.12.10828061404
    [Google Scholar]
  86. OtunK.O. AmusatS.O. BelloI.T. AbdulsalamJ. AjiboyeA.T. AdelekeA.A. AzeezS.O. Recent advances in the synthesis of various analogues of MOF-based nanomaterials: A mini-review.Inorg. Chim. Acta202253612089010.1016/j.ica.2022.120890
    [Google Scholar]
  87. SharmiladeviP. AkhtarN. HaribabuV. GirigoswamiK. ChattopadhyayS. GirigoswamiA. Excitation wavelength independent carbon-decorated ferrite nanodots for multimodal diagnosis and stimuli responsive therapy.ACS Appl. Bio Mater.2019241634164210.1021/acsabm.9b0003935026897
    [Google Scholar]
  88. PurohitD. JalwalP. ManchandaD. SainiS. VermaR. KaushikD. MittalV. KumarM. BhattacharyaT. RahmanM.H. DuttR. PandeyP. Nanocapsules: An emerging drug delivery system.Recent Pat. Nanotechnol.202317319020710.2174/187221051666622021011325635142273
    [Google Scholar]
  89. ChavesP.S. OuriqueA.F. FrankL.A. PohlmannA.R. GuterresS.S. BeckR.C.R. Carvedilol-loaded nanocapsules: Mucoadhesive properties and permeability across the sublingual mucosa.Eur. J. Pharm. Biopharm.2017114889510.1016/j.ejpb.2017.01.00728119104
    [Google Scholar]
  90. MolloyC.P. YaoY. KammounH. BonnardT. HoeferT. AltK. Tovar-LopezF. RosengartenG. RamslandP.A. van der MeerA.D. van den BergA. MurphyA.J. HagemeyerC.E. PeterK. WesteinE. Shear-sensitive nanocapsule drug release for site-specific inhibition of occlusive thrombus formation.J. Thromb. Haemost.201715597298210.1111/jth.1366628267256
    [Google Scholar]
  91. ChopraH. BibiS. MishraA.K. TirthV. YerramsettyS.V. MuraliS.V. AhmadS.U. MohantaY.K. AttiaM.S. AlgahtaniA. IslamF. HayeeA. IslamS. BaigA.A. EmranT.B. Nanomaterials: A promising therapeutic approach for cardiovascular diseases.J. Nanomater.202220221415572910.1155/2022/4155729
    [Google Scholar]
  92. SayedM.M. MousaH.M. El-AassarM.R. El-DeebN.M. GhazalyN.M. DewidarM.M. Abdal-hayA. Enhancing mechanical and biodegradation properties of polyvinyl alcohol/silk fibroin nanofibers composite patches for cardiac tissue engineering.Mater. Lett.201925512651010.1016/j.matlet.2019.126510
    [Google Scholar]
  93. TangJ.M. WangJ.N. ZhangL. ZhengF. YangJ.Y. KongX. GuoL.Y. ChenL. HuangY.Z. WanY. ChenS.Y. VEGF/SDF-1 promotes cardiac stem cell mobilization and myocardial repair in the infarcted heart.Cardiovasc. Res.201191340241110.1093/cvr/cvr05321345805
    [Google Scholar]
  94. KhanM. XuY. HuaS. JohnsonJ. BelevychA. JanssenP.M.L. GyorkeS. GuanJ. AngelosM.G. Evaluation of changes in morphology and function of human induced pluripotent stem cell derived cardiomyocytes (HiPSC-CMs) cultured on an aligned-nanofiber cardiac patch.PLoS One2015105e012633810.1371/journal.pone.012633825993466
    [Google Scholar]
  95. PokS. MyersJ.D. MadihallyS.V. JacotJ.G. A multilayered scaffold of a chitosan and gelatin hydrogel supported by a PCL core for cardiac tissue engineering.Acta Biomater.2013935630564210.1016/j.actbio.2012.10.03223128158
    [Google Scholar]
  96. DingH. WangX. ZhangS. LiuX. Applications of polymeric micelles with tumor targeted in chemotherapy.J. Nanopart. Res.20121411125410.1007/s11051‑012‑1254‑1
    [Google Scholar]
  97. YangB. LvY. ZhuJ. HanY. JiaH. ChenW. FengJ. ZhangX. ZhuoR. A pH-responsive drug nanovehicle constructed by reversible attachment of cholesterol to PEGylated poly(l-lysine) via catechol–boronic acid ester formation.Acta Biomater.20141083686369510.1016/j.actbio.2014.05.01824879311
    [Google Scholar]
  98. WangH. WangY. ChenY. JinQ. JiJ. A biomimic pH-sensitive polymeric prodrug based on polycarbonate for intracellular drug delivery.Polym. Chem.20145385486110.1039/C3PY00861D
    [Google Scholar]
  99. ShanX. MaoJ. LongM. AhmedK.S. SunC. QiuL. ChenJ. Influence of polyethylene glycol molecular weight on the anticancer drug delivery of pH-sensitive polymeric micelle.J. Appl. Polym. Sci.2019136324785410.1002/app.47854
    [Google Scholar]
  100. Fernandez-VillamarinM. Sousa-HervesA. PortoS. GuldrisN. Martínez-CostasJ. RigueraR. Fernandez-MegiaE. A dendrimer–hydrophobic interaction synergy improves the stability of polyion complex micelles.Polym. Chem.20178162528253710.1039/C7PY00304H
    [Google Scholar]
  101. ZhouJ. YuG. HuangF. Supramolecular chemotherapy based on host–guest molecular recognition: a novel strategy in the battle against cancer with a bright future.Chem. Soc. Rev.201746227021705310.1039/C6CS00898D28980674
    [Google Scholar]
  102. SongN. LouX.Y. MaL. GaoH. YangY.W. Supramolecular nanotheranostics based on pillarenes.Theranostics20199113075309310.7150/thno.3185831244942
    [Google Scholar]
  103. ZhouY. JieK. HuangF. A redox-responsive selenium- containing pillar[5]arene-based macrocyclic amphiphile: Synthesis, controllable self-assembly in water, and application in controlled release.Chem. Commun.201753598364836710.1039/C7CC04779G28702568
    [Google Scholar]
  104. TanL.L. SongN. ZhangS.X.A. LiH. WangB. YangY.W. Ca2+, pH and thermo triple-responsive mechanized Zr-based MOFs for on-command drug release in bone diseases.J. Mater. Chem. B Mater. Biol. Med.20164113514010.1039/C5TB01789K32262817
    [Google Scholar]
  105. SunY. DavisE. Nanoplatforms for targeted stimuli-responsive drug delivery: A review of platform materials and stimuli-responsive release and targeting mechanisms.Nanomaterials202111374610.3390/nano1103074633809633
    [Google Scholar]
  106. SharmiladeviP. BreghathaM. DhanavardhiniK. PriyaR. GirigoswamiK. GirigoswamiA. Efficient wormlike micelles for the controlled delivery of anticancer drugs.Nanosci. Nanotechnol. Asia202111335035610.2174/2210681210999200728115601
    [Google Scholar]
  107. LiongM. LuJ. KovochichM. XiaT. RuehmS.G. NelA.E. TamanoiF. ZinkJ.I. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery.ACS Nano20082588989610.1021/nn800072t19206485
    [Google Scholar]
  108. HungH.I. KleinO.J. PetersonS.W. RokoshS.R. OsseiranS. NowellN.H. EvansC.L. PLGA nanoparticle encapsulation reduces toxicity while retaining the therapeutic efficacy of EtNBS-PDT in vitro.Sci. Rep.2016613323410.1038/srep3323427686626
    [Google Scholar]
  109. Scafa UdrișteA. BurdușelA. NiculescuA.G. RădulescuM. GrumezescuA. Metal-based nanoparticles for cardiovascular diseases.Int. J. Mol. Sci.2024252100110.3390/ijms2502100138256075
    [Google Scholar]
  110. LiuJ. LécuyerT. SeguinJ. MignetN. SchermanD. VianaB. RichardC. Imaging and therapeutic applications of persistent luminescence nanomaterials.Adv. Drug Deliv. Rev.201913819321010.1016/j.addr.2018.10.01530414492
    [Google Scholar]
  111. ZhangC. WuW. LiR-Q. QiuW-X. ZhuangZ-N. ChengS-X. ZhangX-Z. Peptide-based multifunctional nanomaterials for tumor imaging and therapy.Adv. Funct. Mater.20182850180449210.1002/adfm.201804492
    [Google Scholar]
  112. RosenkransZ.T. FerreiraC.A. NiD. CaiW. Internally responsive nanomaterials for activatable multimodal imaging of cancer.Adv. Healthc. Mater.2021105200069010.1002/adhm.20200069032691969
    [Google Scholar]
  113. JiangW. RutherfordD. VuongT. LiuH. Nanomaterials for treating cardiovascular diseases: A review.Bioact. Mater.20172418519810.1016/j.bioactmat.2017.11.00229744429
    [Google Scholar]
  114. BaraniM. BilalM. RahdarA. ArshadR. KumarA. HamishekarH. KyzasG.Z. Nanodiagnosis and nanotreatment of colorectal cancer: An overview.J. Nanopart. Res.20212311810.1007/s11051‑020‑05129‑6
    [Google Scholar]
  115. BaraniM. BilalM. SabirF. RahdarA. KyzasG.Z. Nanotechnology in ovarian cancer: Diagnosis and treatment.Life Sci.202126611891410.1016/j.lfs.2020.11891433340527
    [Google Scholar]
  116. BaraniM. MukhtarM. RahdarA. SargaziG. ThysiadouA. KyzasG.Z. Progress in the application of nanoparticles and graphene as drug carriers and on the diagnosis of brain infections.Molecules202126118610.3390/molecules2601018633401658
    [Google Scholar]
  117. BaraniM. MukhtarM. RahdarA. SargaziS. PandeyS. KangM. Recent advances in nanotechnology-based diagnosis and treatments of human osteosarcoma.Biosensors20211125510.3390/bios1102005533672770
    [Google Scholar]
  118. GhazyE. KumarA. BaraniM. KaurI. RahdarA. BehlT. Scrutinizing the therapeutic and diagnostic potential of nanotechnology in thyroid cancer: Edifying drug targeting by nano-oncotherapeutics.J. Drug Deliv. Sci. Technol.20216110222110.1016/j.jddst.2020.102221
    [Google Scholar]
  119. MukhtarM. BilalM. RahdarA. BaraniM. ArshadR. BehlT. BriscC. BanicaF. BungauS. Nanomaterials for diagnosis and treatment of brain cancer: Recent updates.Chemosensors (Basel)20208411710.3390/chemosensors8040117
    [Google Scholar]
  120. QindeelM. BaraniM. RahdarA. ArshadR. CucchiariniM. Nanomaterials for the diagnosis and treatment of urinary tract infections.Nanomaterials (Basel)202111254610.3390/nano1102054633671511
    [Google Scholar]
  121. RahdarA. HajinezhadM.R. SargaziS. BilalM. BaraniM. KarimiP. KyzasG.Z. Biochemical effects of deferasirox and deferasirox-loaded nanomicellesin iron-intoxicated rats.Life Sci.202127011914610.1016/j.lfs.2021.11914633545199
    [Google Scholar]
  122. RahdarA. SargaziS. BaraniM. ShahrakiS. SabirF. AboudzadehM. Lignin-stabilized doxorubicin microemulsions: Synthesis, physical characterization, and in vitro assessments.Polymers (Basel)202113464110.3390/polym1304064133670009
    [Google Scholar]
  123. SabirF. How to face skin cancer with nanomaterials: A review.Biointerface Res. Appl. Chem.20211141193111955
    [Google Scholar]
  124. JanuzziJ.L.Jr MaiselA.S. SilverM. XueY. DeFilippiC. Natriuretic peptide testing for predicting adverse events following heart failure hospitalization.Congest. Heart Fail.201218s1Suppl. 1S9S1310.1111/j.1751‑7133.2012.00306.x22891803
    [Google Scholar]
  125. Al MeslmaniB.M. MahmoudG.F. BakowskyU. Development of expanded polytetrafluoroethylene cardiovascular graft platform based on immobilization of poly lactic- co -glycolic acid nanoparticles using a wet chemical modification technique.Int. J. Pharm.20175291-223824410.1016/j.ijpharm.2017.06.09128689963
    [Google Scholar]
  126. AhadianS. Davenport HuyerL. EstiliM. YeeB. SmithN. XuZ. SunY. RadisicM. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.Acta Biomater.201752819110.1016/j.actbio.2016.12.00927940161
    [Google Scholar]
  127. CichaI. AlexiouC. Cardiovascular applications of magnetic particles.J. Magn. Magn. Mater.202151816742810.1016/j.jmmm.2020.167428
    [Google Scholar]
  128. MaterónE.M. MiyazakiC.M. CarrO. JoshiN. PiccianiP.H.S. DalmaschioC.J. DavisF. ShimizuF.M. Magnetic nanoparticles in biomedical applications: A review.Appl. Surf. Sci. Adv.2021610016310.1016/j.apsadv.2021.100163
    [Google Scholar]
  129. GadS.A. Influence of Fe2O3 dopant on dielectric, optical conductivity and nonlinear optical properties of doped ZnO-polystyrene composites films.Biointerface Res. Appl. Chem.202112117017910.33263/BRIAC121.170179
    [Google Scholar]
  130. EldesoukyM.G. ShahatA. El-BindaryA. El-BindaryM.A. Description, kinetic and equilibrium studies of the adsorption of carbon dioxide in mesoporous iron oxide nanospheres.Biointerf. Res. Appl. Chem.20211211022103810.33263/BRIAC121.10221038
    [Google Scholar]
  131. Vargas-OrtízJ.R. BöhnelH.N. GonzalezC. EsquivelK. Magnetic nanoparticle behavior evaluation on cardiac tissue contractility through langendorff rat heart technique as a nanotoxicology parameter.Appl. Nanosci.20211192383239610.1007/s13204‑021‑02031‑y
    [Google Scholar]
  132. BaoX. MaoY. SiG. KangL. XuB. GuN. Iron oxide nanoparticles: A promising approach for diagnosis and treatment of cardiovascular diseases.Nano Res.20231611124531247010.1007/s12274‑023‑6158‑0
    [Google Scholar]
  133. BanikB. SurnarB. AskinsB.W. BanerjeeM. DharS. Dual-targeted synthetic nanoparticles for cardiovascular diseases.ACS Appl. Mater. Interfaces20201266852686210.1021/acsami.9b1903631886643
    [Google Scholar]
  134. SamsulkaharN.F. Biosynthesis of gold nanoparticles using strobilanthes crispa aqueous leaves extract and evaluation of its antibacterial activity.Biointerface Res. Appl. Chem.20231311610.33263/BRIAC131.063
    [Google Scholar]
  135. ChenC.C. LinY.P. WangC.W. TzengH.C. WuC.H. ChenY.C. ChenC.P. ChenL.C. WuY.C. DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation.J. Am. Chem. Soc.2006128113709371510.1021/ja057018016536544
    [Google Scholar]
  136. ChithraniB.D. ChanW.C.W. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes.Nano Lett.2007761542155010.1021/nl070363y17465586
    [Google Scholar]
  137. KarademirF. AyhanF. Antimicrobial surface functionality of PEG coated and AgNPs immobilized extracorporeal biomaterials.Biointerface Res. Appl. Chem.20211211039105210.33263/BRIAC121.10391052
    [Google Scholar]
  138. FerdousZ. BeegamS. ZaabaN.E. ElzakiO. TariqS. GreishY.E. AliB.H. NemmarA. Exacerbation of thrombotic responses to silver nanoparticles in hypertensive mouse model.Oxid. Med. Cell. Longev.2022202211010.1155/2022/207963035111278
    [Google Scholar]
  139. LiL. ZengY. LiuG. Metal-based nanoparticles for cardiovascular disease diagnosis and therapy.Particuology2023729411110.1016/j.partic.2022.03.002
    [Google Scholar]
  140. GherasimO. PuiuR.A. BîrcăA.C. BurdușelA.C. GrumezescuA.M. An updated review on silver nanoparticles in biomedicine.Nanomaterials20201011231810.3390/nano1011231833238486
    [Google Scholar]
  141. ZhangX.F. LiuZ.G. ShenW. GurunathanS. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches.Int. J. Mol. Sci.2016179153410.3390/ijms1709153427649147
    [Google Scholar]
  142. KumawatM. MadhyasthaH. SinghM. RevaprasaduN. SrinivasS.P. DaimaH.K. Double functionalized haemocompatible silver nanoparticles control cell inflammatory homeostasis.PLoS One20221710e027629610.1371/journal.pone.027629636269783
    [Google Scholar]
  143. AlmatroudiA. Silver nanoparticles: synthesis, characterisation and biomedical applications.Open Life Sci.202015181983910.1515/biol‑2020‑009433817269
    [Google Scholar]
  144. NemmarA. Al-SalamS. GreishY.E. BeegamS. ZaabaN.E. AliB.H. Impact of intratracheal administration of polyethylene glycol-coated silver nanoparticles on the heart of normotensive and hypertensive mice.Int. J. Mol. Sci.20232410889010.3390/ijms2410889037240239
    [Google Scholar]
  145. ChengY. ChenZ. YangS. LiuT. YinL. PuY. LiangG. Nanomaterials-induced toxicity on cardiac myocytes and tissues, and emerging toxicity assessment techniques.Sci. Total Environ.202180014958410.1016/j.scitotenv.2021.14958434399324
    [Google Scholar]
  146. ManickamV. PeriyasamyM. DhakshinamoorthyV. PanneerselvamL. PerumalE. Recurrent exposure to ferric oxide nanoparticles alters myocardial oxidative stress, apoptosis and necrotic markers in male mice.Chem. Biol. Interact.2017278546410.1016/j.cbi.2017.10.00328993115
    [Google Scholar]
  147. ShenY. GongS. LiJ. WangY. ZhangX. ZhengH. ZhangQ. YouJ. HuangZ. ChenY. Co-loading antioxidant N-acetylcysteine attenuates cytotoxicity of iron oxide nanoparticles in hypoxia/reoxygenation cardiomyocytes.Int. J. Nanomedicine2019146103611510.2147/IJN.S20982031447555
    [Google Scholar]
  148. WangZ. TangM. Research progress on toxicity, function, and mechanism of metal oxide nanoparticles on vascular endothelial cells.J. Appl. Toxicol.202141568370010.1002/jat.412133244813
    [Google Scholar]
  149. PrabhakaranD.A. Anand, S.; Gaziano, T.A.; Mbanya, J.-C.; Wu, Y.; Nugent, R. Disease control prioritiesCardiovascular, respiratory, and related disorders3rd Ed.Washington, DC: World Bank512
    [Google Scholar]
  150. KovacicJ.C. CastellanoJ.M. FarkouhM.E. FusterV. The relationships between cardiovascular disease and diabetes: Focus on pathogenesis.Endocrinol. Metab. Clin. North Am.2014431415710.1016/j.ecl.2013.09.00724582091
    [Google Scholar]
  151. KjeldsenS.E. Hypertension and cardiovascular risk: General aspects.Pharmacol. Res.2018129959910.1016/j.phrs.2017.11.00329127059
    [Google Scholar]
  152. Martín GiménezV.M. KassuhaD.E. ManuchaW. Nanomedicine applied to cardiovascular diseases: Latest developments.Ther. Adv. Cardiovasc. Dis.201711413314210.1177/175394471769229328198204
    [Google Scholar]
  153. KatsukiS. MatobaT. KogaJ. NakanoK. EgashiraK. Anti-inflammatory nanomedicine for cardiovascular disease.Front. Cardiovasc. Med.201748710.3389/fcvm.2017.0008729312961
    [Google Scholar]
  154. KaragkiozakiV. PappaF. ArvanitiD. MoumkasA. KonstantinouD. LogothetidisS. The melding of nanomedicine in thrombosis imaging and treatment: A review.Future Sci. OA201622FSO11310.4155/fso.16.328031960
    [Google Scholar]
  155. MolinaroR. BoadaC. Del RosalG.M. HartmanK.A. CorboC. AndrewsE.D. Toledano-FurmanN.E. CookeJ.P. TasciottiE. Vascular inflammation: A novel access route for nanomedicine.Methodist DeBakey Cardiovasc. J.201612316917410.14797/mdcj‑12‑3‑16927826372
    [Google Scholar]
  156. KhajaF.A. KooO.M.Y. ÖnyükselH. Nanomedicines for inflammatory diseases.Methods Enzymol.201250835537510.1016/B978‑0‑12‑391860‑4.00018‑522449935
    [Google Scholar]
  157. NakamuraK. MatsubaraH. AkagiS. SarashinaT. EjiriK. KawakitaN. YoshidaM. MiyoshiT. WatanabeA. NishiiN. ItoH. Nanoparticle-mediated drug delivery system for pulmonary arterial hypertension.J. Clin. Med.2017654810.3390/jcm605004828468233
    [Google Scholar]
  158. Segura-IbarraV. WuS. HassanN. Moran-GuerreroJ.A. FerrariM. GuhaA. Karmouty-QuintanaH. BlancoE. Nanotherapeutics for treatment of pulmonary arterial hypertension.Front. Physiol.2018989010.3389/fphys.2018.0089030061840
    [Google Scholar]
  159. ŞahinB. İlgünG. Risk factors of deaths related to cardiovascular diseases in World Health Organization (WHO) member countries.Health Soc. Care Community2022301738010.1111/hsc.1315632909378
    [Google Scholar]
  160. OhlsteinE.H. The grand challenges in cardiovascular drug discovery and development.Front. Pharmacol.2010112510.3389/fphar.2010.0012521811459
    [Google Scholar]
  161. SunX. JiaX. TanZ. FanD. ChenM. CuiN. LiuA. LiuD. Oral nanoformulations in cardiovascular medicine: Advances in atherosclerosis treatment.Pharmaceuticals202417791910.3390/ph1707091939065770
    [Google Scholar]
  162. RenT. MiY. WeiJ. HanX. ZhangX. ZhuQ. YueT. GaoW. NiuX. HanC. WeiB. Advances in nano-functional materials in targeted thrombolytic drug delivery.Molecules20242910232510.3390/molecules2910232538792186
    [Google Scholar]
  163. ToljanK. AshokA. LabhasetwarV. HussainM.S. Nanotechnology in stroke: New trails with smaller scales.Biomedicines202311378010.3390/biomedicines1103078036979759
    [Google Scholar]
  164. GeorgeT.A. HsuC.C. MeesonA. LundyD.J. Nanocarrier-based targeted therapies for myocardial infarction.Pharmaceutics202214593010.3390/pharmaceutics1405093035631516
    [Google Scholar]
  165. PalaR. PattnaikS. BusiS. NauliS.M. Nanomaterials as novel cardiovascular theranostics.Pharmaceutics202113334810.3390/pharmaceutics1303034833799932
    [Google Scholar]
  166. CervadoroA. PalombaR. VergaroG. CecchiR. MenichettiL. DecuzziP. EmdinM. LuinS. Targeting inflammation with nanosized drug delivery platforms in cardiovascular diseases: Immune cell modulation in atherosclerosis.Front. Bioeng. Biotechnol.2018617710.3389/fbioe.2018.0017730542650
    [Google Scholar]
  167. PengR. Macrophage-based therapies for atherosclerosis management.J. Immunol. Res.20202020813175410.1155/2020/813175432411803
    [Google Scholar]
  168. TalevJ. Iron oxide nanoparticles as imaging and therapeutic agents for atherosclerosis.In Seminars in thrombosis and hemostasisThieme Medical Publishers 333 Seventh Avenue New YorkNY 10001, USA202010.1055/s‑0039‑3400247
    [Google Scholar]
  169. AjoolabadyA. BiY. McClementsD.J. LipG.Y.H. RichardsonD.R. ReiterR.J. KlionskyD.J. RenJ. Melatonin-based therapeutics for atherosclerotic lesions and beyond: Focusing on macrophage mitophagy.Pharmacol. Res.202217610607210.1016/j.phrs.2022.10607235007709
    [Google Scholar]
  170. JiangF. ZhuY. GongC. WeiX. Atherosclerosis and nanomedicine potential: Current advances and future opportunities.Curr. Med. Chem.202027213534355410.2174/092986732666619030114395230827225
    [Google Scholar]
  171. HenriquesJ. AmaroA.M. PiedadeA.P. Understanding atherosclerosis pathophysiology: Can additive manufacturing be helpful?Polymers202315348010.3390/polym1503048036771780
    [Google Scholar]
  172. SousaA.M. AmaroA.M. PiedadeA.P. 3D printing of polymeric bioresorbable stents: A strategy to improve both cellular compatibility and mechanical properties.Polymers2022146109910.3390/polym1406109935335430
    [Google Scholar]
  173. KaragkiozakiV. LogothetidisS. PappaA.M. Nanomedicine for atherosclerosis: Molecular imaging and treatment.J. Biomed. Nanotechnol.201511219121010.1166/jbn.2015.194326349296
    [Google Scholar]
  174. ZhangY. YinY. ZhangW. LiH. WangT. YinH. SunL. SuC. ZhangK. XuH. Reactive oxygen species scavenging and inflammation mitigation enabled by biomimetic prussian blue analogues boycott atherosclerosis.J. Nanobiotechnology202119116110.1186/s12951‑021‑00897‑234059078
    [Google Scholar]
  175. ZieglerM. XuX. YapM.L. HuH. ZhangJ. PeterK. A self-assembled fluorescent nanoprobe for imaging and therapy of cardiac ischemia/reperfusion injury.Adv. Ther.201923180013310.1002/adtp.201800133
    [Google Scholar]
  176. ZhongY. QinX. WangY. QuK. LuoL. ZhangK. LiuB. ObaidE.A.M.S. WuW. WangG. “Plug and play” functionalized erythrocyte nanoplatform for target atherosclerosis management.ACS Appl. Mater. Interfaces20211329338623387310.1021/acsami.1c0782134256560
    [Google Scholar]
  177. ChenJ. ZhangX. MillicanR. CreutzmannJ.E. MartinS. JunH.W. High density lipoprotein mimicking nanoparticles for atherosclerosis.Nano Converg.202071610.1186/s40580‑019‑0214‑131984429
    [Google Scholar]
  178. BeldmanT.J. SendersM.L. AlaargA. Pérez-MedinaC. TangJ. ZhaoY. FayF. DeichmöllerJ. BornB. DesclosE. van der WelN.N. HoebeR.A. KohenF. KartvelishvilyE. NeemanM. ReinerT. CalcagnoC. FayadZ.A. de WintherM.P.J. LutgensE. MulderW.J.M. KluzaE. Hyaluronan nanoparticles selectively target plaque-associated macrophages and improve plaque stability in atherosclerosis.ACS Nano20171165785579910.1021/acsnano.7b0138528463501
    [Google Scholar]
  179. FordT.J. BerryC. Angina: contemporary diagnosis and management.Heart2020106538739810.1136/heartjnl‑2018‑31466132054665
    [Google Scholar]
  180. NavabM. ReddyS.T. Van LentenB.J. FogelmanA.M. HDL and cardiovascular disease: Atherogenic and atheroprotective mechanisms.Nat. Rev. Cardiol.20118422223210.1038/nrcardio.2010.22221304474
    [Google Scholar]
  181. SharmaV. DewanganH.K. MauryaL. VatsK. VermaH. SinghS. Rational design and in-vivo estimation of Ivabradine Hydrochloride loaded nanoparticles for management of stable angina.J. Drug Deliv. Sci. Technol.20195410133710.1016/j.jddst.2019.101337
    [Google Scholar]
  182. KhanA.A. AbdulbaqiI.M. Abou AssiR. MurugaiyahV. DarwisY. Lyophilized hybrid nanostructured lipid carriers to enhance the cellular uptake of verapamil: Statistical optimization and in vitro evaluation.Nanoscale Res. Lett.201813132310.1186/s11671‑018‑2744‑630324291
    [Google Scholar]
  183. SinghB. GargT. GoyalA.K. RathG. Development, optimization, and characterization of polymeric electrospun nanofiber: A new attempt in sublingual delivery of nicorandil for the management of angina pectoris.Artif. Cells Nanomed. Biotechnol.20164461498150710.3109/21691401.2015.105247226134924
    [Google Scholar]
  184. HouL. KimJ.J. WooY.J. HuangN.F. Stem cell-based therapies to promote angiogenesis in ischemic cardiovascular disease.Am. J. Physiol. Heart Circ. Physiol.20163104H455H46510.1152/ajpheart.00726.201526683902
    [Google Scholar]
  185. ChristiaP. FrangogiannisN.G. Pathophysiology of acute myocardial infarction.Future Medicine2013344610.2217/ebo.12.301
    [Google Scholar]
  186. FrangogiannisN.G. Pathophysiology of myocardial infarction.Compr. Physiol.2015541841187510.1002/cphy.c15000626426469
    [Google Scholar]
  187. YangL. PengJ. ShiA. WangX. LiJ. SuY. YinK. ZhaoL. ZhaoY. Myocardium-targeted micelle nanomedicine that salvages the heart from ischemia/reperfusion injury.ACS Appl. Mater. Interfaces20221434385623857410.1021/acsami.2c1111735973832
    [Google Scholar]
  188. ShiH. HuangZ. XuT. SunA. GeJ. New diagnostic and therapeutic strategies for myocardial infarction via nanomaterials.EBioMedicine20227810396810.1016/j.ebiom.2022.10396835367772
    [Google Scholar]
  189. BinsalamahZ.M. PaulA. PrakashS. Shum-TimD. Nanomedicine in cardiovascular therapy: Recent advancements.Expert Rev. Cardiovasc. Ther.201210680581510.1586/erc.12.4122894635
    [Google Scholar]
  190. HaqueM. FouadH. SeoH-K. OthmanA.Y. KulkarniA. AnsariZ.A. Investigation of Mn doped ZnO nanoparticles towards ascertaining myocardial infarction through an electrochemical detection of myoglobin.IEEE Access2020816467816469210.1109/ACCESS.2020.3021458
    [Google Scholar]
  191. ChenW. LiD. Reactive oxygen species (ROS)-responsive nanomedicine for solving ischemia-reperfusion injury.Front Chem.2020873210.3389/fchem.2020.0073232974285
    [Google Scholar]
  192. BenjaminE.J. Heart disease and stroke statistics—2017 update: A report from the American heart association.Circulation201713510e146e60310.1161/CIR.0000000000000485
    [Google Scholar]
  193. GrangerD.N. KvietysP.R. Reperfusion injury and reactive oxygen species: The evolution of a concept.Redox Biol.2015652455110.1016/j.redox.2015.08.02026484802
    [Google Scholar]
  194. SuM. DaiQ. ChenC. ZengY. ChuC. LiuG. Nano-medicine for thrombosis: A precise diagnosis and treatment strategy.Nano-Micro Lett.20201219610.1007/s40820‑020‑00434‑034138079
    [Google Scholar]
  195. ToitaR. KawanoT. MurataM. KangJ.H. Bioinspired macrophage-targeted anti-inflammatory nanomedicine: A therapeutic option for the treatment of myocarditis.Mater. Sci. Eng. C202113111249210.1016/j.msec.2021.11249234857278
    [Google Scholar]
  196. ÖnyükselH. SéjournéF. SuzukiH. RubinsteinI. Human VIP-α: A long-acting, biocompatible and biodegradable peptide nanomedicine for essential hypertension.Peptides20062792271227510.1016/j.peptides.2006.03.00316621151
    [Google Scholar]
  197. QadriG.R. AhadA. AqilM. ImamS.S. AliA. Invasomes of isradipine for enhanced transdermal delivery against hypertension: formulation, characterization, and in vivo pharmacodynamic study.Artif. Cells Nanomed. Biotechnol.201745113914510.3109/21691401.2016.113848626829018
    [Google Scholar]
  198. Al-AhmadyZ.S. JasimD. AhmadS.S. WongR. HaleyM. CouttsG. SchiesslI. AllanS.M. KostarelosK. Selective liposomal transport through blood brain barrier disruption in ischemic stroke reveals two distinct therapeutic opportunities.ACS Nano20191311124701248610.1021/acsnano.9b0180831693858
    [Google Scholar]
  199. ChenH. KaminskiM.D. PytelP. MacdonaldL. RosengartA.J. Capture of magnetic carriers within large arteries using external magnetic fields.J. Drug Target.200816426226810.1080/1061186080190089218446604
    [Google Scholar]
  200. XuJ. WangX. YinH. CaoX. HuQ. LvW. XuQ. GuZ. XinH. Sequentially site-specific delivery of thrombolytics and neuroprotectant for enhanced treatment of ischemic stroke.ACS Nano20191388577858810.1021/acsnano.9b0179831339295
    [Google Scholar]
  201. ZhengS. BaiY.Y. ChangyiY. GaoX. ZhangW. WangY. ZhouL. JuS. LiC. Multimodal nanoprobes evaluating physiological pore size of brain vasculatures in ischemic stroke models.Adv. Healthc. Mater.20143111909191810.1002/adhm.20140015924898608
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673319981241021063524
Loading
/content/journals/cmc/10.2174/0109298673319981241021063524
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test