Skip to content
2000
Volume 32, Issue 31
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Increasing evidence suggests that vitamin D is one of the causes of accelerated development of Insulin Resistance (IR) and islet cell secret dysfunction. Numerous studies have shown that vitamin D can reduce inflammation, activate the transcription of the insulin receptors and related genes, and increase insulin-mediated glucose transport, thereby reducing IR. This article reviews the molecular mechanisms related to vitamin D deficiency and pancreatic β-cell dysfunction in patients with Type 2 Diabetes (T2D).

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673270429240805050928
2024-08-07
2025-10-23
Loading full text...

Full text loading...

References

  1. SunH. SaeediP. KarurangaS. PinkepankM. OgurtsovaK. DuncanB.B. SteinC. BasitA. ChanJ.C.N. MbanyaJ.C. PavkovM.E. RamachandaranA. WildS.H. JamesS. HermanW.H. ZhangP. BommerC. KuoS. BoykoE.J. MaglianoD.J. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045.Diabetes Res. Clin. Pract.202218310911910.1016/j.diabres.2021.10911934879977
    [Google Scholar]
  2. SerbisA. GiaprosV. KotanidouE.P. Galli-TsinopoulouA. SiomouE. Diagnosis, treatment and prevention of type 2 diabetes mellitus in children and adolescents.World J. Diabetes202112434436510.4239/wjd.v12.i4.34433889284
    [Google Scholar]
  3. YingW. FuW. LeeY.S. OlefskyJ.M. The role of macrophages in obesity-associated islet inflammation and β-cell abnormalities.Nat. Rev. Endocrinol.2020162819010.1038/s41574‑019‑0286‑331836875
    [Google Scholar]
  4. LiC.P. SuH.Q. HeL.P. Vitamin D may alleviate pre- eclampsia by modulating the ferroptosis signalling pathway: A hypothesis based on recent literature.J. Cell. Mol. Med.202327141923192710.1111/jcmm.1775437099247
    [Google Scholar]
  5. ZhangQ.W. WangY. TongZ.Y. LiC.P. HeL.P. VitaminD. Vitamin D may play a vital role in alleviating type 2 diabetes mellitus by modulating the ferroptosis signaling pathway.Horm. Metab. Res.202456319319610.1055/a‑2122‑570137402397
    [Google Scholar]
  6. YuX.L. WuQ.Q. HeL.P. ZhengY.F. Role of in vitamin D in irritable bowel syndrome.World J. Clin. Cases202311122677268310.12998/wjcc.v11.i12.267737214583
    [Google Scholar]
  7. YuX.L. LiC.P. HeL.P. Vitamin D may alleviate irritable bowel syndrome by modulating serotonin synthesis: a hypothesis based on recent literature.Front. Physiol.202314115295810.3389/fphys.2023.115295837576336
    [Google Scholar]
  8. HeL.P. ZhouZ.X. LiC.P. Narrative review of ferroptosis in obesity.J. Cell. Mol. Med.202327792092610.1111/jcmm.1770136871273
    [Google Scholar]
  9. SaishoY. Importance of beta cell function for the treatment of type 2 diabetes.J. Clin. Med.20143392394310.3390/jcm303092326237486
    [Google Scholar]
  10. Contreras-BolívarV. García-FontanaB. García-FontanaC. Muñoz-TorresM. Mechanisms involved in the relationship between vitamin D and Insulin resistance: impact on clinical practice.Nutrients20211310349110.3390/nu1310349134684492
    [Google Scholar]
  11. HyppönenE. BoucherB.J. Adiposity, vitamin D requirements, and clinical implications for obesity-related metabolic abnormalities.Nutr. Rev.201876967869210.1093/nutrit/nuy03430020507
    [Google Scholar]
  12. WackerM. HolickM.F. Sunlight and Vitamin D: A global perspective for health.Dermatoendocrinol2013515110810.4161/derm.2449424494042
    [Google Scholar]
  13. DattolaA. SilvestriM. BennardoL. PassanteM. ScaliE. PatrunoC. NisticòS.P. Role of vitamins in skin health: a systematic review.Curr. Nutr. Rep.20209322623510.1007/s13668‑020‑00322‑432602055
    [Google Scholar]
  14. SongY.X. HeL.P. LiC.P. The relationship between serum calcium level and risk factor of pregnancy-induced hypertension: a meta-analysis.Clin. Exp. Obstet. Gynecol.20235036610.31083/j.ceog5003066
    [Google Scholar]
  15. LiC.P. SongY.X. LinZ.J. MaM.L. HeL.P. Essential trace elements in patients with dyslipidemia: A meta- analysis.Curr. Med. Chem.202431253604362337132140
    [Google Scholar]
  16. ChristakosS. DhawanP. VerstuyfA. VerlindenL. CarmelietG. VitaminD. Vitamin D: Metabolism, molecular mechanism of action, and pleiotropic effects.Physiol. Rev.201696136540810.1152/physrev.00014.201526681795
    [Google Scholar]
  17. Szymczak-PajorI. DrzewoskiJ. ŚliwińskaA. The molecular mechanisms by which vitamin D prevents insulin resistance and associated disorders.Int. J. Mol. Sci.20202118664410.3390/ijms2118664432932777
    [Google Scholar]
  18. RoheB. SaffordS. NemereI. FarachcarsonM. Identification and characterization of 1,25D-membrane-associated rapid response, steroid (1,25D-MARRS)-binding protein in rat IEC-6 cells.Steroids2005705-745846310.1016/j.steroids.2005.02.01615862831
    [Google Scholar]
  19. HeL.P. SongY.X. ZhuT. GuW. LiuC.W. Progress in the relationship between vitamin D deficiency and the incidence of Type 1 Diabetes Mellitus in Children.J. Diabetes Res.202220221810.1155/2022/595356236090587
    [Google Scholar]
  20. LiuC. LuM. XiaX. WangJ. WanY. HeL. LiM. Correlation of serum vitamin D Level with Type 1 Diabetes Mellitus in children: A meta-analysis.Nutr. Hosp.20153241591159426545522
    [Google Scholar]
  21. InfanteM. RicordiC. SanchezJ. Clare-SalzlerM.J. PadillaN. FuenmayorV. ChavezC. AlvarezA. BaidalD. AlejandroR. CaprioM. FabbriA. Influence of vitamin D on islet autoimmunity and beta-cell function in type 1 diabetes.Nutrients2019119218510.3390/nu1109218531514368
    [Google Scholar]
  22. RakK. BronkowskaM. Immunomodulatory effect of vitamin D and its potential role in the prevention and treatment of type 1 diabetes mellitus—a narrative review.Molecules20182415310.3390/molecules2401005330586887
    [Google Scholar]
  23. MaretzkeF. BechtholdA. EgertS. ErnstJ.B. Melo van LentD. PilzS. ReichrathJ. StanglG.I. StehleP. VolkertD. WagnerM. WaizeneggerJ. ZittermannA. LinseisenJ. Role of vitamin D in preventing and treating selected extraskeletal diseases—an umbrella review.Nutrients202012496910.3390/nu1204096932244496
    [Google Scholar]
  24. PittasA.G. LauJ. HuF.B. Dawson-HughesB. The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis.J. Clin. Endocrinol. Metab.20079262017202910.1210/jc.2007‑029817389701
    [Google Scholar]
  25. StivelmanE. RetnakaranR. Role of vitamin D in the pathophysiology and treatment of type 2 diabetes.Curr. Diabetes Rev.201281424710.2174/15733991279882917922414057
    [Google Scholar]
  26. MuscogiuriG. SoriceG.P. PriolettaA. PolicolaC. CasaS.D. PontecorviA. GiaccariA. Association of vitamin D with insulin resistance and beta-cell dysfunction in subjects at risk for type 2 diabetes: Comment to Kayaniyil et al. Diabetes Care2010337e9910.2337/dc10‑058720587719
    [Google Scholar]
  27. PiresL.V. González-GilE.M. Anguita-RuizA. BuenoG. Gil-CamposM. Vázquez-CobelaR. Pérez-FerreirósA. MorenoL.A. GilÁ. LeisR. AguileraC.M. The Vitamin D decrease in children with obesity is associated with the development of insulin resistance during puberty: The PUBMEP Study.Nutrients20211312448810.3390/nu1312448834960039
    [Google Scholar]
  28. SchleuM.F. Barreto-DuarteB. ArriagaM.B. Araujo-PereiraM. LadeiaA.M. AndradeB.B. LimaM.L. Lower levels of vitamin D are associated with an increase in insulin resistance in obese brazilian women.Nutrients2021139297910.3390/nu1309297934578857
    [Google Scholar]
  29. MousaA. NaderpoorN. de CourtenM.P.J. ScraggR. de CourtenB. 25-hydroxyvitamin D is associated with adiposity and cardiometabolic risk factors in a predominantly vitamin D-deficient and overweight/obese but otherwise healthy cohort.J. Steroid Biochem. Mol. Biol.201717325826410.1016/j.jsbmb.2016.12.00828007531
    [Google Scholar]
  30. AfzalS. BojesenS.E. NordestgaardB.G. Low 25-hydroxyvitamin D and risk of type 2 diabetes: a prospective cohort study and metaanalysis.Clin. Chem.201359238139110.1373/clinchem.2012.19300323232064
    [Google Scholar]
  31. AlvarezJ.A. AshrafA.P. HunterG.R. GowerB.A. Serum 25-hydroxyvitamin D and parathyroid hormone are independent determinants of whole-body insulin sensitivity in women and may contribute to lower insulin sensitivity in African Americans.Am. J. Clin. Nutr.20109261344134910.3945/ajcn.110.00097620861177
    [Google Scholar]
  32. SongY. WangL. PittasA.G. Del GobboL.C. ZhangC. MansonJ.E. HuF.B. Blood 25-hydroxy vitamin D levels and incident type 2 diabetes: a meta-analysis of prospective studies.Diabetes Care20133651422142810.2337/dc12‑096223613602
    [Google Scholar]
  33. MohammadiS. HajhashemyZ. SaneeiP. Serum vitamin D levels in relation to type-2 diabetes and prediabetes in adults: a systematic review and dose–response meta- analysis of epidemiologic studies.Crit. Rev. Food Sci. Nutr.202262298178819810.1080/10408398.2021.192622034076544
    [Google Scholar]
  34. RafiqS. JeppesenP.B. Insulin resistance is inversely associated with the status of vitamin D in both diabetic and non-diabetic populations.Nutrients2021136174210.3390/nu1306174234063822
    [Google Scholar]
  35. ZhouT. SunD. HeianzaY. LiX. ChampagneC.M. LeBoffM.S. ShangX. PeiX. BrayG.A. SacksF.M. QiL. Genetically determined vitamin D levels and change in bone density during a weight-loss diet intervention: The preventing overweight using novel dietary strategies (POUNDS Lost) Trial.Am. J. Clin. Nutr.201810851129113410.1093/ajcn/nqy19730475961
    [Google Scholar]
  36. PittasA.G. JordeR. KawaharaT. Dawson-HughesB. VitaminD. Vitamin D supplementation for prevention of type 2 Diabetes Mellitus: To D or not to D?J. Clin. Endocrinol. Metab.2020105123721373310.1210/clinem/dgaa59432844212
    [Google Scholar]
  37. XiangM. SunX. WeiJ. CaoZ.B. Combined effects of vitamin D supplementation and endurance exercise training on insulin resistance in newly diagnosed type 2 diabetes mellitus patients with vitamin D deficiency: Study protocol for a randomized controlled trial.Trials202122188810.1186/s13063‑021‑05861‑x34872610
    [Google Scholar]
  38. PittasA.G. KawaharaT. JordeR. Dawson-HughesB. VickeryE.M. AngellottiE. NelsonJ. TrikalinosT.A. BalkE.M. Vitamin D and risk for type 2 diabetes in people with prediabetes.Ann. Intern. Med.2023176335536310.7326/M22‑301836745886
    [Google Scholar]
  39. KahnS.E. CooperM.E. Del PratoS. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future.Lancet201438399221068108310.1016/S0140‑6736(13)62154‑624315620
    [Google Scholar]
  40. LinZ.J. HeL.P. LiC.P. Research progress of risk factors associated with gestational diabetes mellitus.Endocr. Metab. Immune Disord. Drug Targets202424.10.2174/011871530328810724022707461138465432
    [Google Scholar]
  41. JežekP. JabůrekM. Plecitá-HlavatáL. Contribution of oxidative stress and impaired biogenesis of pancreatic β- cells to type 2 diabetes.Antioxid. Redox Signal.2019311072275110.1089/ars.2018.765630450940
    [Google Scholar]
  42. GerberP.A. RutterG.A. The role of oxidative stress and hypoxia in pancreatic beta-cell dysfunction in diabetes mellitus.Antioxid. Redox Signal.2017261050151810.1089/ars.2016.675527225690
    [Google Scholar]
  43. LenzenS. Chemistry and biology of reactive species with special reference to the antioxidative defence status in pancreatic β-cells.Biochim. Biophys. Acta, Gen. Subj.2017186181929194210.1016/j.bbagen.2017.05.01328527893
    [Google Scholar]
  44. SiesH. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress.Redox Biol.20171161361910.1016/j.redox.2016.12.03528110218
    [Google Scholar]
  45. Vilas-BoasE.A. AlmeidaD.C. RomaL.P. OrtisF. CarpinelliA.R. Lipotoxicity and β-cell failure in type 2 diabetes: Oxidative stress linked to NADPH oxidase and ER stress.Cells20211012332810.3390/cells1012332834943836
    [Google Scholar]
  46. KaminskiM.T. LenzenS. BaltruschS. Real-time analysis of intracellular glucose and calcium in pancreatic beta cells by fluorescence microscopy.Biochim. Biophys. Acta Mol. Cell Res.20121823101697170710.1016/j.bbamcr.2012.06.02222732296
    [Google Scholar]
  47. ReddyJ.K. HashimotoT. Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: An adaptive metabolic system.Annu. Rev. Nutr.200121119323010.1146/annurev.nutr.21.1.19311375435
    [Google Scholar]
  48. DrewsG. Krippeit-DrewsP. DüferM. Electrophysiology of islet cells.Adv. Exp. Med. Biol.201065411516310.1007/978‑90‑481‑3271‑3_720217497
    [Google Scholar]
  49. AltieriB. GrantW.B. Della CasaS. OrioF. PontecorviA. ColaoA. SarnoG. MuscogiuriG. Vitamin D and pancreas: The role of sunshine vitamin in the pathogenesis of diabetes mellitus and pancreatic cancer.Crit. Rev. Food Sci. Nutr.201757163472348810.1080/10408398.2015.113692227030935
    [Google Scholar]
  50. Vilas-BoasE.A. NalbachL. AmpofoE. LucenaC.F. NaudetL. OrtisF. CarpinelliA.R. MorganB. RomaL.P. Transient NADPH oxidase 2-dependent H2O2 production drives early palmitate-induced lipotoxicity in pancreatic islets.Free Radic. Biol. Med.202116211310.1016/j.freeradbiomed.2020.11.02333249137
    [Google Scholar]
  51. InoguchiT. LiP. UmedaF. YuH.Y. KakimotoM. ImamuraM. AokiT. EtohT. HashimotoT. NaruseM. SanoH. UtsumiH. NawataH. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells.Diabetes200049111939194510.2337/diabetes.49.11.193911078463
    [Google Scholar]
  52. YuJ.H. KimK.H. KimH. Role of NADPH oxidase and calcium in cerulein-induced apoptosis: involvement of apoptosis-inducing factor.Ann. N. Y. Acad. Sci.20061090129229710.1196/annals.1378.03117384272
    [Google Scholar]
  53. SrinivasanS. OhsugiM. LiuZ. FatraiS. Bernal-MizrachiE. PermuttM.A. Endoplasmic reticulum stress-induced apoptosis is partly mediated by reduced insulin signaling through phosphatidylinositol 3-kinase/Akt and increased glycogen synthase kinase-3beta in mouse insulinoma cells.Diabetes200554496897510.2337/diabetes.54.4.96815793234
    [Google Scholar]
  54. WenclewskaS. Szymczak-PajorI. DrzewoskiJ. BunkM. ŚliwińskaA. Vitamin D supplementation reduces both oxidative DNA damage and insulin resistance in the elderly with metabolic disorders.Int. J. Mol. Sci.20192012289110.3390/ijms2012289131200560
    [Google Scholar]
  55. RiccaC. AillonA. BergandiL. AlottoD. CastagnoliC. SilvagnoF. Vitamin D receptor is necessary for mitochondrial function and cell health.Int. J. Mol. Sci.2018196167210.3390/ijms1906167229874855
    [Google Scholar]
  56. KimH. AndreazzaA. YeungP. Isaacs-TrepanierC. YoungL.T. Oxidation and nitration in dopaminergic areas of the prefrontal cortex from patients with bipolar disorder and schizophrenia.J. Psychiatry Neurosci.201439427628510.1503/jpn.13015524485387
    [Google Scholar]
  57. SalumE. KalsJ. KampusP. SalumT. ZilmerK. AunapuuM. ArendA. EhaJ. ZilmerM. Vitamin D reduces deposition of advanced glycation end-products in the aortic wall and systemic oxidative stress in diabetic rats.Diabetes Res. Clin. Pract.2013100224324910.1016/j.diabres.2013.03.00823522919
    [Google Scholar]
  58. DongJ. WongS.L. LauC.W. LeeH.K. NgC.F. ZhangL. YaoX. ChenZ.Y. VanhoutteP.M. HuangY. Calcitriol protects renovascular function in hypertension by down-regulating angiotensin II type 1 receptors and reducing oxidative stress.Eur. Heart J.201233232980299010.1093/eurheartj/ehr45922267242
    [Google Scholar]
  59. BerridgeM.J. Vitamin D cell signalling in health and disease.Biochem. Biophys. Res. Commun.20154601537110.1016/j.bbrc.2015.01.00825998734
    [Google Scholar]
  60. JohnyE. JalaA. NathB. AlamM.J. KuladhipatiI. DasR. BorkarR.M. AdelaR. Vitamin D supplementation modulates platelet-mediated inflammation in subjects with type 2 diabetes: A randomized, double-blind, placebo-controlled trial.Front. Immunol.20221386959110.3389/fimmu.2022.86959135720377
    [Google Scholar]
  61. SooyK. SchermerhornT. NodaM. SuranaM. RhotenW.B. MeyerM. FleischerN. SharpG.W.G. ChristakosS. Calbindin-D(28k) controls [Ca(2+)](i) and insulin release. Evidence obtained from calbindin-d(28k) knockout mice and beta cell lines.J. Biol. Chem.199927448343433434910.1074/jbc.274.48.3434310567411
    [Google Scholar]
  62. RhodesC.J. Type 2 diabetes-a matter of beta-cell life and death?Science2005307570838038410.1126/science.110434515662003
    [Google Scholar]
  63. SantosG.J. FerreiraS.M. OrtisF. RezendeL.F. LiC. NajiA. CarneiroE.M. KaestnerK.H. BoscheroA.C. Metabolic memory of ß-cells controls insulin secretion and is mediated by CaMKIIa.Mol. Metab.20143448448910.1016/j.molmet.2014.03.01124944908
    [Google Scholar]
  64. MitriJ. PittasA.G. Vitamin D and diabetes.Endocrinol. Metab. Clin. North Am.201443120523210.1016/j.ecl.2013.09.01024582099
    [Google Scholar]
  65. BlandR. MarkovicD. HillsC.E. HughesS.V. ChanS.L.F. SquiresP.E. HewisonM. Expression of 25-hydroxyvitamin D3-1α-hydroxylase in pancreatic islets.J. Steroid Biochem. Mol. Biol.200489-901-512112510.1016/j.jsbmb.2004.03.11515225758
    [Google Scholar]
  66. WrightD.C. HuckerK.A. HolloszyJ.O. HanD.H. Ca2+ and AMPK both mediate stimulation of glucose transport by muscle contractions.Diabetes200453233033510.2337/diabetes.53.2.33014747282
    [Google Scholar]
  67. Szymczak-PajorI. ŚliwińskaA. Analysis of association between vitamin D deficiency and insulin resistance.Nutrients201911479410.3390/nu1104079430959886
    [Google Scholar]
  68. MendesA.K.B. SulisP.M. CavalariF.C. PadillaD.P.R. AragónM. GasparJ.M. SilvaF.R.M.B. 1α,25-(OH)2 vitamin D3 prevents insulin resistance and regulates coordinated exocytosis and insulin secretion.J. Nutr. Biochem.20229910886410.1016/j.jnutbio.2021.10886434606907
    [Google Scholar]
  69. ReuschJ.B. BegumN. SussmanK. DrazninB. Regulation of GLUT-4 phosphorylation by intracellular calcium in adipocytes.Endocrinology199112963269327310.1210/endo‑129‑6‑32691659526
    [Google Scholar]
  70. ReisJ.P. von MühlenD. Kritz-SilversteinD. WingardD.L. Barrett-ConnorE. Vitamin D, parathyroid hormone levels, and the prevalence of metabolic syndrome in community-dwelling older adults.Diabetes Care20073061549155510.2337/dc06‑243817351276
    [Google Scholar]
  71. ThomasD.M. RogersS.D. SleemanM.W. PasquiniG.M. BringhurstF.R. NgK.W. ZajacJ.D. BestJ.D. Modulation of glucose transport by parathyroid hormone and insulin in UMR 106–01, a clonal rat osteogenic sarcoma cell line.J. Mol. Endocrinol.199514226327510.1677/jme.0.01402637619214
    [Google Scholar]
  72. SungC.C. LiaoM.T. LuK.C. WuC.C. Role of vitamin D in insulin resistance.J. Biomed. Biotechnol.2012201211110.1155/2012/63419522988423
    [Google Scholar]
  73. GilsanzV. KremerA. MoA.O. WrenT.A.L. KremerR. Vitamin D status and its relation to muscle mass and muscle fat in young women.J. Clin. Endocrinol. Metab.20109541595160110.1210/jc.2009‑230920164290
    [Google Scholar]
  74. Böni-SchnetzlerM. MeierD.T. Islet inflammation in type 2 diabetes.Semin. Immunopathol.201941450151310.1007/s00281‑019‑00745‑430989320
    [Google Scholar]
  75. CaltonE.K. KeaneK.N. NewsholmeP. SoaresM.J. The impact of vitamin D levels on inflammatory status: A systematic review of immune cell studies.PLoS One20151011e014177010.1371/journal.pone.014177026528817
    [Google Scholar]
  76. CannellJ.J. GrantW.B. HolickM.F. Vitamin D and inflammation.Dermatoendocrinol201461e98340110.4161/19381980.2014.98340126413186
    [Google Scholar]
  77. MuttS.J. HyppönenE. SaarnioJ. JärvelinM.R. HerzigK.H. Vitamin D and adipose tissue-more than storage.Front. Physiol.2014522810.3389/fphys.2014.0022825009502
    [Google Scholar]
  78. González-MoleroI. Rojo-MartínezG. MorcilloS. GutierrezC. RubioE. Pérez-ValeroV. EstevaI. Ruiz de AdanaM.S. AlmarazM.C. ColomoN. OlveiraG. SoriguerF. Hypovitaminosis D and incidence of obesity: a prospective study.Eur. J. Clin. Nutr.201367668068210.1038/ejcn.2013.4823422920
    [Google Scholar]
  79. LandrierJ.F. KarkeniE. MarcotorchinoJ. BonnetL. TourniaireF. Vitamin D modulates adipose tissue biology: Possible consequences for obesity?Proc. Nutr. Soc.2016751384610.1017/S002966511500416426564334
    [Google Scholar]
  80. ChunR.F. LiuP.T. ModlinR.L. AdamsJ.S. HewisonM. Impact of vitamin D on immune function: Lessons learned from genome-wide analysis.Front. Physiol.2014515110.3389/fphys.2014.0015124795646
    [Google Scholar]
  81. ChristakosS. LiuY. Biological actions and mechanism of action of calbindin in the process of apoptosis.J. Steroid Biochem. Mol. Biol.200489-901-540140410.1016/j.jsbmb.2004.03.00715225809
    [Google Scholar]
  82. BarraganM. GoodM. KollsJ. Regulation of dendritic cell function by vitamin D.Nutrients2015798127815110.3390/nu709538326402698
    [Google Scholar]
  83. LiB. BaylinkD.J. DebC. ZannettiC. RajaallahF. XingW. WalterM.H. LauK.H.W. QinX. 1,25-Dihydroxyvitamin D3 suppresses TLR8 expression and TLR8- mediated inflammatory responses in monocytes in vitro and experimental autoimmune encephalomyelitis in vivo.PLoS One201383e5880810.1371/journal.pone.005880823516559
    [Google Scholar]
  84. GaoD. TrayhurnP. BingC. 1,25-Dihydroxyvitamin D3 inhibits the cytokine-induced secretion of MCP-1 and reduces monocyte recruitment by human preadipocytes.Int. J. Obes.201337335736510.1038/ijo.2012.5322508334
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673270429240805050928
Loading
/content/journals/cmc/10.2174/0109298673270429240805050928
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test