Skip to content
2000
Volume 32, Issue 31
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Lipids play a variety of roles in living systems. They are a source of extremely high energy and a part of almost all signaling and biological processes. Despite the liver being the hub of lipid metabolism, lipid metabolism occurs across the human body. Any perturbation in the lipid metabolism or lipid storage systems can lead to diseases or disorders that can hamper the normal functioning of the human body. Lipids have been explored for their role in cancers. The intake of saturated fatty acids has been found to increase the metastasis and growth of cancerous cells. The role of lipids has also been studied in brain diseases. In Tay-Sachs disease, the inability to metabolize GM2 ganglioside alters normal nerve cell functioning. Similarly, lipids also play critical roles in Parkinson's and Alzheimer’s disease. Moreover, atherosclerosis is a leading cause of cardiovascular diseases and brain stroke. Dyslipidemia or excess fatty acids is a leading cause of non-alcoholic fatty liver disease, insulin resistance, and diabetes mellitus. Dyslipidemia also leads to jaundice, which, in turn, can seriously damage the kidneys. This review focuses on the various human diseases occurring because of lipid metabolism.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673351452241220071215
2025-01-30
2025-12-31
Loading full text...

Full text loading...

References

  1. SegattoM. PallottiniV. Facts about fats: new insights into the role of lipids in metabolism, disease and therapy.J. Mol. Sci.202021186651
    [Google Scholar]
  2. BernáG. BermudoL.L. LópezE.B. MartínF. We are what we eat: The role of lipids in metabolic diseases.Adv. Food Nutr. Res.202310517321910.1016/bs.afnr.2022.11.00437516463
    [Google Scholar]
  3. AhmedS. ShahP. AhmedO. Biochemistry, Lipids.StatPearlsStatPearls PublishingTreasure Island (FL)2021
    [Google Scholar]
  4. IsslenyB.M. JamjoumR. MajumderS. StibanJ. In The enzymes.Elsevier202354171201
    [Google Scholar]
  5. FernandisA.Z. WenkM.R. Membrane lipids as signaling molecules.Curr. Opin. Lipidol.200718212112810.1097/MOL.0b013e328082e4d517353659
    [Google Scholar]
  6. BallaT. Phosphoinositides: Tiny lipids with giant impact on cell regulation.Physiol. Rev.20139331019113710.1152/physrev.00028.201223899561
    [Google Scholar]
  7. EscribáP.V. RosG.J.M. GoñiF.M. KinnunenP.K.J. VighL. MagranerS.L. FernándezA.M. BusquetsX. HorváthI. CoblijnB.G. Membranes: a meeting point for lipids, proteins and therapies.J. Cell. Mol. Med.200812382987510.1111/j.1582‑4934.2008.00281.x18266954
    [Google Scholar]
  8. GarciaC. AndersenC.J. BlessoC.N. The role of lipids in the regulation of immune responses.Nutrients20231518389910.3390/nu1518389937764683
    [Google Scholar]
  9. GurrM.I. In Lipid Technologies and Applications.Routledge20187911210.1201/9780203748848‑4
    [Google Scholar]
  10. LiY. PanY. ZhaoX. WuS. LiF. WangY. LiuB. ZhangY. GaoX. WangY. Peroxisome proliferator-activated receptors: A key link between lipid metabolism and cancer progression.Clin. Nutr.202443133234538142478
    [Google Scholar]
  11. HollakC.E.M. WeinrebN.J. The attenuated/late onset lysosomal storage disorders: Therapeutic goals and indications for enzyme replacement treatment in Gaucher and Fabry disease.Best Pract. Res. Clin. Endocrinol. Metab.201529220521810.1016/j.beem.2014.08.00625987174
    [Google Scholar]
  12. KurdiH. LavalleL. MoonJ.C.C. HughesD. Inflammation in fabry disease: stages, molecular pathways, and therapeutic implications.Front. Cardiovasc. Med.202411142006710.3389/fcvm.2024.142006738932991
    [Google Scholar]
  13. HertzE. ChenY. SidranskyE. Gaucher disease provides a unique window into Parkinson disease pathogenesis.Nat. Rev. Neurol.202420952654010.1038/s41582‑024‑00999‑z39107435
    [Google Scholar]
  14. BehlT. KaurG. FratilaO. BuhasC. PustaJ.C.T. NegrutN. BusteaC. BungauS. Cross-talks among GBA mutations, glucocerebrosidase, and α-synuclein in GBA-associated Parkinson’s disease and their targeted therapeutic approaches: a comprehensive review.Transl. Neurodegener.2021101410.1186/s40035‑020‑00226‑x33446243
    [Google Scholar]
  15. ButlerL.M. PeroneY. DehairsJ. LupienL.E. LaatD.V. TalebiA. LodaM. KinlawW.B. SwinnenJ.V. Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention.Adv. Drug Deliv. Rev.202015924529310.1016/j.addr.2020.07.01332711004
    [Google Scholar]
  16. PesiriV. TottaP. SegattoM. BianchiF. PallottiniV. MarinoM. AcconciaF. Estrogen receptor α L429 and A430 regulate 17β-estradiol-induced cell proliferation via CREB1.Cell. Signal.201527122380238810.1016/j.cellsig.2015.08.02126348925
    [Google Scholar]
  17. DongC. ZhangY. ZengJ. ChongS. LiuY. BianZ. FanS. ChenX. FUT2 promotes colorectal cancer metastasis by reprogramming fatty acid metabolism via YAP/TAZ signaling and SREBP-1.Commun. Biol.202471129710.1038/s42003‑024‑06993‑x39390072
    [Google Scholar]
  18. LuoX. ZhaoX. ChengC. LiN. LiuY. CaoY. The implications of signaling lipids in cancer metastasis.Exp. Mol. Med.201850911010.1038/s12276‑018‑0150‑x30242145
    [Google Scholar]
  19. TakaiM. MoriS. HonokiK. TsujiuchiT. Roles of lysophosphatidic acid (LPA) receptor-mediated signaling in cancer cell biology.J. Bioenerg. Biomembr.202456447548210.1007/s10863‑024‑10028‑938886303
    [Google Scholar]
  20. KumeH. HariganeR. RikimaruM. Involvement of lysophospholipids in pulmonary vascular functions and diseases.Biomedicines202412112410.3390/biomedicines1201012438255229
    [Google Scholar]
  21. YeL. LiY. ZhangS. WangJ. LeiB. Exosomes-regulated lipid metabolism in tumorigenesis and cancer progression.Cytokine Grow. Fact. Rev.202373273910.1016/j.cytogfr.2023.05.00237291031
    [Google Scholar]
  22. LinZ. HuaG. HuX. Lipid metabolism associated crosstalk: the bidirectional interaction between cancer cells and immune/stromal cells within the tumor microenvironment for prognostic insight.Cancer Cell Int.202424129510.1186/s12935‑024‑03481‑439174964
    [Google Scholar]
  23. HuQ. ZhangH. CortésG.N. WuD. WangP. ZhangJ. MattisonJ.A. SmithE. BettcherL.F. WangM. LakattaE.G. SheuS.S. WangW. Increased Drp1 acetylation by lipid overload induces cardiomyocyte death and heart dysfunction.Circ. Res.2020126445647010.1161/CIRCRESAHA.119.31525231896304
    [Google Scholar]
  24. KullerL.H. Nutrition, lipids, and cardiovascular disease.Nutr. Rev.200664Pt 2Suppl. 1S15S2610.1111/j.1753‑4887.2006.tb00230.x16532896
    [Google Scholar]
  25. SpaggiariR. AngeliniS. VincenzoD.A. ScaglioneG. MorroneS. FinelloV. FagioliS. CastaldoF. SanzJ.M. SergiD. PassaroA. Ceramides as emerging players in cardiovascular disease: focus on their pathogenetic effects and regulation by diet.Adv. Nutr.202415710025210.1016/j.advnut.2024.10025238876397
    [Google Scholar]
  26. GaiZ. WangT. VisentinM. UblickK.G. FuX. WangZ. Lipid accumulation and chronic kidney disease.Nutrients201911472210.3390/nu1104072230925738
    [Google Scholar]
  27. GalkinaO.V. VetrovoyO.V. KrasovskayaI.E. EschenkoN.D. Role of lipids in regulation of neuroglial interactions.Biochemistry202388333735210.1134/S000629792303004537076281
    [Google Scholar]
  28. CartocciV. SegattoM. TunnoD.I. LeoneS. PfriegerF.W. PallottiniV. Modulation of the isoprenoid/cholesterol biosynthetic pathway during neuronal differentiation in vitro.J. Cell. Biochem.201611792036204410.1002/jcb.2550027392312
    [Google Scholar]
  29. JinU. ParkS.J. ParkS.M. Cholesterol metabolism in the brain and its association with Parkinson’s disease.Exp. Neurobiol.201928555456710.5607/en.2019.28.5.55431698548
    [Google Scholar]
  30. SegattoM. ToniniC. PfriegerF.W. TrezzaV. PallottiniV. Loss of mevalonate/cholesterol homeostasis in the brain: a focus on autism spectrum disorder and Rett syndrome.Int. J. Mol. Sci.20192013331710.3390/ijms2013331731284522
    [Google Scholar]
  31. AbumradN.A. DavidsonN.O. Role of the gut in lipid homeostasis.Physiol. Rev.20129231061108510.1152/physrev.00019.201122811425
    [Google Scholar]
  32. KloskaA. WęsierskaM. MalinowskaM. Gabig-CimińskaM. BaneckaJ.J. Lipophagy and lipolysis status in lipid storage and lipid metabolism diseases.Int. J. Mol. Sci.20202117611310.3390/ijms2117611332854299
    [Google Scholar]
  33. ToniniC. ColardoM. ColellaB. BartolomeoD.S. BerardinelliF. CarettiG. PallottiniV. SegattoM. Inhibition of bromodomain and extraterminal domain (BET) proteins by JQ1 unravels a novel epigenetic modulation to control lipid homeostasis.Int. J. Mol. Sci.2020214129710.3390/ijms2104129732075110
    [Google Scholar]
  34. RamaziS. ZahiriJ. Post-translational modifications in proteins: resources, tools and prediction methods.Database20212021baab01210.1093/database/baab01233826699
    [Google Scholar]
  35. BrownH.A. MarnettL.J. Introduction to lipid biochemistry, metabolism, and signaling.Chem. Rev.2011111105817582010.1021/cr200363s21951202
    [Google Scholar]
  36. KaderJ.C. Proteins and the intracellular exchange of lipids.Biochim. Biophys. Acta Lipids Lipid Metab.19753801314410.1016/0005‑2760(75)90042‑9804327
    [Google Scholar]
  37. LarsenL.K. LercheM.H. PoulsenF.M. RoepstorffP. WintherJ.R. Barley lipid transfer protein, LTP1, contains a new type of lipid-like post-translational modification.J. Biol. Chem.200127636335473355310.1074/jbc.M10484120011435437
    [Google Scholar]
  38. GirottiA.W. Mechanisms of lipid peroxidation.J. Free Radic. Biol. Med.198512879510.1016/0748‑5514(85)90011‑X3915303
    [Google Scholar]
  39. SenT. SenN. TripathiG. ChatterjeeU. ChakrabartiS. Lipid peroxidation associated cardiolipin loss and membrane depolarization in rat brain mitochondria.Neurochem. Int.2006491202710.1016/j.neuint.2005.12.01816510213
    [Google Scholar]
  40. ekkabutW.J. XuZ. TriampoW. TangI.M. TielemanP.D. MonticelliL. Effect of lipid peroxidation on the properties of lipid bilayers: a molecular dynamics study.Biophys. J.200793124225423610.1529/biophysj.107.11256517766354
    [Google Scholar]
  41. AyalaA. MuñozM.F. ArgüellesS. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal.Oxid. Med. Cell. Longev.20142014113110.1155/2014/36043824999379
    [Google Scholar]
  42. SayreL.M. LinD. YuanQ. ZhuX. TangX. Protein adducts generated from products of lipid oxidation: focus on HNE and one.Drug Metab. Rev.200638465167510.1080/0360253060095950817145694
    [Google Scholar]
  43. GentileF. ArcaroA. PizzimentiS. DagaM. CetrangoloG.P. DianzaniC. LeporeA. GrafM. AmesP.R.J. BarreraG. DNA damage by lipid peroxidation products: implications in cancer, inflammation and autoimmunity.AIMS Genet.20174210313710.3934/genet.2017.2.10331435505
    [Google Scholar]
  44. GęgotekA. SkrzydlewskaE. Biological effect of protein modifications by lipid peroxidation products.Chem. Phys. Lipi.2019221465210.1016/j.chemphyslip.2019.03.01130922835
    [Google Scholar]
  45. ReshM.D. Covalent lipid modifications of proteins.Curr. Biol.20132310R431R43510.1016/j.cub.2013.04.02423701681
    [Google Scholar]
  46. ChenB. SunY. NiuJ. JarugumilliG.K. WuX. Protein lipidation in cell signaling and diseases: function, regulation, and therapeutic opportunities.Cell Chem. Biol.201825781783110.1016/j.chembiol.2018.05.00329861273
    [Google Scholar]
  47. TatorC.H. EvansJ.R. OlszewskiJ. Tracers for the detection of brain tumors.Neurology196616765066110.1212/WNL.16.7.6505949432
    [Google Scholar]
  48. SpectorA.A. SteinbergD. Relationship between fatty acid and glucose utilization in Ehrlich ascites tumor cells.J. Lipid Res.19667565766310.1016/S0022‑2275(20)39247‑65971047
    [Google Scholar]
  49. JensenV. LadekarlM. NielsenH.P. MelsenF. SoerensenF.B. The prognostic value of oncogenic antigen 519 (OA-519) expression and proliferative activity detected by antibody MIB-I in node-negative breast cancer.J. Pathol.1995176434335210.1002/path.17117604057562249
    [Google Scholar]
  50. EpsteinJ.I. CarmichaelM. PartinA.W. OA-519 (fatty acid synthase) as an independent predictor of pathologic stage in adenocarcinoma of the prostate.Urology1995451818610.1016/S0090‑4295(95)96904‑77817483
    [Google Scholar]
  51. CornK.C. WindhamM.A. RafatM. Lipids in the tumor microenvironment: From cancer progression to treatment.Prog. Lipid Res.20208010105510.1016/j.plipres.2020.10105532791170
    [Google Scholar]
  52. BianX. LiuR. MengY. XingD. XuD. LuZ. Lipid metabolism and cancer.J. Exp. Med.20212181e2020160610.1084/jem.2020160633601415
    [Google Scholar]
  53. WuY.S. BaoD.K. DaiJ.Y. ChenC. ZhangH.X. YangY. XingJ.L. HuangX.J. WanS.G. Polymorphisms in genes of the de novo lipogenesis pathway and overall survival of hepatocellular carcinoma patients undergoing transarterial chemoembolization.Asian Pac. J. Cancer Prev.20151631051105610.7314/APJCP.2015.16.3.105125735330
    [Google Scholar]
  54. PerezM.M. UrricelquiU.U. BigasC. BenitahS.A. The role of lipids in cancer progression and metastasis.Cell Metab.202234111675169910.1016/j.cmet.2022.09.02336261043
    [Google Scholar]
  55. EirikssonF.F. NøhrM.K. CostaM. BödvarsdottirS.K. ÖgmundsdottirH.M. ThorsteinsdottirM. Lipidomic study of cell lines reveals differences between breast cancer subtypes.PLoS One2020154e023128910.1371/journal.pone.023128932287294
    [Google Scholar]
  56. BroadfieldL.A. PaneA.A. TalebiA. SwinnenJ.V. FendtS.M. Lipid metabolism in cancer: New perspectives and emerging mechanisms.Dev. Cell202156101363139310.1016/j.devcel.2021.04.01333945792
    [Google Scholar]
  57. PicouF. DebeissatC. BourgeaisJ. GallayN. FerriéE. FoucaultA. RavaletN. MaciejewskiA. ValletN. DucrocqE. HaddaouiL. DomenechJ. HéraultO. GyanE. N-3 polyunsaturated fatty acids induce acute myeloid leukemia cell death associated with mitochondrial glycolytic switch and NRF2 pathway activation.Pharmacol. Res.2018136455510.1016/j.phrs.2018.08.01530142422
    [Google Scholar]
  58. KimS. YangX. YinA. ZhaJ. BeharryZ. BaiA. BielawskaA. BartlettM.G. YinH. CaiH. Dietary palmitate cooperates with SRC kinase to promote prostate tumor progression.Prostate201979889690810.1002/pros.2379630900312
    [Google Scholar]
  59. YangT. FangS. ZhangH.X. XuL.X. ZhangZ.Q. YuanK.T. XueC.L. YuH.L. ZhangS. LiY.F. ShiH.P. ZhangY. N-3 PUFAs have antiproliferative and apoptotic effects on human colorectal cancer stem-like cells in vitro.J. Nutr. Biochem.201324574475310.1016/j.jnutbio.2012.03.02322854319
    [Google Scholar]
  60. DaiJ. ShenJ. PanW. ShenS. DasU.N. Effects of polyunsaturated fatty acids on the growth of gastric cancer cells in vitro.Lipids Health Dis.20131217110.1186/1476‑511X‑12‑7123663688
    [Google Scholar]
  61. ShimJ.K. ChoiS. YoonS.J. ChoiR.J. ParkJ. LeeE.H. ChoH.J. LeeS. TeoW.Y. MoonJ.H. KimH.S. KimE.H. CheongJ.H. ChangJ.H. YookJ.I. KangS.G. Etomoxir, a carnitine palmitoyltransferase 1 inhibitor, combined with temozolomide reduces stemness and invasiveness in patient-derived glioblastoma tumorspheres.Cancer Cell Int.202222130910.1186/s12935‑022‑02731‑736221088
    [Google Scholar]
  62. ZhangC. HuZ. PanZ. JiZ. CaoX. YuH. QinX. GuanM. The arachidonic acid metabolome reveals elevation of prostaglandin E2 biosynthesis in colorectal cancer.Analyst202414961907192010.1039/D3AN01723K38372525
    [Google Scholar]
  63. LópezV.A. RamírezG.V.L. HortalN.M.D HernándezF.T.Y. BattinoM. QuilesJ.L. Seminars in Cancer Biology.New York, United StatesElsevier2021369
    [Google Scholar]
  64. BegicevicR.R. ArfusoF. FalascaM. Bioactive lipids in cancer stem cells.World J. Stem Cells201911969370410.4252/wjsc.v11.i9.69331616544
    [Google Scholar]
  65. FarooquiA.A. OngW.Y. HorrocksL.A. Inhibitors of brain phospholipase A2 activity: their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders.Pharmacol. Rev.200658359162010.1124/pr.58.3.716968951
    [Google Scholar]
  66. SpectorA.A. YorekM.A. Membrane lipid composition and cellular function.J. Lipid Res.19852691015103510.1016/S0022‑2275(20)34276‑03906008
    [Google Scholar]
  67. HuW. LiuJ. HuY. XuQ. DengT. WeiM. LuL. MiJ. BergquistJ. XuF. TianG. Transcriptome-wide association study reveals cholesterol metabolism gene Lpl is a key regulator of cognitive dysfunction.Front. Mol. Neurosci.202215104402210.3389/fnmol.2022.104402236590920
    [Google Scholar]
  68. DesprésJ.P. CouillardC. GagnonJ. BergeronJ. LeonA.S. RaoD.C. SkinnerJ.S. WilmoreJ.H. BouchardC. Race, visceral adipose tissue, plasma lipids, and lipoprotein lipase activity in men and women: the Health, Risk Factors, Exercise Training, and Genetics (HERITAGE) family study.Arterioscler. Thromb. Vasc. Biol.20002081932193810.1161/01.ATV.20.8.193210938014
    [Google Scholar]
  69. SolovyevaV.V. ShaimardanovaA.A. ChulpanovaD.S. KitaevaK.V. ChakrabartiL. RizvanovA.A. New approaches to tay-sachs disease therapy.Front. Physiol.16632018930524313
    [Google Scholar]
  70. FilhoF.J.A. ShapiroB.E. Tay-Sachs Disease.Arch. Neurol.20046191466146810.1001/archneur.61.9.146615364698
    [Google Scholar]
  71. LewR. BurnettL. DelatyckiM. ProosA. Tay-Sachs disease: current perspectives from Australia.Appl. Clin. Genet.20158192510.2147/TACG.S4962825653550
    [Google Scholar]
  72. CainesM.E.C. VaughanM.D. TarlingC.A. HancockS.M. WarrenR.A.J. WithersS.G. StrynadkaN.C.J. Structural and mechanistic analyses of endo-glycoceramidase II, a membrane-associated family 5 glycosidase in the Apo and GM3 ganglioside-bound forms.J. Biol. Chem.200728219143001430810.1074/jbc.M61145520017329247
    [Google Scholar]
  73. KaoY.C. HoP.C. TuY.K. JouI.M. TsaiK.J. Lipids and alzheimer’s disease.Int. J. Mol. Sci.2020214150510.3390/ijms2104150532098382
    [Google Scholar]
  74. GaamouchE.F. JingP. XiaJ. CaiD. Alzheimer’s disease risk genes and lipid regulators.J. Alzheimers Dis.2016531152910.3233/JAD‑16016927128373
    [Google Scholar]
  75. PararasaC. IkwuobeJ. ShigdarS. BoukouvalasA. NabneyI.T. BrownJ.E. DevittA. BaileyC.J. BennettS.J. GriffithsH.R. Age-associated changes in long-chain fatty acid profile during healthy aging promote pro-inflammatory monocyte polarization via PPAR γ.Aging Cell201615112813910.1111/acel.1241626522807
    [Google Scholar]
  76. WhileyL. SenA. HeatonJ. ProitsiP. GómezG.D. LeungR. SmithN. ThambisettyM. KloszewskaI. MecocciP. SoininenH. TsolakiM. VellasB. LovestoneS. QuigleyL.C. Evidence of altered phosphatidylcholine metabolism in Alzheimer’s disease.Neurobiol. Aging201435227127810.1016/j.neurobiolaging.2013.08.00124041970
    [Google Scholar]
  77. MichnoW. BowmanA. JhaD. MintaK. GeJ. KoutarapuS. ZetterbergH. BlennowK. LashleyT. HeerenR.M.A. HanriederJ. Spatial neurolipidomics at the single amyloid-β plaque level in postmortem human Alzheimer’s disease brain.ACS Chem. Neurosci.202415487788810.1021/acschemneuro.4c0000638299453
    [Google Scholar]
  78. JankovicJ. Parkinson’s disease: clinical features and diagnosis.J. Neurol. Neurosurg. Psychiatry200879436837610.1136/jnnp.2007.13104518344392
    [Google Scholar]
  79. ChengD. JennerA.M. ShuiG. CheongW.F. MitchellT.W. NealonJ.R. KimW.S. McCannH. WenkM.R. HallidayG.M. GarnerB. Lipid pathway alterations in Parkinson’s disease primary visual cortex.PLoS One201162e1729910.1371/journal.pone.001729921387008
    [Google Scholar]
  80. SchuchmanE.H. DesnickR.J. Types A and B Niemann-Pick disease.Mol. Genet. Metab.20171201-2273310.1016/j.ymgme.2016.12.00828164782
    [Google Scholar]
  81. BajwaH. Niemann-Pick DiseaseStatPearlsStatPearls PublishingTreasure Island (FL)2023
    [Google Scholar]
  82. VanierM.T. Handbook of Clinical Neurology. DulacO. LassondeM. SarnatH.B. Amsterdam, NetherlandsElsevier201311317171721
    [Google Scholar]
  83. BoenziS. CatesiniG. SacchettiE. TagliaferriF. ViciD.C. DeodatoF. Comprehensive-targeted lipidomic analysis in Niemann-Pick C disease.Mol. Genet. Metab.2021134433734310.1016/j.ymgme.2021.11.00534810067
    [Google Scholar]
  84. LiM. GaoY. WangD. HuX. JiangJ. QingY. YangX. CuiG. WangP. ZhangJ. SunL. WanC. Impaired membrane lipid homeostasis in schizophrenia.Schizophr. Bull.20224851125113510.1093/schbul/sbac01135751100
    [Google Scholar]
  85. TavaresH.Jr YacubianJ. TalibL.L. BarbosaN.R. GattazW.F. Increased phospholipase A2 activity in schizophrenia with absent response to niacin.Schizophr. Res.20036111610.1016/S0920‑9964(02)00281‑512648730
    [Google Scholar]
  86. LiuJ. XiuM. LiuH. WangJ. LiX. Plasma lysophosphatidylcholine and lysophosphatidylethanolamine levels were associated with the therapeutic response to olanzapine in female antipsychotics-naïve first-episode patients with schizophrenia.Front. Pharmacol.20211273519610.3389/fphar.2021.73519634603051
    [Google Scholar]
  87. CoxR.A. PalmieriG.M.R. Cholesterol, triglycerides, and associated lipoproteins.Clinical Methods: The History, Physical, and Laboratory Examinations.3rd Ed.BostonButterworths2011
    [Google Scholar]
  88. GofmanJ.W. LindgrenF. ElliottH. MantzW. HewittJ. StrisowerB. HerringV. LyonT.P. The role of lipids and lipoproteins in atherosclerosis.Science1950111287716618610.1126/science.111.2877.16615403115
    [Google Scholar]
  89. KoskinasK.C. What is the role of lipids in atherosclerosis and how low should we decrease lipid levels?EJ. Cardiol. Pract.202019115
    [Google Scholar]
  90. YaoY. LiX. WangZ. JiQ. XuQ. YanY. LvQ. Interaction of lipids, mean platelet volume, and the severity of coronary artery disease among chinese adults: a mediation analysis.Front. Cardiovasc. Med.2022975317110.3389/fcvm.2022.75317135174229
    [Google Scholar]
  91. BarqueraS. TobíasP.A. MedinaC. BarreraH.L. DomingoB.K. LozanoR. MoranA.E. Global overview of the epidemiology of atherosclerotic cardiovascular disease.Arch. Med. Res.201546532833810.1016/j.arcmed.2015.06.00626135634
    [Google Scholar]
  92. BerlinerJ.A. WatsonA.D. A role for oxidized phospholipids in atherosclerosis.N. Engl. J. Med.2005353191110.1056/NEJMp05811816000351
    [Google Scholar]
  93. BerlinerJ.A. LeitingerN. TsimikasS. The role of oxidized phospholipids in atherosclerosis.J. Lipid Res.200950SupplS207S21210.1194/jlr.R800074‑JLR20019059906
    [Google Scholar]
  94. LeeS. BirukovK.G. RomanoskiC.E. SpringsteadJ.R. LusisA.J. BerlinerJ.A. Role of phospholipid oxidation products in atherosclerosis.Circ. Res.2012111677879910.1161/CIRCRESAHA.111.25685922935534
    [Google Scholar]
  95. YinH. XuL. PorterN.A. Free radical lipid peroxidation: mechanisms and analysis.Chem. Rev.2011111105944597210.1021/cr200084z21861450
    [Google Scholar]
  96. MooreK.J. TabasI. Macrophages in the pathogenesis of atherosclerosis.Cell2011145334135510.1016/j.cell.2011.04.00521529710
    [Google Scholar]
  97. GlassC.K. WitztumJ.L. Atherosclerosis.Cell2001104450351610.1016/S0092‑8674(01)00238‑011239408
    [Google Scholar]
  98. ZhongS. LiL. ShenX. LiQ. XuW. WangX. TaoY. YinH. An update on lipid oxidation and inflammation in cardiovascular diseases.Free Radic. Biol. Med.201914426627810.1016/j.freeradbiomed.2019.03.03630946962
    [Google Scholar]
  99. LintonM.F. YanceyP.G. DaviesS.S. JeromeW.G. LintonE.F. SongW.L. DoranA.C. VickersK.C. The role of lipids and lipoproteins in atherosclerosis.EndotextSouth Dartmouth2019
    [Google Scholar]
  100. MhaimeedO. BurneyZ.A. SchottS.L. KohliP. MarvelF.A. MartinS.S. The importance of LDL-C lowering in atherosclerotic cardiovascular disease prevention: Lower for longer is better.Am. J. Prev. Cardiol.20241810064910.1016/j.ajpc.2024.100649
    [Google Scholar]
  101. DiffenderferM.R. SchaeferE.J. The composition and metabolism of large and small LDL.Curr. Opin. Lipidol.201425322122610.1097/MOL.000000000000006724811298
    [Google Scholar]
  102. HoogeveenR.C. GaubatzJ.W. SunW. DodgeR.C. CrosbyJ.R. JiangJ. CouperD. ViraniS.S. KathiresanS. BoerwinkleE. BallantyneC.M. Small dense low-density lipoprotein-cholesterol concentrations predict risk for coronary heart disease: the Atherosclerosis Risk In Communities (ARIC) study.Arterioscler. Thromb. Vasc. Biol.20143451069107710.1161/ATVBAHA.114.30328424558110
    [Google Scholar]
  103. TsaiM.Y. SteffenB.T. GuanW. McClellandR.L. WarnickR. McConnellJ. HoefnerD.M. RemaleyA.T. New automated assay of small dense low-density lipoprotein cholesterol identifies risk of coronary heart disease: the Multi-ethnic Study of Atherosclerosis.Arterioscler. Thromb. Vasc. Biol.201434119620110.1161/ATVBAHA.113.30240124233487
    [Google Scholar]
  104. ÖörniK. KovanenP.T. Aggregation susceptibility of low-density lipoproteins-a novel modifiable biomarker of cardiovascular risk.J. Clin. Med.2021108176910.3390/jcm1008176933921661
    [Google Scholar]
  105. RuuthM. NguyenS.D. VihervaaraT. HilvoM. LaajalaT.D. KondadiP.K. GisteråA. LähteenmäkiH. KittiläT. HuuskoJ. UusitupaM. SchwabU. SavolainenM.J. SinisaloJ. LokkiM.L. NieminenM.S. JulaA. PerolaM. HerttulaY.S. RudelL. ÖörniA. BaumannM. BaruchA. LaaksonenR. KetelhuthD.F.J. AittokallioT. JauhiainenM. KäkeläR. BorénJ. WilliamsK.J. KovanenP.T. ÖörniK. Susceptibility of low- density lipoprotein particles to aggregate depends on particle lipidome, is modifiable, and associates with future cardiovascular deaths.Eur. Heart J.201839272562257310.1093/eurheartj/ehy31929982602
    [Google Scholar]
  106. WolfD. LeyK. Immunity and inflammation in atherosclerosis.Circ. Res.2019124231532710.1161/CIRCRESAHA.118.31359130653442
    [Google Scholar]
  107. SoppertJ. LehrkeM. MarxN. JankowskiJ. NoelsH. Lipoproteins and lipids in cardiovascular disease: from mechanistic insights to therapeutic targeting.Adv. Drug Deliv. Rev.202015943310.1016/j.addr.2020.07.01932730849
    [Google Scholar]
  108. TcheuguiE.J.B. JainM. ChengS. Breaking through the surface: more to learn about lipids and cardiovascular disease.J. Clin. Invest.202013031084108610.1172/JCI13469631985490
    [Google Scholar]
  109. BadmusO.O. HillhouseS.A. AndersonC.D. HindsT.D.Jr StecD.E. Molecular mechanisms of metabolic associated fatty liver disease (MAFLD): functional analysis of lipid metabolism pathways.Clin. Sci.2022136181347136610.1042/CS2022057236148775
    [Google Scholar]
  110. AbdulS.M.M. Lipid metabolism in metabolic-associated steatotic liver disease (MASLD).Metabolites20231411210.3390/metabo1401001238248815
    [Google Scholar]
  111. ArvindA. OsganianS.A. CohenD.E. CoreyK.E. Lipid and lipoprotein metabolism in liver disease.EndotextSouth Dartmouth2019
    [Google Scholar]
  112. LucchinettiE. LouP.H. WawrzyniakP. WawrzyniakM. ScharlM. HoltzhauerG.A. KrämerS.D. HersbergerM. RoglerG. ZauggM. Novel strategies to prevent total parenteral nutrition-induced gut and liver inflammation, and adverse metabolic outcomes.Mol. Nutr. Food Res.2021655190127010.1002/mnfr.20190127032359213
    [Google Scholar]
  113. NatesanV. KimS.J. Lipid metabolism, disorders and therapeutic drugs–review.Biomol. Ther.202129659660410.4062/biomolther.2021.12234697272
    [Google Scholar]
  114. CohenJ.C. HortonJ.D. HobbsH.H. Human fatty liver disease: old questions and new insights.Science201133260371519152310.1126/science.120426521700865
    [Google Scholar]
  115. SchwabeR.F. MaherJ.J. Lipids in liver disease: looking beyond steatosis.Gastroenterology2012142181110.1053/j.gastro.2011.11.00422107717
    [Google Scholar]
  116. MouskeftaraT. KalopitasG. LiapikosT. ArvanitakisK. GermanidisG. GikaH. Predicting non-alcoholic steatohepatitis: a lipidomics-driven machine learning approach.Int. J. Mol. Sci.20242511596510.3390/ijms2511596538892150
    [Google Scholar]
  117. WilliamsC.D. StengelJ. AsikeM.I. TorresD.M. ShawJ. ContrerasM. LandtC.L. HarrisonS.A. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study.Gastroenterology2011140112413110.1053/j.gastro.2010.09.03820858492
    [Google Scholar]
  118. RinellaM.E. Nonalcoholic fatty liver disease: a systematic review.JAMA2015313222263227310.1001/jama.2015.537026057287
    [Google Scholar]
  119. LiH. XuQ.Y. XieY. LuoJ.J. CaoH.X. PanQ. Effects of chronic HBV infection on lipid metabolism in non-alcoholic fatty liver disease: A lipidomic analysis.Ann. Hepatol.20212410031610.1016/j.aohep.2021.10031633515803
    [Google Scholar]
  120. ChatrathH. VuppalanchiR. ChalasaniN. Seminars in liver diseaseNew YorkThieme Medical Publishers201232022029
    [Google Scholar]
  121. BaumS.J. EthertonK.P.M. WillettW.C. LichtensteinA.H. RudelL.L. MakiK.C. WhelanJ. RamsdenC.E. BlockR.C. Fatty acids in cardiovascular health and disease: A comprehensive update.J. Clin. Lipidol.20126321623410.1016/j.jacl.2012.04.07722658146
    [Google Scholar]
  122. FreemanL.R. ZitlinH.V. RosenbergerD.S. GranholmA.C. Damaging effects of a high-fat diet to the brain and cognition: A review of proposed mechanisms.Nutr. Neurosci.201417624125110.1179/1476830513Y.000000009224192577
    [Google Scholar]
  123. GeorgP. LudvikB. Lipids and diabetes.J. Clin. Basic Card.200033159162
    [Google Scholar]
  124. AdielsM. TaskinenM.R. BorénJ. Fatty liver, insulin resistance, and dyslipidemia.Curr. Diab. Rep.200881606410.1007/s11892‑008‑0011‑418367000
    [Google Scholar]
  125. StillmanA.E. Jaundice. Clinical Methods: The History.3rd Ed.Physical, and Laboratory Examinations1990
    [Google Scholar]
  126. KellyW.R. The liver and biliary system.Path. Domest. Ani.199324319406
    [Google Scholar]
  127. FargoM.V. GroganS.P. SaguilA. Evaluation of jaundice in adults.Am. Fam. Physician201795316416828145671
    [Google Scholar]
  128. RocheS.P. KobosR. Jaundice in the adult patient.Am. Fam. Physician200469229930414765767
    [Google Scholar]
  129. VirtueS. PuigV.A. Adipose tissue expandability, lipotoxicity and the metabolic syndrome—an allostatic perspective.Biochimica et Biophysica Acta201018013338349
    [Google Scholar]
  130. JinX. QiuT. LiL. YuR. ChenX. LiC. ProudC.G. JiangT. Pathophysiology of obesity and its associated diseases.Acta Pharm. Sin. B20231362403242410.1016/j.apsb.2023.01.01237425065
    [Google Scholar]
  131. GomezM.G. GrayS. PuigV.A. Adipogenesis and lipotoxicity: role of peroxisome proliferator-activated receptor γ (PPARγ) and PPARγcoactivator-1 (PGC1).Public Health Nutr.20071010A1132113710.1017/S136898000700061417903321
    [Google Scholar]
  132. GarcíaM.C. IzquierdoA. VelagapudiV. VivasY. VelascoI. CampbellM. BurlingK. CavaF. RosM. OrešičM. PuigV.A. GomezM.G. Accelerated renal disease is associated with the development of metabolic syndrome in a glucolipotoxic mouse model.Dis. Model. Mech.201255dmm.00926610.1242/dmm.00926622773754
    [Google Scholar]
  133. BarbagalloC.M. CefalùA.B. GiammancoA. NotoD. CaldarellaR. CiaccioM. AvernaM.R. NardiE. Lipoprotein abnormalities in chronic kidney disease and renal transplantation.Life202111431510.3390/life1104031533916487
    [Google Scholar]
  134. LanzonB. TaboadaM.M. AlvesC.V. BedmarV.R. González de PablosI. DubergD. GomezP. RodriguezE. OrešičM. HyötyläinenT. MoralesE. RuperezF.J. GomezM.G. Lipidomic and metabolomic signature of progression of chronic kidney disease in patients with severe obesity.Metabolites2021111283610.3390/metabo1112083634940593
    [Google Scholar]
  135. ZamoraG. ShaverP.A.L. Minimal change disease.StatPearlsTreasure IslandStatPearls Publishing2020
    [Google Scholar]
  136. ChughS.S. ClementL.C. MacéC. New insights into human minimal change disease: lessons from animal models.Am. J. Kidney Dis.201259228429210.1053/j.ajkd.2011.07.02421974967
    [Google Scholar]
  137. LahuertaI.A. GarcíaM.C. GómezM.G. Lipotoxicity as a trigger factor of renal disease.J. Nephrol.201629560361010.1007/s40620‑016‑0278‑526956132
    [Google Scholar]
  138. RoyA. BiswasS. SamantaA.P. DasR.K. MadhwaniK.P. PatraK.K. Study on lipid profile in idiopathic nephrotic syndrome in children.Eur. J. Cardiovasc. Med.202414795802
    [Google Scholar]
  139. VaidyaS.R. Chronic kidney disease.StatPearlsStatPearls PublishingTreasure Island (FL)2022
    [Google Scholar]
  140. ArabiY.M. TamimiW. JonesG. JawdatD. TamimH. DorziA.H.M. SadatM. AfeshL. SakhijaM. DawoodA.A. Free fatty acids’ level and nutrition in critically ill patients and association with outcomes: a prospective sub-study of PermiT trial.Nutrients201911238410.3390/nu1102038430781774
    [Google Scholar]
  141. KwonS. KimD.K. OhK.H. JooK.W. LimC.S. KimY.S. HanS.S. Apolipoprotein B is a risk factor for end-stage renal disease.Clin. Kidney J.202114261762310.1093/ckj/sfz18633623687
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673351452241220071215
Loading
/content/journals/cmc/10.2174/0109298673351452241220071215
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): atherosclerosis; cancers; dyslipidemia; human diseases; lipid metabolism; Lipids
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test